103
MOS-AK Group Meeting : MOS Model 11 MOS Model 11 MOS Model 11 R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting’02 XFAB, Erfurt October 21, 2002

MOS Model 11

  • Upload
    alain

  • View
    40

  • Download
    4

Embed Size (px)

DESCRIPTION

MOS Model 11. R. van Langevelde, A.J. Scholten and D.B.M. Klaassen Philips Research, The Netherlands MOS-AK Group Meeting’02 XFAB, Erfurt October 21, 2002. Introduction: MOS Model 11. Goals for MOS Model 11 (MM11):. suitable for digital, analog and RF - PowerPoint PPT Presentation

Citation preview

Page 1: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

MOS Model 11MOS Model 11

R. van Langevelde, A.J. Scholten

and D.B.M. Klaassen

Philips Research, The Netherlands

MOS-AK Group Meeting’02

XFAB, Erfurt

October 21, 2002

Page 2: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

suitable for digital, analog and RF

suitable for modern/future CMOS processes

physics based

simulation time comparable to MM9

number of parameters comparable to MM9

simple parameter extraction

Introduction: MOS Model 11

Goals for MOS Model 11 (MM11):

Page 3: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Introduction: MOS Model 11

surface-potential-based model

accurate transition weak strong inversion

symmetrical

distortion

accurate description of third-order derivatives (i.e. 3I/V3)

Model developed for accurate distortion analysis in circuit design:

Page 4: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Introduction: MOS Model 11

mobility reduction

bias-dependent series resistance

velocity saturation

conductance effects (CLM, DIBL, etc.)

gate leakage current

gate-induced drain leakage

gate depletion

quantum-mechanical effects

bias-dependent overlap capacitances

implemented physical effects:

Page 5: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Introduction: availability of MM11

public domain• source code in C (including solver)

• documentation of model and parameter extraction

• http://www.semiconductors.philips.com/Philips_Models

circuit simulators• Pstar (Philips in-house)

• Spectre (Cadence)

• Hspice (Avant!)

• ADS (Agilent)

• Eldo (Mentor Graphics)

• HSIM (NASSDA)

Page 6: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Introduction: structure of MOS Model 11

Junction diodes modelled by

JUNCAP-modelGeometry Scaling

Temperature Scaling

Model Equations

W, L

T

DS

GS

SB

V

V

V

Noise

Charges

Currents

Page 7: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

MOS Model 11: outline

Introduction

DC-Model

AC-Model

Noise Model

Model Parameters & Extraction

Summary

Page 8: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model: VT -based model

TV

interpolation needed between subthreshold and superthreshold (e.g. BSIM4 and MM9)

Smoothing function

T

TGSDS exp

m

VVI

VT -based model:

2TGSDS VVI

0 1 210 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

VSB = 0 V

VDS = 1 V

VVGSGS (V) (V)

II DS

DS

(A)

(A

)

Page 9: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model: surface-potential-based model

Idrift = f(VGB ,s0 ,sL)

Idiff = g(VGB ,s0 ,sL)

IDS = Idrift + Idiff

s-based model:

single equation for whole operation range:

0 1 210 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

Idiff

I drift

IDS = Idrift + Idiff

VSB = 0 V

VDS = 1 V

VGS (V)

II DS

DS

(A)

(A

)

Page 10: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model: surface potential s

Quasi-Fermi Potential V:

Substrate

VGB

Gate

EV

Oxide

EC

Ei EF

Fq

sq

V

V = VSB at Source

V = VDB at Drain

0

1

2

0 1 2 3

V GB - V FB (V)

s

(V)

t ox = 3.2 nm

N A= 2*1017 cm-3V = 1 V

V = 0 V

s=2F+V

Page 11: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

11 T

s

T

s

T

B

TTs

2

sFBGB

eee

k

VVV

O

-0.4

0

0.4

0.8

1.2

-1 0 1 2V GB - V FB (V)

s

(V)

V = 0 V-0.4

0

0.4

0.8

1.2

-1 0 1 2V GB - V FB (V)

s

(V)

V = 0 V

AccumulationApproximation

iterative solution

time consuming

approximation used:

s = s(VGB ,V )

(Solid-State Electron. 44, 2000)-0.4

0

0.4

0.8

1.2

-1 0 1 2V GB - V FB (V)

s

(V)

Weak-inversionApproximation

V = 0 V-0.4

0

0.4

0.8

1.2

-1 0 1 2V GB - V FB (V)

s

(V) Strong-inversion

Approximation

V = 0 V

DC-Model: surface potential approximation

Page 12: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model: surface-potential-based model

