48
Lec16 MOSFET models (II) Short-channel model 1

mos - SJTUhsic.sjtu.edu.cn/Assets/userfiles/sys_eb538c1c-65... · h V O I! ªº «» «»¬¼ 12 ... -8 10-6 10-4 10-2 V GS (V) I D) V T Linear Exponential Quadratic Sub-Threshold

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Lec16

MOSFET models (II)Short-channel model

1

MOS

2

VGS VT

Ron

S D

A Switch!

|VGS |

An MOS Transistor

MOS

Static behavior

3

Threshold voltage

4

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Body effect

5

Flat-band voltage

Substrate potential

2 SSB I

T ms F

ox ox ox

QQ QV

C C C

0

0

0

( 2 2 )

2

2

T T F SB F

B SS I

T ms F

ox ox ox

Si A

ox

V V V

with

Q Q QV

C C C

Q N

C

Surface Charge Implants

Body Effect

Coefficient

Workfunction

DifferenceDepletion

Layer Charge

6

-2.5 -2 -1.5 -1 -0.5 00.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

VBS

(V)

VT (

V)

I-V characterisitcs

7

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS (V)

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Quadratic

Relationship

Linear region(VDS<VGS-VT)

8

n+n+

p-substrate

D

S

G

B

VGS

xL

V(x)+–

VDS

ID

MOS transistor and its bias conditions

Saturation region(VDS>VGS-VT)

9

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

I-V relationship(long channel)

10

2

'

'

'

2

Linear Region,

( )2

Saturation Mode,

( ) (1 )2

DS

DS GS T

D n GS T DS

n ox

n n ox

ox

DS GS T

n

D GS T DS

V V V

VWI k V V V

L

with

k Ct

V V V

k WI V V V

L

Process Transconductance

Parameter

Channel Length Modulation

MOS small signal model

11

'

2

2

'

0

( ) (1 )2

( )2

( 2 2 )

DS

DS GS T

n

D GS T DS

DS GS T

D n GS T DS

T T F SB F

V V V

k WI V V V

L

V V V

VWI k V V V

L

with

V V V

12

Vgs

G

S

D

gmvgs ron

VDS>VGS-VT VDS<VGS-VT

DD

Don

Tgsm

IdV

dIr

VVkg

1)(

)(

1

1 1( ) [ ]

m DS

Don GS T DS

D

g kV

dIr k V V V

dV

I-V relationship in deep submicron

technology (short-channel)

13

Linear

Relationship

-4

VDS (V)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Short-channel effect

14

ID

Long-channel device

Short-channel device

VDSVDSAT VGS -VT

VGS=VDD

Velocity saturation Short-channel behavior: velocity saturation.

The velocity in long-channel device:

15

• The velocity in short-channel device:

The velocity is proportional to the electric field, and the

carrier mobility is a constant.

The continuity requirement between the two regions: 2 /c sat nv

1 / c

sat

v

v v

c

c

for

for

( )n n n

dVv x

dx

16

When the electrical field along the channel reaches a critical

value, the velocity of the carriers tends to saturate due to

scattering effects.

Fig Velocity-saturation

17

The drain current in the linear region for long-channel devices:

Replacing with n1 /

n

c

=> The drain current in the linear region for short-channel devices:

DSV

L

[ ]2

DSD n ox GS T DS

VWI C V V V

L

2

2

( )[( ) ]1 ( / ) 2

( )[( ) ] ( )2

n ox DS

D GS T DS

DS c

DS

n ox GS T DS DS

C VWI V V V

V L L

VWC V V V V

L

18

The K(v) factor measures the degree of velocity saturation,

defined as

k approaches 1 in case of long-channel devices (large values

of L) and is less than 1 for short-channel devices.

sat

DSAT c

n

LvV L

1( )

1 ( / )c

VV L

( )DSAT GT GTV V V

2

( )

( ) [ ]2

DSAT sat ox GT DSAT

DSAT

DSAT n ox GT DSAT

I v C W V V

VWv C V V

L

ID & VGS

19

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VGS

(V)

I D(A

)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VGS

(V)

I D(A

)

quadratic

quadratic

linear

Long-channel Short-channel

ID&VDS

20

-4

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS (V)

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Long-channel Short-channel

VDS (V)

21

0 0.5 1 1.5 2 2.510

-12

10-10

10-8

10-6

10-4

10-2

VGS

(V)

I D(A

)

VT

Linear

Exponential

Quadratic

Sub-Threshold Conduction

22

In the absence of a conducing channel for Vgs<VT, the

n+(source) -p(bulk) -n+(drain) terminals form a parasitic

bipolar transistor.

