18
Morphological variability of the Paratethyan Oligocene–Miocene small reticulofenestrid coccolites and its paleoecological and paleogeographical implications KATARÍNA HOLCOVÁ Holcová, K. 2013. Morphological variability of the Paratethyan small reticulofenestrid coccolites and its paleoecological and paleogeographical implications. Acta Palaeontologica Polonica 58 (3): 651–668. The analysis of size changes (length of placoliths, their width, length of central opening and its width) in elliptical reticulofenestrids from the NP25–NN5 zonal interval of the Central Paratethys allowed to dicriminate two size catego− ries of placoliths: (i) small Reticulofenestra minuta (< 3.5 μm); (ii) Reticulofenestra haqiipseudoumbilicus group (4–10.0 μm). The latter group appeared for the first time (FO, first occurrence) in the upper Egerian (size 4–7 μm) with the size of placoliths in this plexus increasing gradually. The FO of R. pseudoumbilicus > 8.0 μm has been established in the Zone NN2 while its FCO (first common occurrence) in the Zone NN5. This study shows that the FOs of size− defined morphotypes of the R. haqiipseudoumbilicus group differ in the Central Paratethys and oceanic realm. Blooms of R. minuta at the Oligocene–Miocene boundary and in the Early Middle Miocene may be correlated with the incoming of warm water into the higher latitude Central Paratethys basins during connection with the Mediterranean Sea. Transgression favored the expansion of near−shore areas associated probably by some short−time oscillations of salinity. The FO of R. haqiipseudoumbilicus group and the FO of R. pseudoumbilicus > 8.0 μm can be correlated with the opening of new pathways between the Mediterranean and the Central Paratethys. Gradual size changes in the R. haqiipseudoumbilicus group probably reflect climatic changes: the decrease of coccolith size in the late Egerian may reflect cooling (Mi1 event) while the increase in coccolith size in the interval from the FO of Helicosphaera ampliaperta to the FO of Sphenolithus heteromorphus occurred due to warming. Two size categories of placoliths in the R. haqiipseudoumbilicus group (3.5–6 μm and 6–8 μm) recorded in the interval from Zone NN1 to the lower part of the Zone NN2 may represent seasonal populations. Key words: Calcareous nannofossils, size changes, paleoecology, Oligocene, Miocene, Central Paratethys. Katarína Holcová [[email protected]], Department of Geology and Paleontology, Charles University in Prague, Albertov 6, 128 43 Praha 2, Czech Republic. Revised version received 6 September 2011, accepted 31 December 2011, available online 12 January 2012. Copyright © 2013 K. Holcová. This is an open−access article distributed under the terms of the Creative Commons Attri− bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original au− thor and source are credited. Introduction The collision of the African/Apulian/Arabian plates and Eur− asian continent began during the Eocene, and resulted in the uplift and emergence of the Alpine chains and the break−up of the Tethyan Realm into the Mediterranean and Paratethyan domains (Popov et al. 2004). This resulted in the differentia− tion of the Paratethys as a biogeographic entity. The first endemic Paratethyan assemblages of mollusks, calcareous nannoplankton and foraminifera appeared in the Oligocene (Báldi 1986). The subsequent history of the Paratethys in− volved periods of isolation from the adjacent Mediterranean Sea and Indian Ocean during which endemic biota evolved, and periods of oceanic communication during exchanges oc− curred with the faunas of the Mediterranean and the Indo− Pacific provinces. Additionally episodical paleogeographic changes, global climatic variations, local oscillations of salin− ity, oxygen content and globally and locally affected sea−level changes also influenced the evolution of Paratethyan ecosys− tems (Rögl 1998; Kováč 2000; Popov et al. 2004; Piller et al. 2007; etc.). Interactions of the local geodynamic and the global climatic factors lead to major problems in their bio− stratigraphical, paleoecological and paleogeographical inter− pretation. As a consequence of periodical paleogeographic changes affecting them, the morphological changes (size) of Central Paratethys populations may be local, differing those from contemporaneous oceanic populations. Coccolithophorids were widespread autotrophs in marine Paratethyan ecosystems and are of great biostratigraphical im− portance. Besides Coccolithus pelagicus, reticulofenestrids are the most common components of the assemblages and their detailed study can provide important data for reconstruct− http://dx.doi.org/10.4202/app.2009.0006 Acta Palaeontol. Pol. 58 (3): 651–668, 2013

Morphological variability of the Paratethyan Oligocene–Miocene … · Morphological variability of the Paratethyan Oligocene–Miocene small reticulofenestrid coccolites and its

Embed Size (px)

Citation preview

Morphological variability of the ParatethyanOligocene–Miocene small reticulofenestrid coccolitesand its paleoecological and paleogeographical implications

KATARÍNA HOLCOVÁ

Holcová, K. 2013. Morphological variability of the Paratethyan small reticulofenestrid coccolites and its paleoecologicaland paleogeographical implications. Acta Palaeontologica Polonica 58 (3): 651–668.

The analysis of size changes (length of placoliths, their width, length of central opening and its width) in ellipticalreticulofenestrids from the NP25–NN5 zonal interval of the Central Paratethys allowed to dicriminate two size catego−ries of placoliths: (i) small Reticulofenestra minuta (< 3.5 μm); (ii) Reticulofenestra haqii–pseudoumbilicus group(4–10.0 μm). The latter group appeared for the first time (FO, first occurrence) in the upper Egerian (size 4–7 μm) withthe size of placoliths in this plexus increasing gradually. The FO of R. pseudoumbilicus > 8.0 μm has been establishedin the Zone NN2 while its FCO (first common occurrence) in the Zone NN5. This study shows that the FOs of size−defined morphotypes of the R. haqii–pseudoumbilicus group differ in the Central Paratethys and oceanic realm.Blooms of R. minuta at the Oligocene–Miocene boundary and in the Early Middle Miocene may be correlated with theincoming of warm water into the higher latitude Central Paratethys basins during connection with the MediterraneanSea. Transgression favored the expansion of near−shore areas associated probably by some short−time oscillations ofsalinity. The FO of R. haqii–pseudoumbilicus group and the FO of R. pseudoumbilicus > 8.0 μm can be correlated withthe opening of new pathways between the Mediterranean and the Central Paratethys. Gradual size changes in theR. haqii–pseudoumbilicus group probably reflect climatic changes: the decrease of coccolith size in the late Egerianmay reflect cooling (Mi1 event) while the increase in coccolith size in the interval from the FO of Helicosphaeraampliaperta to the FO of Sphenolithus heteromorphus occurred due to warming. Two size categories of placoliths inthe R. haqii– pseudoumbilicus group (3.5–6 μm and 6–8 μm) recorded in the interval from Zone NN1 to the lower partof the Zone NN2 may represent seasonal populations.

Key words: Calcareous nannofossils, size changes, paleoecology, Oligocene, Miocene, Central Paratethys.

Katarína Holcová [[email protected]], Department of Geology and Paleontology, Charles University in Prague,Albertov 6, 128 43 Praha 2, Czech Republic.

Revised version received 6 September 2011, accepted 31 December 2011, available online 12 January 2012.

Copyright © 2013 K. Holcová. This is an open−access article distributed under the terms of the Creative Commons Attri−bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original au−thor and source are credited.