Description of ideal long-channel MOSFET

For real devices several physical effects have to be taken into account:mobility effects

conductance effects

Special attention to:distortion

drain-source symmetry

new models}

Page 13: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model: distortion behavior

• 2nd-order distortion: cancels out in balanced circuit

• 3rd-order distortion: limits dynamic range

I OU

T

VIN

12

34

Harmonic

Am

plit

ud

e accurate description of 3rd-order derivatives

Page 14: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model: gate-bias induced distortion

Gate-bias induced distortion for NMOS, W/L=10/1m

1 2 3 4

VGS (V)

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

Har

mon

ic A

mpl

itud

e (A

)

VSB

= 0 V

VDS

= 0.1 V

HD2

HD3

HD1

VT

Mobility Reductionand

Series-Resistance

Symbols Measurements

Lines MOS Model 11

Page 15: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model: conductance modeling

VelocitySaturation

Static Feedbackand

Self-Heating

Weak-Avalanche

Drain-bias induced distortion for NMOS W/L=10/1m

0 1 2 3 4

VDS (V)

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3H

arm

onic

Am

plit

ude

(A)

VSB = 0 VVGS = 2.5 V

HD2

HD3

HD1

ChannelLength

Modulation

Page 16: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

-60

-50

-40

-30

-20

-10

0 1 2 3V GS (V)

Har

mo

nic

Po

wer

(dB

m)

HD2

HD3

MM11Measurements

MM9BSIM3v3-60

-50

-40

-30

-20

-10

0 1 2 3V GS (V)

Har

mo

nic

Po

wer

(d

Bm

)

HD2

HD3

MM11Measurements

MM9BSIM3v3

RF-distortion determined by DC model

f=16 MHz f=1 GHzNMOS, W/L=160/0.35m, VDS=3.3 V, PIN=-5dBm

DC-Model: RF-distortion modeling

Page 17: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Outline: DC-Model

VT vs. s-based models

Distortion modeling

Symmetry

Gate leakage current

Page 18: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

ideal current equation velocity saturation DIBL/static feedback smoothing function (linear/saturation region)

Care has to be taken with the implementation of:

DC-Model : drain-source symmetry

Symmetry w.r.t. source and drain at VDS= 0

MOS models developed for VDS 0 for VDS < 0, source & drain are interchanged

In order to preserve symmetry:IDS( VGS , VDS , VSB ) = -IDS( VGD , VSD , VDB )

Page 19: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model : drain-source symmetry

Not valid for threshold-voltage-based models

10

100

-0.6 -0.3 0 0.3 0.6

V DS (V)

gd

s

(mA

/V)

MOS Model 9

10

100

-0.6 -0.3 0 0.3 0.6

V DS (V)

dg

ds /d

VD

S (

mA

/V2 )

MOS Model 9

IDS( VGS , VDS , VSB ) = -IDS( VGD , VSD , VDB )

Page 20: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

DC-Model : drain-source symmetry

10

100

-0.6 -0.3 0 0.3 0.6

V DS (V)

gd

s

(mA

/V)

MOS Model 9

MOS Model 11

10

100

-0.6 -0.3 0 0.3 0.6

V DS (V)

dg

ds /d

VD

S (

mA

/V2 )

MOS Model 9

MOS Model 11

Care has to be taken to preserve symmetry

IDS( VGS , VDS , VSB ) = -IDS( VGD , VSD , VDB )

Page 21: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Outline: DC-Model

VT vs. s-based models

Distortion modeling

Symmetry

Gate leakage current

Page 22: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Gate

Source Drain

bulk

VGSpotentialpotential

DC-Model: gate leakage current

Page 23: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Gate

Source Drain

bulk

VGS

{

tox JG

GSOG VBJJ exp oxox

Ott

Jexp

2

1where:

Simplified relation:

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 0.5 1 1.5

V GS (V)

JG

(A

/cm

2)

MeasurementModel

t ox = 2.2nm

t ox = 1.7nm

t ox = 1.4nm

NMOS, VDS=0V

DC-Model: gate leakage current

Page 24: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS (in inversion):

oxinvG VPQJ

Gate EV

OxideOxide

EC

Ei EF

Substrate

oxVq

-

Bq

Gate current density:

tunnelling probability

parameters

oxVinvoxG eQVI OB

OI

Approximation (at VDS=0 V):

electron charge density

DC-Model: gate leakage model

Page 25: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

-1.5 -1 -0.5 0 0.5 1 1.5

V GS (V)