/ /1 (1 )GS DSV V

nkT q kT q

D S DSI I e e V

Short-channel Req

23

VGS VT

Ron

S D

Ron is time varying, nonlinear and dependent on the operation

point of the transistor.

For simplicity, Req, the average value of the resistance over

the operation region of interest is used.

24

ID

VDS

VGS = VD D

VDD/2 VDD

R0

Rmid

/ 21 3 5( ) (1 )

2 (1 ) (1 / 2) 4 6

DD DD DD

eq DD

DSAT DD DSAT DD DSAT

V V VR V

I V I V I

Unified model

25

Whatever long-channel and short-channel MOSFET,the drain

current both in linear region and saturation region,satisfy the

unified equation:

min

2

'

min

min

0

0 for 0

( )(1 ) for 02

with min( , , ),

,

and ( 2 2 )

D GT

D GT DS GT

GT DS DSAT

GT GS T

T T F SB F

I V

VWI k V V V V

L

V V V V

V V V

V V V

MOS

Dynamic behavior

26

MOS capacitance model

27

DS

G

B

CGDCGS

CSB CDBCGB

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+

W

tox

n+ n+

Cross section

L

Gate oxide

gate capacitance

Cgso=Cgdo

=Cox×Ld×WLd

Leff=L-2×Ld

ox

gate

ox

C WLt

29

S D

G

CGC

S D

G

CGC

S D

G

CGC

Cut-off Resistive Saturation

The most important operation regions for digital ICs:saturation region and cutoff region

1. Cg

30

WLCox

WLCox

2

2WLCox

3

CGC

CGCS

VDS /(VGS-VT)

CGCD

0 1

31

Bottom

Side wall

Side wall

Channel

SourceN D

Channel-stop implantNA1

Substrate N A

W

xj

L S

2.Diffusion capacitance Cdiff

Cbottom: the

capacitance between

source/drain and

substrate;

Csw: the capacitance

between source/drain

and STI(shallow

trench isolation) 。

(2 )

diff bottom sw j jsw

j s jsw s

C C C C AREA C PERIMETER

C L W C L W

3.Total capacitance

CGS=Cgs+Cgso

Cgs=0 (cutoff)

= COX×W×Leff/2 (linear)

= COX×W×Leff(3/2) (saturation)

Cgso= Cox×xd×W

CGD=Cgd+Cgdo

Cgd=0 (cutoff )

= COX×W×Leff/2 (linear)

= 0 (saturation)

Cgdo= Cox×xd×W

32

CGB = COX × W × Leff (cutoff)

=0 (linear and saturation)

CSB=Csdiff

CDB=CDdiff

33

W

LD

Drain

Draincontact

Polysilicon gate

DS

G

RS RD

VGS,eff

Parasitic resistance

Solution:1) low-resistivity material(silicidation).

2) wider transistor

The resistance in series with the drain and source regions

degrades performance, expressed as

,

,

S D

S D C

LR R R

W

Sheet resistance Contact resistance

Secondary effects One dimensional model

assumes that all currents flows on the surface of the

silicon and the electrical fields are oriented along the

plane.

Two or three dimensional model.

mobility degradation

threshold variation

hot-carrier effect

34

Threshold voltage

35

DIBL: drain-induced barrier lowering, causes the threshold

potential as function of the operating points.

Raising the drain-source (bulk) voltage increases the width of

the drain-junction depletion region. Consequently, the threshold

decreases with increasing VDS.

Fig Threshold variations

(a) Threshold as a function

of the length (for low VDS)(b) Drain-induced barrier

lowering (for low L)

Hot-carrier effect Device dimensions scale down

Power supply and operating voltage does not scale

accordingly.

The increase in the electrical field strength causes an

increasing velocity of the electrons.

Electrons leave the silicon and tunnel into the gate oxide upon

reaching a sufficiently high level of energy.