Introduction

The collision of the African/Apulian/Arabian plates and Eur−asian continent began during the Eocene, and resulted in theuplift and emergence of the Alpine chains and the break−up ofthe Tethyan Realm into the Mediterranean and Paratethyandomains (Popov et al. 2004). This resulted in the differentia−tion of the Paratethys as a biogeographic entity. The firstendemic Paratethyan assemblages of mollusks, calcareousnannoplankton and foraminifera appeared in the Oligocene(Báldi 1986). The subsequent history of the Paratethys in−volved periods of isolation from the adjacent MediterraneanSea and Indian Ocean during which endemic biota evolved,and periods of oceanic communication during exchanges oc−curred with the faunas of the Mediterranean and the Indo−Pacific provinces. Additionally episodical paleogeographic

changes, global climatic variations, local oscillations of salin−ity, oxygen content and globally and locally affected sea−levelchanges also influenced the evolution of Paratethyan ecosys−tems (Rögl 1998; Kováč 2000; Popov et al. 2004; Piller et al.2007; etc.). Interactions of the local geodynamic and theglobal climatic factors lead to major problems in their bio−stratigraphical, paleoecological and paleogeographical inter−pretation. As a consequence of periodical paleogeographicchanges affecting them, the morphological changes (size) ofCentral Paratethys populations may be local, differing thosefrom contemporaneous oceanic populations.

Coccolithophorids were widespread autotrophs in marineParatethyan ecosystems and are of great biostratigraphical im−portance. Besides Coccolithus pelagicus, reticulofenestridsare the most common components of the assemblages andtheir detailed study can provide important data for reconstruct−

http://dx.doi.org/10.4202/app.2009.0006Acta Palaeontol. Pol. 58 (3): 651–668, 2013

ing the factors that have induced morphologic changes in cal−careous nannoplankton. Reticulofenestra bisecta, R. abisectaand Cyclicargolithus floridanus are common in the late Oligo−cene while in the lower and early Middle Miocene, reticulo−fenestrids are represented by Reticulofenestr minuta, R. haqii,and R. pseudoumbilicus together with endemic R. excavata(Lehotayová 1975, 1984; Marunteanu 1992; Andreyeva−Gri−gorovich et al. 1997; Holcová 2005). The aim of this study isto show the relationship between size changes in reticulo−fenestrids and paleogeographic and paleoecologic evolutionin an intracontinental basin.

Abbreviations.—FCO, first common occurrence; FO, first oc−currence; LCO, last common occurrence; LO, last occurrence.

Geological settingThe area of the Central Paratethys studied here includes thePannonian Basin system and the Carpathian Foreland basins(Seneš 1961).

The majority of samples were taken from the South SlovakBasin (Fig. 1). Sediments filling of this geomorphological unitwere deposited in the northern part of the Buda Basin duringthe Late Oligocene (Kiscellian Stage) to the Chattian andlower Aquitanian (Egerian Stage), in the Fiľakovo/PétervásaraBasin during the upper Aquitanian and lower Burdigalian(Eggenburgian Stage) and in the Novohrad/Nógrád basin inthe upper Burdigalian and Langhian (Ottnangian, Karpatian,and early Badenian; Vass 1996). These three basins form thenorthern part of the Pannonian Basin system. Biostratigraphy,lithostratigraphy and sedimentology of this areawere summa−rized in Vass et al. (1979, 1989, 2007). Lithostratigraphic unitshave been defined by Vass and Elečko (1982) and correlationwith standard nannoplankton zones (Martini 1971) has beenestablished by Lehotayová (1982). The paleogeographicalmaps for every Central Paratethys stage have been producedby Vass et al. (1979, 1989, 2007). Vass et al. (1993), Márton etal. (1995), and Vass (1996) delineated the most important tec−tonic events and local sea−level changes; the latter by havebeen correlated with the global sea level curve of Haq et al.(1988) by Vass (1995).

The Middle Miocene samples have been collected fromsections in the Carpathian Foredeep. These sections are de−scribed in detail by Zágoršek et al. (2008, 2009) and Zágoršekand Holcová (2009; Fig. 1).

The study interval from the Oligocene/Miocene boundaryinterval to the lower Middle Miocene (zones NP25–NN5) cor−responds to the Egerian, Eggenburgian, Ottnangian, Karpa−tian, and Lower Badenian stages of the Central Paratethys(Popov et al. 2004; Harzhauser and Piller 2007; Hohenegger etal. 2009).

652 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

R.Sobota

Vepor

0 10 20 km

Hajnaèka

Fi¾akovo

JesenskéLR-9

C-2

Luèenec

BE-2 Lipovany

LR-10

BOHEMIAN MASSIVE

VIENNA

BASINZnojmo

Zlín

Ostrava

SLOVA

KREPUBLI

C

PO

LAN

D

AUSTRIA

Kralice n.O.

PY-1

CARPATHIAN

FOREDEEP

LKŠ-1EH-1

EH-2FV-1

0 50 100 km

0 50 100 km

Torna¾a

LR-2

Brno

Kralice S

VIENNA

BASIN

DANUBEBASIN

Budapest Bebrecen

Lviv

Kraków FOREDEEPOUTER FLYSCH CARPATHIANS

WESTERN CARPATHIANSTRANSCARPATHIAN

BASIN

Hodonín

Olomouc

Brno

Bohemian Massif�dánice Unit

Pouzdøany Unit

Raèa UnitBílé Karpaty Unit

PY-boreholes

relicts of the Lower Miocene sediments

Silesian and Subsilesian units

Bystrica Unit

Pre-Cenozoic units

Nógrád/Novohrad Basin

Hungarian Paleogene Basin

Karpatian/Badenian ryolite tuff

Fi¾akovo/Pétervására Basin

Middle Miocene volcanics

Szecsény and Putnok Schlierterrigenous Upper MiocenesedimentsEggenburgian ryodacite tuff

Upper Miocene–Pleistocenebasalts

Fig. 1. A. Sketch of the main Middle European geological units (after Kováč 2000). B. Moravian part of the Carpathian Foredeep with location of boreholePY−1 near village Přemyslovice; and section Kralice (KRA), geological situation according Chlupáč et al. (2002). C. Eastern part of the South Slovak Basinwith location of boreholes LKŠ−1, BE−2, FV−1, EH−1, and EH−2 drilled by State Geological Institute of Dionýz Štúr; boreholes LR−9 and LR−10 drilled by“Geologický prieskum n.p.” regional centrum Rožňava and section Lipovany (LIP). Geological situation after Halásová et al. (1996).

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 653

Olig

oce

ne

Mio

cen

e

Ch

att

ian

Aq

uita

nia

nB

urd

iga

lian

La

ng

hia

nS

err

ava

llia

n

Eg

eria

nE

gg

en

bu

rgia

nO

ttnan

gian

Ka

rpa

tian

Ba

de

nia

n

NP

25

NN1

NN2

NN3

NN4

NN5

NN6

Ag

e(M

a)

Ep

och

Sta

ge

Ce

ntr

al P

ara

teth

ysS

tag

e

Ca

lca

reo

us

Na

nn

op

lan

kto

nZ

on

e

13

14

15

16

17

18

19

20

21

22

23

24

25

1m

1m

10

Kra

lice

II

7

4

9

claystoneclayey sandstone

sandy claystone

sandy marlmarl

coarse sandstonefine sandstone

10

0m

10

0m

50

m

50

m

50

m

10

0m

10

0m

100

m

10

0m

LR

-9

LR

-2

LR

-10

C-2

FV

-1

EH

-1

EH

-2

terrestrial

D-1

9

LK

Š-1

BE

-2

600

350

500640

440

240

85

105

155155

160

75

50

665

340

333

262

114

0.4

1.5

2.2

238224

181

105

26

426

20

40

30

350

550

350300

28

12

50

10

98

68

48

Lip

ova

ny

3m

sam

ple

11

7

5

2

PY

-1

sam

ple

sample

silicified sandstonetuffaceous marl

mete

rs

mete

rs

mete

rs

mete

rs

mete

rs mete

rs

mete

rs

mete

rs

mete

rs

mete

rs

mete

rs

Sphenolithusheteromorphus

Sphenolithusheteromorphus

Sphenolithusheteromorphus

Sphenolithusheteromorphus

Sphenolithusbelemnos

Sphenolithusbelemnos

Sphenolithusbelemnos

Helicosphaeraampliaperta

Helicosphaeraampliaperta

Helicosphaeraampliaperta

Helicosphaeraampliaperta

Discoasterdruggi

Discoaster druggi/Helicosphaera

scissura

Dictylcoccitesbisectus LCO

Dictylcoccitesbisectus

Ca

lca

reo

us

Na

nn

op

lan

kto

nE

vents

(Lo

ure

ns

eta

l.2

00

4)

Ce

ntr

al P

ara

teth

ysC

alc

are

ou

sN

an

no

pla

nkt

on

Eve

nts

(Ho

lco

vá2

00

5)

Helicosphaeracarteri

Lithology and sampled intervals

50

m

Fig. 2. Lithology, stratigraphical ranges, and sampled interval of studied sections. Location of boreholes LR−10, LR−9, LR−2, C−2, FV−1, EH−1, EH−2, D−19,LKŠ−1, BE−2,PY−1, and sections Lipovany and Kralice II is illustrated on Fig. 1.