I G

(A)

MeasurementsMM11

I GS + I GD

NMOS, tox=2 nm, Area=6 m2

VGS>0

SS

DD

IIGG

IGDIGS

DC-Model: gate current components

Page 26: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

-1.5 -1 -0.5 0 0.5 1 1.5

V GS (V)

I G

(A

)

Measurements

MM11

I GS + I GD

I GOV

VGS>0

SS

DD

IIGG

NMOS, tox=2 nm, Area=6 m2

IGOV

IGDIGS

DC-Model: gate current components

Page 27: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

-1.5 -1 -0.5 0 0.5 1 1.5

V GS (V)

I G

(A)

MeasurementsMM11

I GS + I GD

I GOV

NMOS, tox=2 nm, Area=6 m2SS

DD

IIGG

IGDIGS

IGOV

VGS<0

DC-Model: gate current components

Page 28: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

-1.5 -1 -0.5 0 0.5 1 1.5

V GS (V)

I G

(A)

MeasurementsMM11

I GB I GS + I GD

I GOV

NMOS, tox=2 nm, Area=6 m2

VGS<<0

SS

DD

IIGG

IGDIGS IGB

IGOV

DC-Model: gate current components

Page 29: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

-1.5 -1 -0.5 0 0.5 1 1.5

V GS (V)

I G

(A)

MeasurementsMM11

I G

NMOS, tox=2 nm, Area=6 m2

VGS<<0

SS

DD

IIGG

IGDIGS IGB

IGOV

DC-Model: gate current components

Page 30: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

-1.5 -1 -0.5 0 0.5 1 1.5

V GS (V)

I G

(A)

VDS = 1.5 V

Measurements MM11

VDS = 0 V

NMOS, tox=2 nm, Area=6 m2

determined by overlap region

determined by

intrinsic region

DC-Model: gate leakage model

L

xVeQVI dinvoxOGC

oxOBI

Page 31: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

MOS Model 11: outline

Introduction

DC-Model

AC-Model

Noise Model

Model Parameters & Extraction

Summary

Page 32: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

AC-Model: intrinsic charges

- --

+ + + + + +

n+

p

n+

- - - - - - - -

+ + +

n+

--

- --

- -- -

- -- -- -

- -- -

- -

-

L

xQWQ0

depB d

L

xQL

xWQ

0

invD d

L

xQL

xWQ

0

invS d1 BSDG QQQQ

Intrinsic Capacitances::

ji

V

Q

jiV

Q

Cfor

for

j

i

j

i

ij

where i, j =G, S, D or B

Page 33: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

V GS (V)C

GG

(n

F)

Measurements

MOS Model 11tox=3.6nm

gate depletion effect

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

V GS (V)C

GG

(n

F)

Measurements

MOS Model 11tox=3.6nm

quantum-mechanicaleffects

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

V GS (V)C

GG

(n

F)

Measurements

MOS Model 11tox=3.2nm

charge model includes:

accumulation

PMOS, VDS=0 V,

W/L=80*612/2.5m

AC-Model: input capacitance CGG

physical tox=3.2nm

Page 34: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

AC-Model: symmetry and reciprocity of capacitances

VDS=0V

CBD-CBS vs. VG

symmetry (CiD=CiS) reciprocity (Cij=Cji)

CDS-CSD vs. VG

Page 35: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

AC-Model: bias-dependent overlap capacitance

- - -++++++

- - -

n+ p

n+

Source

Gate

Bulk

n+

n+

Source/DrainTwo-terminal MOS-capacitance:

accumulation and depletion region includedintroducing two parameters: kov and VFBov

Page 36: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

AC-Model: bias-dependent overlap capacitance

0

50

100

150

-2 -1 0 1 2

V GS (V)

CD

G

(p

F)

MeasurementsMOS Model 11

intrinsic

C DG

total C DG

overlap capacitance

PMOS , VDS=0 V , W/L=152*612/0.18m

Short-channel MOSFET, 0.18m CMOS

Page 37: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

MOS Model 11: outline

Introduction

DC-Model

AC-Model

Noise Model

Model Parameters & Extraction

Summary

Page 38: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

1/f noise

thermal noise

induced gate noise

Noise Model: noise types in MOS transistor

induced induced gate noisegate noise

Page 39: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

unified 1/f noise model: BSIM4, MM9 & MM11 bias dependence verified geometrical scaling verified

Noise Model: 1/f-noise

/Hz)(V

WL

WL

S

2

RR

Vgate

10-11

10-10

10-9

10-8

0 1 2 3 4

Vgs [Volt]