Hot electron leads to long-term reliability problem, where a

circuit performance degrade or fail after being in use for some

time.

The reduced supply voltage is applied to keep hot-carrier

effects under control. 36

37

Fig Hot-carrier effects cause the I-V characteristics of an NMOS transistor

to degrade from extensive usage (from [McGaughy98])

38

Latch-up

Nsource--Psubstrate--nwell—Psource form two bipolar transistors,

which get forward-biased due to Rpsubs and Rnwell. This positive feedback

increases the current until the circuit either fails or burns out.

Fig CMOS latchup

(b) Equivalent circuit(a) Origin of latchup

39

Solutions:

1) Place numerous well and substrate contacts

closer to the source connections.

2) Surround large-current device with guard rings:

reduce the resistance;

reduce the gain of the parasitic bipolars

3) SOI (Silicon on insulator) technology

SPICE MOSFET MODEL First-order model (Level 1)

-Accurate for long channel transistors (L>1 um)

-Suitable for manual analysis

Level-2 model

-Physically based model

-Not popular

Level-3 model

-Semiphysical model

-Parameters extracted by measurement 40

41

Table SPICE MOSFET MODEL PARAMETERS (PARTIAL LISTING)

42

Level 1 Model Equations

In the Level 1 model the carrier mobility degradation and the carrier

saturation effect and weak inversion model are not included. This model

determines the DC current as follows:

2

Cutoff Region,

0.0

Linear Region,

(1 )( )2

Saturation Region,

(1 )( )2

gs th

ds

ds gs th

eff ds

ds ds gs th ds

eff

ds gs th

eff

ds ds gs th

eff

v v

I

v v v

W vI KP LAMBAD v v v v

L

v v v

WKPI LAMBAD v v v

L

43

The model calculates the effective channel length and width from the drawn

length and width as follows:

Effective Channel Length and Width

2( )

( 2 )

eff scaked scaled scaled scaled

eff scaled scaled scaled

L L LMLT XL LD DEL

W M W WMLT XW WD

1/2

1/2

1/2

1/2

,

0

( )

0

( 0.5 )

where the built-in voltage v is defined as:

th

sb

th bi sb

sb

sb

th bi

bi

bi fb

bi

Threshold Voltage v

v

v v GAMMA PHI v

v

vv v GAMMA PHI

PHI

v v PHI

or

v VTO GAMMA PHI

BSIM MODEL

BSIM 3V3 model is an industry wide standard for modeling

deep-submicron MOSFET transistors.

BSIM 3V3 model (denoted as Level 49) contains over 200

parameters. The majority parameters are related to the

modeling of second-order effects.

Documentation provided on the web site of

http://bwrc.eecs.berkeley.edu/IcBook.

44

45

Table BSIM3-V3 model parameter categories, and some important parameters

46

Specifying MOSFET geometry in SPICE

Mname D G S B Modname L= W= AD= AS= PD= PS= NRD= NRS=

Mname : identifies the MOSFET

D: drain node

G: gate node

S: source node

B: bulk node

Modname: model for the transistor

47

Example:

(a) Layout and (b) cross section of CMOS

48

For n-channel and p-channel MOSFETS, the Level 1 SPICE models are:

.model MODN NMOS level=1 VTO=1 KP=50U LAMBDA=.033 GAMMA=.6

+ PHI=0.8 TOX=1.5E-10 CGDO=5E-10 CGSO=5E-10 CJ=1E-4 CJSW=5E-10

+ MJ=0.5 PB=0.95

.model MODP PMOS level=1 VTO=-1 KP=25U LAMBDA=.033 GAMMA=.6

+ PHI=0.8 TOX=1.5E-10 CGDO=5E-10 CGSO=5E-10 CJ=3E-4 CJSW=3.5E-10

+ MJ=0.5 PB=0.95

An n-channel MOSFET M1 with W=150um and L=3um has source and drain areas

and perimeters that are

AD=AS=9e-10 m2 and PD=PS=1.62e-4m

Transitory M1 is specified in SPICE by

M1 4 3 2 1 MODN W=150U L=3U AD=9E-10 AS=9E-10 PD=1.62E-4

+ PS=1.62E-4

where the drain is node 4, the gate is node 3, the source is node 2, and the bulk is node

1.