Material and methodsA total of 49 samples taken from 13 sections have been studied.The set of samples were chosen from about 500 of samplesanalysed in the study area in previous years (e.g., Holcová2001, 2005). Nannofossils in selected samples were commonto abundant (10–30 specimens in visual field of microscope)and well preserved without apparent diagenetic changes (dis−solution, recrystallization). Relative abundances of reticulo−fenestrids in studied samples varied from 10 to 30% with ex−ception of samples from the zones NN1 and NN5 with morethan 50% of reticulofenestrids. Besides Langhian samples(Zone NN5) were dominated by Coccolithus pelagicus in thestudied assemblages. The location of the sections, their lithol−ogy and stratigraphical ranges are summarized in Figs. 1 and 2.

Calcareous nannofossils were examined and photographedusing a light microscope and 1000× magnification with bothbright field and crossed polarized light. Smear slides were pre−pared from about 1 cc of rock sample (claystone, siltstone, andfine sandstone) using the method of Švábenická (2002). Thefirst 50 specimens of reticulofenestrids were measured in ev−ery sample. Placoliths of Reticulofenestra spp. were measuredfrom the digital microphotographs. In total, 2447 specimenswere analyzed. The following characters were measured foreach placolith: length (the largest diameter of placoliths),width (diameter of placolith perpendicular to the length of theplacolith), length of central opening (along the length of theplacolith) and its width (across the width of the placolith)(Fig. 3).

The measurements were analyzed by simple statisticalmethods using STATISTICA software. Frequency histo−grams were used for the first graphical evaluation of the dis−tribution type of a simple biometric parameter. XY−plotsand the Pearson correlation coefficient were used for evalu−ation of correlations between two parameters.

The size−dependent classification of Reticulofenestraminuta–haqii–pseudoumbilicus group (Young 1999) has beenused as an initial taxonomic concept (Reticulofenestra minuta:< 3 μm, R. haqii: 3–5 μm, and R. pseudoumbilicus > 5 μm).This classification is broadly accepted also in the Central Para−

tethys (Ćorić and Švábenická 2004; Tomanová Petrová andŠvábenická 2007; Ćorić and Hohenegger 2008). However, thesmall−sized placoliths identified like Reticulofenestra minutamay represent two or more species which cannot be distin−guished under the light microscope (Haq 1980).

To analyze size changes in reticulofenestrids over time, thestudied interval was divided into seven intervals on the basisof six calcareous nannoplankton events. The age of thesebioevents in the Central Paratethys may differ from their agein the world ocean (Berggren et al. 1995; Lourens et al. 2004)because new taxa were only able to migrate into the CentralParatethys when communication existed between them.

(i) The FO of Helicospheara carteri was recorded withinZone NP 25 in the study area (Holcová 2005).

(ii) The LCO of Reticulofenestra bisecta. The extinction ofthis species is often used to approximate the Oligocene/Mio−cene boundary (Berggren et al. 1995; Young 1999). However,in the Buda Basin, rare specimens of R. bisecta occur in zonesNN1 and NN2 (Holcová 2005). These are probably reworkedspecimens and therefore only the LCO of R. bisecta was usedto characterize the NP25/NN1 zonal boundary.

(iii) The FO of Helicosphaera scissura and the FO ofDiscoaster druggii are isochronous events in the Central Para−tethys (Holcová 2005). Helicosphaera scissura is, however,more abundant and its FO is more easily determined.

(iv) The FO of H. ampliaperta was recorded in Zone NN2in the Central Paratethys (Marunteanu 1992; Holcová 2002,2005).

(v) The FO of S. belemnos was established to lie at theNN2/NN3 boundary in the Central Paratethys (Marunteanu1992, Andreyeva−Grigorovich et al. 1997).

(vi) The FO of S. heteromorphus/LO of S. belemnos: Inthe Central Paratethys both species briefly co−occur.

(vii) For comparison reticulofenestrids from Zone NN5were studied. This zone is characterized by the absence ofH. ampliaperta and the presence of S. heteromorphus (Mar−tini 1971).

Seven samples were intended to analyze from every inter−val. However, from the LO of Helicosphaera ampliaperta tothe FO of Sphenolithus heteromorhus (upper part of the ZoneNN2 and Zone NN3), terrigenous sedimentation dominatedin the study area. Therefore only limited number of sampleswith well preserved and abundant nannofossils was found inthis interval. On the other hand, longer intervals with varie−gated marine facies (zones NP25 and NN4) were sampled tomore detail.

Results

Morphologic variability of placoliths

Size and length/width−ratio of placoliths and size of centralopening.—The length of the placoliths varies from 1.6 to10 μm, their width from 1 to 9 μm. The length−width scatterplot and the correlation coefficient (0.95) between the length

654 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

lp

wp

lowo

Fig. 3. Dimensions measured in placoliths. Abbreviations: lo, length of cen−tral opening; lp, length of placoliths; wo, width of central opening; wp,width of placoliths.

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 655

r = 0.95

r = 0.83

r = 0.79

1

1

2

2

0

0

3

3

4

4

5

5

6

6

7

7

8

8

9

9

1

2

3

4

5

6

7

8

Length of nannoliths (um)

Length of nannoliths (um)

Length of central opening ( m)μ

Wid

tho

fn

an

no

lith

s(u

m)

Wid

tho

fce

ntr

al o

pe

nin

g(u

m)

Le

ng

tho

fce

ntr

al o

pe

nin

g(μ

m)

10

10

0

0

0

1

1

2

2

3

3

1 2 3 4

n = 2447

n = 2447

n = 2447

R. minuta <3μm

R. haqii–pseudoumbilicus group 3–6μm

R. haqii–pseudoumbilicus group > 8.5 μm

R. haqii–pseudoumbilicus group 6–8.5 μm

Nu

mb

er

ofsp

eci

me

ns

Nu

mb

er

ofsp

eci

me

ns

Nu

mb

er

ofsp

eci

me

ns

Length of central opening (μm)

Length of central opening/lenght of nannolith

Length of nannolith (μm)

Reticulofenestra minuta Reticulofenestra haqii–pseudoumbilicus group R. haqii–pseudoumbilicus group