NMOS

0 1 2 3 4

Vgs [Volt]

PMOS

model

(Kwok K. Hung et al.,

IEEE TED-37 (3), p.654, 1990; ibid. (5), p.1323, 1990)

Page 40: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

VD(SAT)

dV(V)gLI

TkS

0

22

D

BID

4

Noise Model: thermal noise

||1 Evsat

eff

eff

New expression (MM11)Old expression (BSIM,MM9)

2

||1

Evsat

eff

eff

• thermal noise:

(F.M. Klaassen & J. Prins , Philips Res. Repts. 22, p.504, 1967)

(V)Qμ(V)Wg(V) invwhere:where:

Page 41: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Noise Model: thermal noise (II)

0

5

10

15

0 1 2 3V GS (V)

F5

0

(dB

)

Measurement

Old model0

5

10

15

0 1 2 3V GS (V)

F5

0

(dB

)

New model

Measurement

Old model

50 Noise Figure (NMOS, W/L=160/0.35m, VDS=3.3V)

(A.J. Scholten et al., IEDM Tech. Dig., pp.155-158, 1999)

no hot electron effect needed

to describe noise behaviour

Page 42: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Noise Model: thermal noise (III)

50 noise figure (no noise parameters needed)

verified on 0.35m, 0.25m and 0.18m CMOS(A.J. Scholten et al., IEDM Tech. Dig., pp.155-158, 1999)

Page 43: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

MOS Model 11: outline

Introduction

DC-Model

AC-Model

Noise Model

Model Parameters & Extraction

Summary

Page 44: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Geometry Geometry

ScalingScaling Temperature Temperature

ScalingScaling Model Model

EquationsEquations WL

T

39 miniset

parameters

13 temperature

scaling parameters

37 geometry scaling

parameters

Parameters: model structure

OWWWLLLLLLOR kssskRERERE 111111

222

Page 45: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

extract miniset for each dut

determine geometry scaling

parameter set

ko

determine temperature scaling

measurements

0.1

0.15

0.2

0.25

0 5 10 15

MinisetScaling

1/LE (1/m)k o

(V

1/2)

example: 0.12m CMOS

Parameters: extraction strategy

Page 46: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

ID - VGS - curve for various VSB in linear region1

2

3

4

ID - VDS - and gDS - VDS - curves for various VGS

IG - VGS - and IB - VGS - curves for various VDS

CGG - VGS - curve at VSB=VDS=0V (optional)

required measurements per device

Parameters: measurements

Page 47: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Measurements

Miniset extraction

Temperature scaling

Geometry scaling

Parameters: extraction outline

Page 48: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

effect parameters

threshold

IGINV , BINV , IGACC , BACC , IGOV

kO , B

subthreshold slope

flat-band voltage

mobility reduction

series resistance

conductance

impact ionization

gate current

velocity saturation

poly depletion

mO

VFB

kP

, sr , ph , mob

, R

sat

, DIBL , sf , Th

a1 , a2 , a3

Parameters: DC miniset

Page 49: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

flat-band voltage/poly depletion

mobility/series-resistance

velocity saturation/conductance

(sub)threshold parameters

1st-order estimation

gate current

impact ionization

extraction strategy:

(optional)

somewhat different strategy for long-channel and short-channel devices

start with long-channel device

Parameters: miniset extraction strategy

Page 50: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

}}

1st-order

parameter

estimate

Step 1: 1st-order estimation

tox

L

NP

W miniset parameters{

doping concentration in polysilicon gate

Parameters: miniset extraction of long-channel device

Page 51: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

optimize ID and gm on absolute error: B, ko, and sr Step 1: 1st-order estimation

threshold mobility

VGS (V) VGS (V)

I D (A

)

gm (A

/V)

Parameters: miniset extraction of long-channel device

Page 52: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

optimize ID and gm on absolute error: B, ko, and sr Step 1: 1st-order estimation

threshold mobility

VGS (V) VGS (V)

I D (A

)

gm (A

/V)

Parameters: miniset extraction of long-channel device

Page 53: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize CGG on relative error: VFB, B, ko and 1/kP Step 2: VFB/poly-depletion (optional)

poly-depletion

NMOS W/L=100/10m

CG

G

(p

F)

VGS (V)

optimization region

measurement error due to gate current

Parameters: miniset extraction of long-channel device

Page 54: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize CGG on relative error: VFB, B, ko and 1/kP Step 2: VFB/poly-depletion (optional)

poly-depletion

NMOS W/L=100/10m

CG

G

(p

F)

VGS (V)

Parameters: miniset extraction of long-channel device

Page 55: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize ID on relative error: B, ko and mo Step 3: subthreshold parameters

NMOS W/L=10/10m

VGS (V)

I D

(A) optimization

region

measurement 1

Parameters: miniset extraction of long-channel device

Page 56: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize ID on relative error: B, ko and mo Step 3: subthreshold parameters

NMOS W/L=10/10m

VGS (V)

I D

(A)

measurement 1

Parameters: miniset extraction of long-channel device

Page 57: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

optimize ID and gm on relative error: , sr, ph and mob

Step 4: mobility parameters

VGS (V) VGS (V)

I D (A

)

gm (A

/V)optimization

region

mobility reduction

Parameters: miniset extraction of long-channel device

Page 58: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

Step 4: mobility parameters

VGS (V) VGS (V)

I D (A

)

gm (A

/V)

optimize ID and gm on relative error: , sr, ph and mob

mobility reduction

Parameters: miniset extraction of long-channel device

Page 59: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

Step 5: velocity saturation/conductance

VDS (V) VDS (V)

I D (A

)

gD

S (

A/V

)

optimize ID on absolute error: sat

optimize gDS on relative error: , sf and Th

velocity saturationconductance

Parameters: miniset extraction of long-channel device

Page 60: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10mVDS (V) VDS (V)

I D (A

)

gD

S (

A/V

)

Step 5: velocity saturation/conductanceoptimize ID on absolute error: sat

optimize gDS on relative error: , sf and Th

velocity saturationconductance

Parameters: miniset extraction of long-channel device

Page 61: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

Step 6: gate current parameters

VGS (V) VGS (V)

I G (A

)

I G

(A

)

optimize IG on absolute error: Binv and IGINV

gate-to-channel current

Parameters: miniset extraction of long-channel device

Page 62: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

gate-to-channel current

Step 6: gate current parameters

VGS (V) VGS (V)

I G (A

)

I G

(A

)

optimize IG on absolute error: Binv and IGINVoptimize IG on relative error: IGACC and IGOV

gate-bulk & overlap current

Parameters: miniset extraction of long-channel device

Page 63: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

Step 6: gate current parameters

VGS (V) VGS (V)

I G (A

)

I G

(A

)

optimize IG on absolute error: Binv and IGINVoptimize IG on relative error: IGACC and IGOV

gate-bulk & overlap current

Parameters: miniset extraction of long-channel device

Page 64: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

optimize ID and gm on relative error: , sr, ph and mob

Repeat steps 3 through 6, e.g. step 4:

VGS (V) VGS (V)

I D (A

)

gm (A

/V)optimization

region

error due to gate current

Parameters: miniset extraction of long-channel device

Page 65: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

NMOS W/L=10/10m

optimize ID and gm on relative error: , sr, ph and mob

Repeat steps 3 through 6, e.g. step 4:

VGS (V) VGS (V)

I D (A

)

gm (A

/V)

Parameters: miniset extraction of long-channel device

Page 66: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Measurements

Miniset extraction

Temperature scaling

Geometry scaling

Parameters: extraction outline

Page 67: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

binning scaling rules fast and easy, however not physical

reproduces minisets

use 170 parameters per bin

physical scaling rules somewhat more elaborate, but physical

gives insight in technology

use 90 parameters per technology

two types of geometry scaling rules can be used:

Parameters: geometry scaling rules

Page 68: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

E

kW;2

E

k;L

E

kL;oRo

oo2

o 11 WS

L

SL

Skk

E

E

P

E

E

sq

exp11 L

W

LL

LLf

physical scaling rules have different forms per miniset parameter, e.g.:

scaling parameters determined from miniset values

or: geometry scaling

parameters

Parameters: physical geometry-scaling rules

Page 69: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

0.2

0.3

0.4

0.1 1 10 100

L drawn (m)

ko

(V

1/2)

MM11 scaling rule

scaling of body factor ko

NMOSW = 10m

miniset values

Parameters: geometry scaling of body factor ko

Page 70: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

0

10

20

0 10 20 30 40 50

L drawn (m)1/

(kV

2 /A) MM11 scaling rule

conventional scaling rule

conventional scaling:

E

Esq L

W

scaling of gain factor

0

0.1

0.2

0 0.4 0.8

PMOSW = 10m

Parameters: geometry scaling of gain factor

Page 71: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

physical geometry scaling fits of linear region (PMOS)