250

200

150

100

50

0

250

200

150

100

50

0

350

300

250

200

150

100

50

0

R. minuta

n = 2447

n = 2447

n = 2447

0.3

0–

0.5

00

.50

–0

.65

0.6

5–

0.8

00

.80

–0

.95

0.9

5–

1.1

01

.10

–1

.25

1.2

5–

1.4

01

.40

–1

.55

1.5

5–

1.7

01

.70

–1

.85

1.8

5–

2.0

02

.00

–2

.15

2.1

5–

2.3

02

.30

–2

.45

2.4

5–

2.6

02

.60

–2

.75

2.7

5–

2.9

02

.90

–3

.05

3.0

5–

3.2

03

.20

–3

.35

3.3

5–

3.5

0

1.6

6–

2.0

02

.00

–2

.33

2.3

3–

2.6

62

.66

–3

.00

3.0

0–

3.3

33

.33

–3

.66

3.6

6–

4.0

04

.00

–4

.33

4.3

3–

4.6

64

.66

–5

.00

5.0

0–

5.3

35

.33

–5

.66

5.6

6–

6.0

06

.00

–6

.33

6.3

3–

6.6

66

.66

–7

.00

7.0

0–

7.3

37

.33

–7

.66

7.6

6–

8.0

08

.00

–8

.33

8.3

3–

8.6

68

.66

–9

.00

9.0

0–

9.3

39

.33

–9

.66

9.6

6–

10

.00

0.1

5–

0.1

7

0.1

7–

0.1

9

0.1

9–

0.2

1

0.2

1–

0.2

3

0.2

3–

0.2

5

0.2

5–

0.2

7

0.2

7–

0.2

9

0.2

9–

0.3

1

0.3

1–

0.3

3

0.3

3–

0.3

5

0.3

5–

0.3

7

0.3

7–

0.3

9

0.3

9–

0.4

1

0.4

1–

0.4

3

0.4

3–

0.4

5

0.4

5–

0.4

7

Fig. 4. Scatter plots and frequency histograms visualizing correlations between biometric characteristics of the placoliths. A. Length/width−ratio ofplacoliths. B. Length/width−ratio of central opening. C. Length of placolith/length of central opening.

and width of the placoliths indicate a very high correlation be−tween these two parameters (Fig. 4A). The distribution ofthese characters is polymodal and shows three groups that arealso distinct on the width−length plot (Fig. 4A): (i) smallplacoliths (1.6–3 μm); (ii) medium−size placoliths (3.5–8 μm),and (iii) large placoliths (8–10 μm). The small placoliths con−stitute a distinct size group, but transitional size categories oc−cur between the medium−size and large placoliths.

Relative size and length/width−ratio of central opening.—The size of the central opening varied from 0.35 to 3.5 μm.The correlation between the length and width of the centralopening is high (0.83) with two groups in which the lengthare (i) 0.35–1 μm and (ii) 1–3.5 μm (Fig. 4B).

The relative size of the central opening was expressed as aratio between the size of the placolith and the size of the cen−tral opening (Fig. 4C). The ratio varies from 0.15 to 0.48, andshows a polymodal distribution with three groups: (i) placo−liths with narrow central opening (size of placolith/size ofcentral opening varies from 0.15 to 0.24), the placoliths withnarrow central opening are small and reach maximum diam−eter 7.5 μm; (ii) placoliths with medium central opening (sizeof placolith/size of central opening from 0.25 to 0.40) wererecorded in all size categories of placoliths; (iii) placolithswith wide central opening (size of placolith/size of centralopening from 0.40 to 0.48) were not recorded among thesmallest placoliths (1.6–3 μm).

Size changes over timeCorrelations between the parameters analyzed here for placo−liths and the age of samples were investigated on the basis ofcorrelation coefficient. A negative correlation was recordedbetween the length of the placoliths (p = 0.01) and their age.The shift in the total size of placoliths and that of their centralopening over time is illustrated in Figs. 5–8 for individualsamples. A summary of the data is showed in Fig. 9. Fromthese data we may conclude the following:

(i) Small placoliths (1.6–3 μm) constitute a well separatedgroup in all assemblages, independent of age. However, theyare abundant in two intervals: (1) in the lowest Miocene(Zone NN1 and lower part of Zone NN2 below the FO of H.ampliaperta), in these intervals they account for 30–70% ofthe nannoplankton assemblages; (2) in the lower MiddleMiocene (Zone NN5), where they account for 50–95% of theassemblages.

(ii) The size of the oldest placoliths in the R. haqii–pseudo−umbilicus group (upper Zone NP25) varies from 4.0–7.0 μm.Than the size of placoliths in the group slightly increasedthough this trend may differ in some individual samples (Figs.5, 6). In the Zone NN3, the size varies from 4.0–8.0 μm.

(iii) Bimodal size distribution was recorded firstly duringZone NN1; it dominates in the lower part of the NN2 Zone(Figs. 9, 10).

(iv) Wide variations in the relative size of the centralopening characterize interval from zones NP25 to lowerpart of NN2; generally, the relative size of the central open−

ing increases (Fig. 9). At the level of the FO of H. ampli−aperta, larger R. haqii (6–7 μm) with small central opening(1.7–2.0 μm) appeared, and relative size of central openingat this level decreased (Fig. 9).

(v) Broad variability of size of placolith as well as of thecentral opening characterizes the assemblages in Zone NN4(Fig. 9).

(vi) Large placoliths (> 8 μm) occur first at the Zone NN5(Fig. 9).

Discussion

Taxonomic implications

The size of placoliths is commonly used for classification ofReticulofenestra species. Using principal component analysis,Backman (1980) showed that the majority of morphologicalvariation in Reticulofenestra can be explained by variation inthe size of placoliths. However, the degree of closure of thecentral area can also be used for classification of Reticulo−fenestra (Backman 1978, 1980; Pujos 1985). Young (1990)suggested that this latter character is an unstable ecopheno−typic character, and based his classification of the Late Mio−cene–Pliocene Reticulofenestra mainly on the length of theplacoliths.

Young (1999) also differentiated the Early Miocene R.minuta–haqii–pseudoumbilicus group on the basis of overallsize of the placoliths. The taxonomic difference between R.minuta and R. haqii was based on a superior limit size of3 μm for the former. This criterion is well applicable to thereticulofenestrids of the Central Paratethys among which 3.1to 3.7 μm long placoliths have not been observed (Fig. 4A).

Two different size limits have been used to separateR. haqii from R. pseudoumbilicus: Backman (1980) pro−posed an upper size limit of 5 μm for R. haqii, whereas Rioet al. (1990) and Raffi et al. (1995) proposed 7 μm. In anycase, R. haqii and R. pseudoumbilicus represent a continuousplexus in world ocean and therefore Young (1990) classifiedthem as one species, R. pseudoumbilicus, with two varieties:R. p. pseudoumbilicus and R. p. haqii. Nevertheless, separa−tion of two species at 5 μm has prevailed.

As in the oceanic realm, the length of the placoliths in theR. haqii–pseudoumbilicus group changes continuously in theCentral Paratethys. Limit of 5 μm has also been used for sep−aration of R. pseudoumbilicus and R. haqii (Ćorić and Švábe−nická 2004; Tomanová Petrová and Švábenická 2007; Ćorićand Hohenegger 2008). In addition, Ćorić and Hohenegger(2008) have distinguished two size groups among R. pseudo−umbilicus, one between 5–7 μm, the other > 7 μm. In studiedmaterial, boundary 8 μm seems to be pronounced. It appearsthat separation of group > 8 μm is specific only for studied setof samples because qualitative examination of placolithsfrom the other Central Paratethys sections of Zone NN5 andNN6 showed gradual changes in size of R. pseudoumbilicusfrom 5 to 10 μm (Jamrich and Halásová 2010).