W/L = 10/10m

VGS (V) VGS (V)VGS (V)

I D

(A

)

I D

(A

)

I D

(m

A)

W/L = 10/0.8m W/L = 10/0.12m

Parameters: geometry scaling: ID-VGS-curves

Page 72: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

physical geometry scaling fits of linear region (PMOS)

VGS (V) VGS (V)VGS (V)

g m

(A

/V)

g m

(A

/V)

g m

(m

A/V

)

Parameters: geometry scaling: gm-VGS-curves

W/L = 10/10m W/L = 10/0.8m W/L = 10/0.12m

Page 73: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

physical geometry scaling fits of subthreshold region (PMOS)

VGS (V)

I D

(A

)

I D

(A

)

VGS (V)VGS (V)

I D

(A

) Parameters: geometry scaling: subthreshold curves

W/L = 10/10m W/L = 10/0.8m W/L = 10/0.12m

Page 74: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

physical geometry scaling fits of output curves (PMOS)

VDS (V) VDS (V)VDS (V)

I D

(m

A)

I D

(A

)

I D

(m

A)

Parameters: geometry scaling: ID-VDS-curves

W/L = 10/10m W/L = 10/0.8m W/L = 10/0.12m

Page 75: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

physical geometry scaling fits of output curves (PMOS)

g DS

(A

/V)

g DS

(A

/V)

VDS (V)

g DS

(A

/V)

VDS (V)VDS (V)

Parameters: geometry scaling: gDS-VDS-curves

W/L = 10/10m W/L = 10/0.8m W/L = 10/0.12m

Page 76: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

physical geometry scaling fits of gate current (PMOS)

VGS (V)

|I G|

(A

)

|I G|

(A

)

VGS (V)VGS (V)

|I G|

(A

) Parameters: geometry scaling: IG-VGS-curves

W/L = 10/10m W/L = 10/0.8m W/L = 10/0.12m

Page 77: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Summary

use of s-formulations results in accurate description of

moderate inversion region improved description of several physical effects results in

accurate and symmetrical description of currents, charges, noise and distortion

fulfills Compact Model Council benchmark tests parameters determined from I-V and C-V measurements no increase in number of parameters no increase in simulation time

MOS Model 11, fulfills demands for advanced compact MOS modelling:

Excellent description of RF distortionExcellent description of RF distortion

Page 78: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

• Why is MM11 in the public domain?• Surface-potential-based model

• Accuracy of s-approximation

• Linear/saturation region transition

• Drain/source partitioning of IG

• Poly-depletion effect• Quantum-mechanical effects• Temperature scaling• Binning geometry-scaling rules• Literature

Appendices

Page 79: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

W Semiconductors is a manufacturer with over 85% of sales to external customers

Appendix: Why is MM11 in the public domain?

Hence it makes sense to have MM11 available for the outside world:

• customers can use it

• vendors of EDA & extraction tools implement model

• facilitates communication about processes and wafer

• model is open for discussion and improvements

Page 80: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

- --++++++

n+

p

n+

- - - - - - - -+++

n+ - -

- - -- -

- - - -- -- -

- -- -

- -

-

depQinvQ

DIGI

SI

BI sOsFBGBoxinv kVVCQ

Appendix: surface-potential-based model

xQWI

s

invdrift

IDS x

QWI

inv

Tdiff

diffdriftDS III

sOoxdep kCQ

Page 81: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Surface Potential Drain Current

ID-VGS at VDS=1 V

0

1

2

0.5 1 1.5 2

VGB - VFB (V)

s (V)

s0 (V=0)

sL (V=1)

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

0.5 1 1.5 2

VGB - VFB (V)ID

(A)

Idrift

IdiffID

0

1

2

0.5 1 1.5 2

VGB - VFB (V)

s (V)

s0 (V=0)

sL (V=1)

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

0.5 1 1.5 2

VGB - VFB (V)ID

(A)

Idrift

IdiffID

0

1

2

0.5 1 1.5 2

VGB - VFB (V)

s (V)

s0 (V=0)

sL (V=1)

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

0.5 1 1.5 2

VGB - VFB (V)ID

(A)

Idrift

IdiffID

Appendix: surface-potential-based model (II)

Page 82: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

0

20

40

0 1 2

V DS (V)

I D

(A

)

I drift

I diff

I D

0

1

2

3

0 1 2 3

V GB - V FB (V)

s

(V)

s0

0

1

2

3

0 1 2 3

VGB - VFB (V)

s

(V)

s0

VDS=0.5 V

0

1

2

3

0 1 2 3

VGB - VFB (V)

s (V

)

s0

VDS=1.0 V

0

1

2

3

0 1 2 3

VGB - VFB (V)

s (V

)

s0

VDS=1.5 V

Surface Potential Drain Current

ID-VDS at VGB - VFB =2 V

VDS=0 V

Appendix: surface-potential-based model (III)

Page 83: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: accuracy of surface potential approximation

-3

-2

-1

0

1

2

3

0 0.5 1 1.5

V GS (V)

D

s

(mV

)

N A = 5*1017cm-3

t ox = 2 nm

V = 0 V

error w.r.t. implicit s

absolute error in s relative error in IDS

error in IDS due to Ds error is negligible

-4

-2

0

2

4

0 0.5 1 1.5

V GS (V)re

lati

ve e

rro

r I D

S (

%)

0

10

20

30

40

I DS

(A

)

W /L = 10/10mV DS = 0.1V

V SB = 0.0V

Page 84: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: linear/saturation transition

VDS

VD

Sx

V DS

m =2

V DSATm =100

Model incorporates linear/saturation region for long-channel case:

longDSATDSAT VV

longDSATDSAT VV Short-channel devices:

Approximation used:

s = s(VGB,VDSx + VSB)

(K. Joardar et al, IEEE TED-45, pp. 134-148, 1998)

mmDSAT

mDS

DSATDSDSx

VV

VVV

21

22

where:

Page 85: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: gate current partitioning

S IGDIGS D

IG

xJI Lx dGGD W

GDGGS III NMOS, tox=2 nm, W/L=10/0.6m

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5

V DS (V)

I GD

/IG

, I G

S/I

G

(-)

I GS /I G

MM11

V GS = 0.5 V

V GS = 1.5 V

I GD /I G

Segmentation

Page 86: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: poly-depletion effect

body factor of poly-silicon:

ox

PSiP

2

C

Nqk

depletion layer formed in Gate resulting in effective Gate potential:

psFBGB VV

Gate OxideOxide Substrate

Fq

sq pq

VGB > VFB

Page 87: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: poly-depletion effect

0

0.5

1

0 0.6 1.2 1.8VGS (V)

CG

G

(pF

)

W/L= 10/10m

kP =2

0

5

10

15

0 0.6 1.2 1.8VGS (V)

I D

(A

)

W/L= 10/10m

kP =2

drain current gate capacitance

influence of poly-depletion (VDS=50mV , VSB=0V)

pkpk

Page 88: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

V GS (V)

Cg

g

(nF

)

MeasurementsModel

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3V GS (V)

Cg

g

(nF

)

MeasurementsModel

Appendix: poly-depletion effect

NMOS PMOS 0.18m CMOSW/L=80*612/2.5m

using electrical tox=3.6nm physical tox=3.2nm

Page 89: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: quantum-mechanical effects

Gate

EV

Oxide

EC

E i

EF

Substrate

DE

energy quantization

results in DVT

Distance from InterfaceC

arr

ier

Co

nc

en

tra

tio

n

Classical

Quantum-Mechanical

charge centroid

results in Dtox

Page 90: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: quantum-mechanical effects

Distance from Interface

Ca

rrie

r C

on

ce

ntr

ati

on

Classical

Quantum-Mechanical

inversion-layer is formed at distance Dy from interface

31

effD Ey

effective oxide thickness:

ytt DSi

oxoxoxeff

(F. Stern, CRC Crit. Rev. Solid State Sci., pp.499-514, 1974)

Page 91: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

V GS (V)

Cg

g

(nF

)

MeasurementsModel

0

0.4

0.8

1.2

-3 -2 -1 0 1 2 3

V GS (V)

Cg

g

(nF

)

MeasurementsModel

Appendix: quantum-mechanical effects

using physical tox=3.2nm

NMOS PMOS 0.18m CMOSW/L=80*612/2.5m

Page 92: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

temperature scaling rules of the form:

miniset parameters at room temperature are exactly reproduced

where TR is room temperature

β

RT

TT or RT;BBT B

TTS

temperature scaling

parameters

Appendix: temperature scaling

Page 93: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

mobility/series-resistance

velocity saturation

(sub)threshold parameters

1st-order estimation

impact ionization

extraction strategy:

somewhat different strategy for long-channel and short-channel devices

start extraction for long-channel device(use default values of temperature parameters as 1st-order estimation)

Appendix: temperature-scaling extraction

Page 94: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize ID on relative error:Step 1: subthreshold parameters