656 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 657

0

2

4

6

8

10

12

14

16

18

LR10/600

0

2

4

6

8

10

12

14

16

18

LR10/550

0

2

4

6

8

10

12

14

LR10/350

0

2

4

6

8

10

12

14

LR9/350

0

2

4

6

8

10

12

14

16

LR10/12

0

2

4

6

8

10

12

14

FV1/440

0

1

2

3

4

5

6

7

8

9

10

EH1/155

0

2

4

6

8

10

12

14

16

18

20

EH2/160

0

2

4

6

8

10

12

14

16

EH2/155

0

2

4

6

8

10

12

EH1/85

0

2

4

6

8

10

12

14

FV1/240

0

2

4

6

8

10

12

EH2/75

0

5

10

15

20

25

EH1/30

0

2

4

6

8

10

12

EH2/50

2

2 2

4

4 4

8

8 8

10

100

2

4

6

8

10

12

14

LR2/98

0

2

4

6

8

10

12

LR9/300

0

2

4

6

8

10

12

14

16

18

LR2/68

0

2

4

6

8

10

12

14

16

C2/500

0

2

4

6

8

10

12

FV1/640

0

5

10

15

20

25

LR9/50

0

2

4

6

8

10

12

14

16

LR2/48

0

2

4

6

8

10

12

14

C2/350

0

2

4

6

8

10

12

14

LR2/28

0

2

4

6

8

10

12

14

C2/10

0

2

4

6

8

10

12

EH2/155

0

2

4

6

8

10

12

14

16

FV1/40

0

2

4

6

8

10

12

14

EH2/20

4

4

44

4

4

4

4

4 4 44

4

4

4 4

4

4

4

4

4

8

8

8

84

8

8

8

10

10

8

8

8 8 88

8

8

8 8

8

8

8

8

8

12

12

1212

12

12

20

20

12

12

12 1212

12

12

12 12

12

12

16

16

168

16

16

16

0

0

0

00

0

0

0

0

0

0

0 0 00

0

0

EH1/105

FV1/40 EH1/85

EH1/30 EH2/75

EH2/50

EH2/20

0

0 0 0

0

0

0

0

EH2/155

4

4

8

8

12

12

0

0

He

lico

sp

ha

era

am

plia

pe

rta

Dis

co

aste

rd

rug

gi/

He

lico

sp

ha

era

scis

su

ra

LC

OD

icty

lco

ccite

sb

ise

ctu

s

Olig

oce

ne

Mio

cen

eC

ha

ttia

nA

qu

itan

ian

Bu

rdig

alia

nE

ge

ria

nE

gg

en

bu

rgia

n

NP

25

NN

1N

N2

Ag

e(M

a)

Ep

och

Sta

ge

Ce

ntr

al P

ara

teth

ysS

tag

eC

alc

are

ou

sN

an

no

pla

nkt

on

Zo

ne

Ce

ntr

al P

ara

teth

ysC

alc

are

ou

sN

an

no

pla

nkt

on

Eve

nts

20

21

22

23

24

25

He

lico

sp

ha

era

cart

eri

EH2/160EH1/155FV1/440C2/350LR2/48LR9/50LR10/12

12 1216LR9/300LR10/350 LR2/68 C2/500 FV1/640

LR2/98LR9/350LR10/550

FV1/240C2/10LR2/28

12

Variability of length of nannolith (μm)

0

2

4

6

8

10

12

14

LIP2

4

8

12

0

LIP2

6

6 6 10LR10/600

2 4 86 10

2

2

2

22

2

2

2

2

2

2

2

2

4

4

4

44

4

4

4

4

4

4

4

4

8

8

8

88

8

8

8

8

8

8

8

8

10

10

10

1010

6

6

6

66

6

6

6

6

6

6

6

6

10

10

10

10

10

10

10

10

2

2

2

2

2

2

2

2

2

22

4

4

4

4

4

4

4

4

4

44

8

8

8

8

8

8

8

8

8

88

6

6

6

6

6

6

6

6

6

66

10

10

10

10

10

10

10

10

10

1010

16

12

Fig. 5. Variability of the placolith size for the individual assemblages, Egerian to Eggenburgian. Vertical axis, number of specimens; horizontal axis,placolith size (in μm). Location of the boreholes LR10, LR9, LR2, C2, FV1, EH1, EH2, and section Lipovany (LIP) is illustrated on Fig. 1, their lithologyand sampled intervals on Fig. 2. Abbreviation: LO, last occurrence.

658 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

0

2

4

6

8

10

12

BE2/262

0

2

4

6

8

10

12

14

16

BE2/333

0

2

4

6

8

10

12

14

16

18

20

BE2/262

Sp

he

no

lith

us

he

tero

mo

rph

us

Sp

he

no

lith

us

he

tero

mo

rph

us

He

lico

sp

ha

era

am

plia

pe

rta

La

ng

hia

nS

erra

valli

an

Ott

na

ng

ian

Ka

rpa

tian

Ba

de

nia

n

NN4

NN5

14

15

16

170

2

4

6

8

10

12

14

LKŠ1/340

0

2

4

6

8

10

12

LKŠ1/238

0

2

4

6

8

10

12

14

16

LKŠ1/224

0

1

2

3

4

5

6

7

8

9

10

LKŠ1/181

0

1

2

3

4

5

6

7

8

9

10

LKŠ1/105

0

2

4

6

8

10

12

14

LKŠ1/26

2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

LIP7

0

2

4

6

8

10

12

14

LIP11

0

2

4

6

8

10

12

14

16

18

20

D19/665

0

2

4

6

8

10

12

14

D19/426

0

5

10

15

20

25

PY1/2.2

0

5

10

15

20

25

30

35

PY1/1.5

0

5

10

15

20

25

30

PY1/0.4

0

5

10

15

20

25

30

35

KRAS4

0

2

4

6

8

10

12

14

16

18

20

KRAS7

0

2

4

6

8

10

12

14

KRAS9

0

2

4

6

8

10

12

14

16

18

KRAS10

4 4

8

10

10

10

10

8

8

8

8

8

20

20

20

20

16

30

30

30

16

16

16

16

0

0

0

0

0

0

0

0

0

0

LIP5

LKŠ1/224

KRAS4PY1/2.2

BE2/114LKŠ1/181

KRAS7PY1/1.5

KRAS9PY1/0.4

LKŠ1/105

KRAS10

LKŠ1/26

0

2

4

6

8

10

12

14

LIP5

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

10

10

10 10

10

10

10

10

10

10

10

10

10

10

10

10

4

4

4

4

4

4

4

4

4 44

8

8

8

8

8

8

8

8

8 88

12

12

1212

12

12

1212

1212

0

0

0

0

0

0

0

0 00

Mio

cen

e

Bu

rdig

alia

n

Ag

e(M

a)

Ep

och

Sta

ge

Ce

ntr

al

Pa

rate

thys

Sta

ge

Ca

lca

reo

us

Na

nn

op

lan

kto

nZ

on

e

Cen

tral

Par

atet

hys

Cal

care

ous

Nan

nopl

ankt

onE

vent

s

Variability of length of nannolith (μm)

LIP7

LKŠ1/340

BE2/333LKŠ1/238D19/426

LIP5

BE2/252

LIP11 D19/665

10

10

10

10

10

Fig. 6. Variability of the placolith size for the individual assemblages, Ottnangian to Early Badenian. Vertical axis, number of specimens; horizontal axis,placolith size (in μm). Location of the boreholes D19, LKŠ1, BE2, PY1, and sections Lipovany (LIP) and Kralice (KRAS) is illustrated on Fig. 1, their li−thology and sampled intervals on Fig. 2.

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 659

16

He

lico

sp

ha

era

am

plia

pe

rta

Dis

co

aste

rd

rug

gi/

He

lico

sp

ha

era

scis

su

raL

CO

Dic

tylc

occite

sb

ise

ctu

s

Olig

oce

ne

Mio

cen

eC

ha

ttia

nA

qu

itan

ian

Bu

rdig

alia

nE

ge

ria

nE

gg

en

bu

rgia

nN

P2

5N

N1

NN

2

Ag

e(M

a)

Ep

och

Sta

ge

Ce

ntr

al P

ara

teth

ysS

tag

eC

alc

are

ou

sN

an

no

pla

nkt

on

Zo

ne

Ce

ntr

al P

ara

teth

ysC

alc

are

ou

sN

an

no

pla

nkt

on

Eve

nts

20

21

22

23

24

25

He

lico

sp

ha

era

ca

rte

ri

LR2/68 C2/500

Variability of length of central opening (μm)

0

2

4

6

8

10

12

14

16

18

20

LR10/600

8

16

0

0

2

4

6

8

10

12

14

LR10/550

0

2

4

6

8

10

12

14

16

18

20

LR9/350

0

2

4

6

8

10

12

14

16

18

20

LR2/98

48 88

12 1616

0 00

0

2

4

6

8

10

12

LR10/350

0

2

4

6

8

10

12

14

LR9/300

0

2

4

6

8

10

12

14

16

LR2/68

0

2

4

6

8

10

12

14

16

18

20

C2/500

0

2

4

6

8

10

12

14

16

FV1/640LR9/300

4 4 4 4

8 8 8 88

12 1212 1216 16

16

00 0 00

LR2/68 C2/500 FV1/640

0

5

10

15

20

25

LR10/12

0

5

10

15

20

25

FV1/440

0

2

4

6

8

10

12

EH1/155

0

2

4

6

8

10

12

14

16

EH2/160

0

2

4

6

8

10

12

14

16

18

20

LR9/50

0

2

4

6

8

10

12

14

LR2/48

0

5

10

15

20

25

C2/350

4 4 4

8 810 10 108

8

1212

121616

0 00 0

20 20 20

0 00

0

2

4

6

8

10

12

14

FV1/240

0

2

4

6

8

10

12

14

16

18

EH2/155

0

2

4

6

8

10

12

14

EH1/105

0

2

4

6

8

10

12

14

16

18

LR2/28

0

2

4

6

8

10

12

14

16

C2/10

4 4

8 888 8

12 12 161616

0 0 00 0

LR2/28 C2/10 EH2/155

0

2

4

6

8

10

12

14

16

FV1/40

0

2

4

6

8

10

12

14

EH1/85

44

88

121216

00

FV1/40 EH1/85

0

2

4

6

8

10

12

EH2/75

0

5

10

15

20

25

EH1/30

4

810

12

0 0

20EH1/30 EH2/75

0

2

4

6

8

10

12

EH2/50

4

8

12

0

EH2/50

0

2

4

6

8

10

12

14

EH2/20

48

12

0

EH2/20

0

2

4

6

8

10

12

14

LIP2

4

812

01.0 3.0

LIP2

LR10/600

LR10/550 LR9/350 LR2/98

LR10/350

LR10/12 LR9/50 LR2/48 C2/350 FV1/440 EH1/155 EH2/160

FV1/240

2.01.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

3.0 3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.0 2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

EH1/105

Fig. 7. Variability of the central opening size for the individual assemblages, Egerian to Eggenburgian. Vertical axis, number of specimens; horizontal axis,central opening size (in μm). Location of the boreholes LR10, LR9, LR2, C2, FV1, EH1, EH2, and section Lipovany (LIP) is illustrated on Fig. 1, their li−thology and sampled intervals on Fig. 2. Abbreviation: LO, last occurrence.

660 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

Sp

he

no

lith

us

he

tero

mo

rph

us

Sp

he

no

lith

us

he

tero

mo

rph

us

He

lico

sp

ha

era

am

plia

pe

rta

La

ng

hia

nS

erra

valli

an

Ott

na

ng

ian

Ka

rpa

tian

Ba

de

nia

n

NN4

NN5

14

15

16

17

Mio

cen

e

Bu

rdig

alia

n

Ag

e(M

a)

Ep

och

Sta

ge

Ce

ntr

al

Pa

rate

thys

Sta

ge

Ca

lca

reo

us

Na

nn

op

lan

kto

nZ

on

e

Ce

ntr

al

Pa

rate

thys

Ca

lca

reo

us

Na

nn

op

lan

kto

nE

ven

ts

Variability of length of central opening (μm)

0

2

4

6

8

10

12

LIP7

0

2

4

6

8

10

12

14

LIP11

0

2

4

6

8

10

12

14

16

18

20

D19/665

0

1

2

3

4

5

6

7

8

9

10

D19/426

0

2

4

6

8

10

12

14

LKŠ1/340

0

2

4

6

8

10

12

LKŠ1/238

0

2

4

6

8

10

12

14

LKŠ1/224

0

2

4

6

8

10

12

14

16

LKŠ1/181

0

1

2

3

4

5

6

7

8

9

10

LKŠ1/105

0

1

2

3

4

5

6

7

8

9

10

LKŠ1/26

0

2

4

6

8

10

12

14

BE2/333

0

2

4

6

8

10

12

14

BE2/262

0

2

4

6

8

10

12

14

BE2/114

0

5

10

15

20

25

PY1/2.2

0

5

10

15

20

25

30

35

40

45

PY1/1.5

0

5

10

15

20

25

30

35

40

PY1/0.4

0

5

10

15

20

25

30

35

40

KRAS4

0

5

10

15

20

25

30

KRAS7

0

5

10

15

20

25

30

KRAS90

5

10

15

20

25

KRAS10

BE2/262

KRAS4

KRAS9

KRAS10

PY1/2.2

PY1/0.4

LKŠ1/105

LKŠ1/26

4 44

4

4 4

4

4

4

10

10

10

10

10

4

2

88

8

8 8

8

8

8

10

20

2020

20

20

10

8

4

4

4

121212

1212

12 12

12

12

30

30

30

12

6

16

8

8

8

20

00

0

0

0

20

40

40

40

20

0

0

0

0 0

0

0

0

LIP7

0

2

4

6

8

10

12

14

LIP5

48

12

0

LIP5

LIP11 LKŠ1/340D19/665

LKŠ1/238 BE2/333

LKŠ1/181

KRAS7PY1/1.5

D19/426

BE2/114

0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

LKŠ1/224

Fig. 8. Variability of the central opening size for the individual assemblages, Ottnangian to Early Badenian. Vertical axis, number of specimens; horizontalaxis, central opening size (in μm). Location of the boreholes D19, LKŠ1, BE2, PY1, and sections Lipovany (LIP) and Kralice (KRAS) is illustrated onFig. 1, their lithology and sampled intervals on Fig. 2.

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 661

0

50

100

150

200

250 n=350

0

10

20

30

40

50

60

70 n=500

0

5

10

15

20

25

30

35

40

45

50 n=200

0

10

20

30

40

50

60 n=250

0

5

10

15

20

25

30

35

40 n=200

0

10

20

30

40

50

60

n=250

0

10

20

30

40

50

60 n=350

0

10

20

30

40

50

60 n=350

0

10

20

30

40

50

60

70

80

90

100 n=350

0

20

40

60

80

100

120

140 n=450

0

10

20

30

40

50

60 n=350

0

10

20

30

40

50

60 n=350

0

10

20

30

40

50

60

70

80 n=500

0

20

40

60

80

100

120

140

160

180 n=350

2 3 4 5 6 7 8 9 10 0.5 1.0 1.5 2.0 2.5 3.0

Lenght of central opening(μm)