NMOS W/L=10/10mVGS (V)

I D

(A)

BTS ;

I D

(A)

VGS (V)

T=125ºC T=-40ºC

Appendix: temperature scaling long-channel device

Page 95: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize ID on relative error:Step 1: subthreshold parameters

NMOS W/L=10/10mVGS (V)

I D

(A)

BTS ;

I D

(A)

VGS (V)

T=125ºC T=-40ºC

Appendix: temperature scaling long-channel device

Page 96: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize ID on relative error: , sr and ph

Step 2: mobility parameters

NMOS W/L=10/10mVGS (V) VGS (V)

I D (A

)

I D (A

)

T=125ºC T=-40ºC

Appendix: temperature scaling long-channel device

Page 97: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Step 2: mobility parameters

NMOS W/L=10/10mVGS (V) VGS (V)

I D (A

)

I D (A

)

T=125ºC T=-40ºC

optimize ID on relative error: , sr and ph

Appendix: temperature scaling long-channel device

Page 98: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

optimize ID on relative error: sat

Step 3: velocity saturation

NMOS W/L=10/10mVDS (V) VDS (V)

I D (A

)

I D (A

)

T=125ºC T=-40ºC

Appendix: temperature scaling long-channel device

Page 99: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Step 3: velocity saturation

NMOS W/L=10/10mVDS (V) VDS (V)

I D (A

)

I D (A

)

T=125ºC T=-40ºC

optimize ID on relative error: sat

Appendix: temperature scaling long-channel device

Page 100: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

maxL

maxW

minW

minL

1

2

3

4 12

11

10

9

8

7

6

5

16

15

14

13

W

L

minisets

binning rules based on

physical scaling

no parameter jumps at

bin borders

minisets are exactly

reproduced at corners

binning parameter set is calculated from minisets

no extra extraction or optimization needed

Appendix: binning geometry-scaling rules

Page 101: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: literature

“Effect of gate-field dependent mobility degradation on distortion analysis

in MOSFET’s”, R. v. Langevelde and F.M. Klaassen,

IEEE Trans. El. Dev., Vol.44, p.2044, 1997

“Accurate drain conductance modeling for distortion analysis in MOSFETs”,

R. v. Langevelde and F.M. Klaassen, IEDM’97 Technical Digest, p.313, 1997

“A compact MOSFET model for distortion analysis in analog circuit design”,

R. v. Langevelde, Ph.D. Thesis, University of Technology Eindhoven, 1998

“Accurate thermal noise model for deep sub-micron CMOS”,

A.J. Scholten et al., IEDM’99 Technical Digest, p.155, 1999

“An explicit surface-potential-based MOSFET model for circuit simulation”,

R. v. Langevelde and F.M. Klaassen, Solid-State Electron., Vol.44, p.409, 2000

CMC benchmark tests

Page 102: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: literature

“RF-Distortion characterisation of sub-micron CMOS”,

L.F. Tiemeijer et al., Proc. ESSDERC’00, p.464, 2000

“RF-Distortion in deep sub-micron CMOS technologies”,

R. v. Langevelde et al., IEDM’00 Technical Digest, p.807, 2000

“BSIM4 and MOS Model 11 benchmarks for MOSFET capacitances”,

A.J. Scholten et al., CMC meeting, March 2001, http://www.eigroup.org/cmc

“MOS Model 11, Level 1100’’, R. v. Langevelde,

Nat.Lab. Unclassified Report NL-UR 2001/813, April 2001, see website

“Compact MOS modelling for RF circuit simulation”,

A.J. Scholten et al., Proc. SISPAD’01, p.194, 2001

“Advanced compact MOS modelling”,

R. v. Langevelde et al., Proc. ESSDERC’01, p.81, 2001

Page 103: MOS Model 11

MO

S-A

K G

rou

p M

eeti

ng

: M

OS

Mo

del

11

Appendix: literature

“Compact modelling of pocket-implanted MOSFETs”,

A.J. Scholten et al., Proc. ESSDERC’01, p.311, 2001

“Gate current: Modeling, DL extraction and impact on RF performance”,

R. v. Langevelde et al., IEDM’01 Technical Digest, p.289, 2001

“Parameter extraction for surface-potential based compact MOS Model 11”,

R. v. Langevelde, Agilent World-Wide IC-CAP Users’ Conference, Dec. 2001

“MOS Model 11, Level 1101’’, R. v. Langevelde et al.,

Nat.Lab. Unclassified Report NL-UR 2002/802, June 2002, see website