Lenght of nannolith(μm)

transgression

R. minuta

MMCO

n=200

n=250

n=350 n=450

n=350

n=350

n=200

n=500

n=350

0

10

20

30

40

50

60

70

80

0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

n=450

0

10

20

30

40

50

60

70

80

90

0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

n=350

0

10

20

30

40

50

60

70

80

90

0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

n=250

0

10

20

30

40

50

60

70

80

0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

n=200

0

10

20

30

40

50

60

70

80

90

0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

n=500

0

10

20

30

40

50

60

70

0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

n=350

0

10

20

30

40

50

60

70

80

90

0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44

n=350

n=450

n=350

n=350

n=250 n=250

n=200

n=500

n=350

Lenght of central opening/lenght of nannolith

Sphenolithusheteromorphus

Sphenolithusheteromorphus

Sphenolithusheteromorphus

Sphenolithusheteromorphus

Sphenolithusbelemnos

Sphenolithusbelemnos

Sphenolithusbelemnos

Helicosphaeraampliaperta

Helicosphaeraampliaperta

Helicosphaeraampliaperta

Helicosphaeraampliaperta

Discoasterdruggi

Discoasterdruggi/Helicosphaerascissura

Dictylcoccitesbisectus

LCODictylcoccitesbisectus

Olig

oce

ne

Mio

cen

e

Ch

att

ian

Aq

uita

nia

nB

urd

iga

lian

La

ng

hia

nS

err

ava

llia

n

Eg

eria

nE

gg

en

bu

rgia

nO

ttn

an

gia

nK

arp

atia

nB

ad

en

ian

NP25

NN1

NN2

NN3

NN4

NN5

NN6

Ag

e(M

a)

Ep

och

Sta

ge

Ce

ntr

al P

ara

teth

ysS

tag

eC

alc

are

ou

sN

an

no

pla

nkt

on

Zo

ne

Ca

lca

reo

us

Na

nn

op

lan

kto

nE

vents

Ce

ntr

al P

ara

teth

ysC

alc

are

ou

sN

an

no

pla

nkt

on

Eve

nts

13

14

15

16

17

18

19

20

21

22

23

24

25

Helicosphaeracarteri

Size variability of Reticulofenestra minutaReticulofenestra haqii–pseudoumbilicus

andgroup

n=350

0.20 0.30 0.40

R. haqii–pseudoumbilicus group

10080

60

40

20

0

10080604020

0

120

60

40

20

0

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

8060

40

20

0

80

60

40

20

0

60

40

20

0

60

40

20

0

60

40

20

0

Mi1 eventn=350

transgression

n=500

transgression

transgression40

20

0

60

40

20

0

60

40

20

0

60

40

20

0

40

20

0

Mi1b event (16.1Ma)

60

40

20

0

n=350160

80

40

0

120200

100

50

0

150

250

0.20 0.30 0.40

0.20 0.30 0.40

0.20 0.30 0.40

0.20 0.30 0.40

0.20 0.30 0.40

0.20 0.30 0.40

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

Mi1a event

Fig. 9. Morphometric changes of placoliths of Reticulofenestra minuta and Reticulofenestra haqii–pseudoumbilicus group from the Egerian to the EarlyBadenian (Burdigalian–Langhian) in the Central Paratethys. Cooling Mi events according Zachos et al. 2001. MMCO = the Middle Miocene Climatic Opti−mum (Zachos et al. 2001). Abbreviation: LO, last occurrence.

In conclusion, a satisfactory size has not been found uponwhich to distinguish species in the R. haqii–pseudoumbilicusgroup and its taxonomy is simply a matter of convention.

Size changes in the Late Oligocene–EarlyMiocene Reticulofenestra and paleoecologic andpaleogeographic events in the Central Paratethys

Blooms of Reticulofenestra minuta.—Two blooms of thesmall R. minuta were observed in the studied material (Figs. 9,11): (i) the oldest one in the earliest Miocene (Biochron NN1and early part of Biochron NN2), is described for the first time.It is probably a local event in the northern part of the Panno−nian Basin; (ii) the early Middle Miocene (NN5) event was al−ready documented; it occurred throughout the Central Para−tethys (Ćorić and Švábenická 2004; Ćorić and Hohenegger2008, Spezzaferi et al. 2009). In addition to these two wide−spread blooms, sporadical blooms of R. minuta have also beendescribed in the Central Paratethys, having occurred duringthe Eggenburgian (Holcová 2002, 2005) and the Karpatian(Spezzaferi and Ćorić 2001; Švábenická et al. 2003).

Besides the Central Paratethys, blooms of R. minuta havebeen described from several stratigraphical levels in the Mio−cene from the middle to high latitudes (e.g., Cita et al. 1978;Backman 1980). These blooms are heterochronous with theCentral Paratethys ones and reflect local paleoenvironmentalevents (e.g., Messinian salinity crisis; Cita et al. 1978; Wadeand Bown 2006).

Interpretation of the causes of the blooms is ambiguousdue to inconsistent data about the ecological requirements ofsmall Reticulofenestra. Generally, the species is opportunis−tic and characterizes assemblages from near−shore environ−ment (Haq 1980). Their blooms are connected with environ−mental stress characterized by rapid environmental changes(Wade and Bown 2006).

Gartner et al. (1983) suggested that variations in the relativeabundance of R. minuta correlate with changes in nutrient dy−namics. Wells and Okada (1997), Flores et al. (1997), Boll−mann et al. (1998) and Kameo (2002) regard small Reticulo−fenestra spp. as eutrophic species while Hallock (1987), Beau−fort and Aubry (1992), Ćorić and Rögl (2004) suggested thatblooms of small Reticulofenestra indicate oligotrophic warmwater. Wade and Bown (2006) showed that R. minuta mayhave tolerated the brackish to hypersaline, high productivityenvironments, which prevailed immediately before and afterthe evaporite deposition during the Messinian salinity crisis.

The two conspicuous blooms of small R. minuta in theCentral Paratethys occurred during transgression events whenthe Slovenian corridor permitted incursions of warm waterinto the Paratethys (Rögl 1998, 1999; Popov et al. 2004).These events are marked by horizons with larger Foramin−ifera—Miogypsina and Lepidocyclina in the lowermost Mio−cene (Váňová 1975), Amphistegina and Planostegina in theLower Badenian—and replacement of small Globigerinafauna by diversified assemblages with large−sized warm−

water species—Globigerinoides in the Lower Miocene andGlobigerinoides, Praeorbulina, and Orbulina in the MiddleMiocene). At the beginning of the blooms, R. minuta replacesCoccolithus pelagicus, which is an indicator of cold and nutri−ent−rich waters (McIntyre and Be 1967; Rahman and Roth1990). Among the benthic foraminifera, the abundance of ag−glutinated foraminifera decreases (Vass et al. 1983; Holcová2001; Spezzaferi et al. 2009). The paleoenvironmental turn−over correlatable with the Middle Miocene bloom of R. minutahas been well explained: Upwelling regime with cooler sur−face waters and partly dysoxic bottom conditions of the latestEarly Miocene were gradually changed to the warm−watercondition in the early Middle Miocene and antiestuarine circu−lation with evaporation prevailing over fresh−water input(Brzobohatý 1987; Ćorić and Rögl 2004; Báldi 2006; Spezza−ferri et al. 2009). Comparable circulation turnover due to mix−ing of in situ cold and incoming warm water masses andpaleogeographical changes may be expected also in the earli−est Miocene in the South Slovak Basin (Halásová et al. 1996).

Although the incoming of warm−water elements in the ma−rine realm is specific of the two transgressive events, the Earlyand Middle Miocene conditions in the Central Paratethys sub−stantially differed from the global paleoclimatic situation. TheEarly Miocene event was marked with the appeareance ofarctotertiary elements among palynomorphs (Vass et al. 1988;Planderová 1990) indicative of a global cooling correlatedwith the Mi1 and Mi1a events. In contrast, the Middle Mio−cene event can be correlated with the Middle Miocene Clima−tic Optimum (Gonera et al. 2000; Bicchi et al. 2003; Böhme2003). Short−term oscillations in the abundance of R. minutaduring the two blooms were observed (Ćorić and Hohenegger2008; own unpublished data). These may indicate unstable

662 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

Le

ng

tho

fce

ntr

al o

pe

nin

g(μ

m)

4 5 6 7 830.5

1.0

1.5

2.0

2.5

3.0

Length of nannolith (μm)

Winter morphotype Summer morphotype

Fig. 10. Two morphotypes of Reticulofenestra haqii–pseudoumbilicus groupin the lower part of the Zone NN2. Interval FO Helicosphaera scissura/FO Discoaster druggii–FO Helicosphaera ampliaperta lower Zone NN2(22.8–20.0 Ma); n = 243 (samples LR2/28, C2/10, FV1/240, FV1/40, EH2/155, EH1/85, EH1/105).

conditions with short−term oscillations of paleoenvironmentalparameters mainly salinity and nutrients. These oscillationshave been interpreted in the Biochron NN5 by Hohenegger etal. (2008): warm intervals characterized by high terrigenousinput and higher seasonality were alternated with cold periodswith lower terrigenous input and lower seasonality. Reticule−

fonestram minuta strongly dominated in the near−shore faciesduring warm intervals (more than 80%) where high terri−genous input during wet seasons may cause seasonal oscilla−tions of salinity in the upper layer of water column (own un−published data).

The expansion of near−shore facies as a result of transgres−

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 663

Ce

ntr

al

Pa

rate

thys

pa

leo

ge

og

rap

hic

al e

ven

ts(R

ög

l 19

98

,1

99

9,

Po

po

ve

ta

l.2

00

4,

Pill

er

eta

l.2

00

7)

Ce

ntr

al P

ara

teth

ysst

ag

es

Eg

ge

nb

urg

ian

Eg

eria

nK

arp

atia

nB

aden

ian

1

2

3

6

5

Inte

rva

ls(t

his

wo

rk)

Ott

na

ng

ian

Re

ticu

lofe

ne

strid

sb

iom

etr

ica

l eve

nts

(th

isw

ork

)

Glo

ba

lse

a-le

velc

ycle

s(H

ard

en

bo

leta

l.1

99

8)

Bur 2

Bur 3

Bur 4

Bur 5/Lan1

19.1

Clim

atic

cha

ng

es

(Kü

rsch

ne

re

ta

l.2

00

8;

Teo

do

rid

ise

ta

l.2

00

7)

20

21

22

23

24

25

19

Ag

e(M

a)

ap

pro

xim

ativ

ely

18

17

16

15

FO of H. ampliaperta

FO of S. belemnos

S. heteromorphusFO of

FO of H. carteri

FO ofFO

D. druggii/H. scissura

LCO of R. bisecta

Sloveniancorridor

Slovenian corridor

Sloveniancorridor

R.m

inu

tab

loo

m

R.minutabloom

slig

htin

cre

ase

ofn

an

no

lith

size

bim

od

als

ize

dis

trib

utio

no

fp

laco

lith

s?

win

ter

an

dsu

mm

er

mo

rph

oty

pe

s

FO of R. haqii

Mi1a

Mi1

Mi1b

Mi2

4

Ch 3

Ch 4/Aq 1

Aq 2

Aq 3/Bur 1

Ch

att

ian

Aq

uita

nia

nB

urd

iga

lian

La

ng

hia

nS

tag

e

Ca

lca

reo

us

na

nn

op

lan

kto

nzo

ne

s

NP25

NN1

NN2

NN3

NN4

NN5

23.1

22.8

~ 25

Use

dca

lca

reo

us

na

nn

op

lan

kto

nb

iost

ratig

rap

hic

al

eve

nts

17.7

caesing ofthe marine

pathwayvia the Alpine

Foredeep andthe Rhine Graben

succesiveopening of

the pathwayvia the Alpine

Foredeep

broadconnection

to theVenetian

Basin,

via the RhineGraben,

the AlpineForedeepand

Ser 1

non-studiedinterval

MMCO

bro

ad

size

an

dsh

ap

eva

ria

bili

tyo

fn

an

no

lith

s

FCO of>7 μmR. pseudoumbilicus

FO of

with smallcentral opening

R. pseudoumbilicus6–7 μm

isolation

20.5

15.97 FO of P. circularis

local transgression

transgression

transgression

transgression

transgression

14.9 LO of H. ampliaperta

FCO of

>8.0 μmR. pseudoumbilicus

transgression

Fig. 11. Correlations between reticulofenestrid biometric events, local and global sea−level changes and paleogeographical events in the Egerian–Early Badenian(Burdigalian–Langhian) of the Central Paratethys. Abbreviations: FCO, first common occurrence; FO, first occurrence; LCO, last common occurrence; LO, lastoccurrenceFCO; MMCO, the Middle Miocene Climatic Optimum; D., Discoaster; H., Helicosphaera; P., Praeorbulina; R., Reticulofenestra; S., Sphenolithus.

664 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

A

L

X

AF AG AH AI AJ AK AL

AM AN

AZ BA BB BC BD BE

BF BG BH BI BJ BK

BL

BR BS BT BU

BM BN BO BP BQ

AW AX AY

AP AQ AR AS

Y Z AA AB AC AD AE

M N O P Q R T

B C D E F HG

S U V W

I J K

A0

AT AU AV

50 µm

Fig. 12. Elliptical reticulofenestrids from the Central Paratethys Oligocene and Early Miocene. A–K. Reticulofenestra minuta Roth, 1970, < 3.5 μm, zones NN1and NN2. A. Borehole LR−10/12 m, Zone NN2. B–D. Borehole LR−2/48 m, Zone NN1. E, F. Borehole LR−2/28 m, Zone NN2. G. Borehole FV−1/440 m, ZoneNN1. H. Borehole EH−1/155 m, Zone NN2. I, J. Borehole EH−1/85 m, Zone NN2. K. Borehole EH−2/155 m, Zone NN2. L–W. Reticulofenestra minuta Roth,1970, < 3.5 μm, Zone NN5. L–N. Section Kralice, sample 4. O, P Section Kralice, sample 7. Q, R. Section Kralice, sample 10. S–U. Borehole PY−1/2.2 m.V, W. Borehole PY−1/1.5 m. X–AY. Reticulofenestra haqii–pseudoumbilicus group (4–5 μm), zones NP25–NN4. X, Y. Borehole LR−10/350 m, Zone NP25. �

sion, the changes in water circulation due to the mixing of in−coming warmer and in situ colder water masses and, probably,unstable conditions as a result of short term (?seasonal) oscil−lations of ecological parameters (such as salinity in the upperlayers of water column) may have produced conditions fa−vourable to the blooms of small−sized Reticulofenestra.

Size changes of the Reticulofenestra haqii–pseudoumbi−licus group.— Discrepancies between the FOs of individualsize categories in the R. haqii–pseudoumbilicus group (seechapter: Size changes over time) in the Central Paratethysand in the oceanic realm is notable for interpretation of localvs. global character of size changes in the group. The follow−ing discrepancies have been recorded:

(i) The FO of R. haqii (> 4 μm) was observed in the stud−ied area in Zone NP25 (Holcová 2005) whereas in the worldocean it lies at the NN1/NN2 boundary (Young 1999).

(ii) The FO of R. pseudoumbilicus (> 5 μm) is given in ZoneNN4 in the world ocean (Young 1999). In the Central Para−tethys, Marunteanu (1999) and Chira (2004) reported this spe−cies from near the NN1/NN2 boundary, Andreyeva−Grigo−rovich et al. (2008) from Zone NN2 and Molčíková and Stra−ník (1987) from Zone NN1. Holcová (2005, this paper) de−scribe the FO of specimens > 5 μm together with FO of R. haqii> 4 μm in the uppermost part of the NP25 Zone (Figs. 5, 6, 9).

(iii) The FO of R. pseudoumbilicus > 7 μm is given mostoften being a Middle Miocene event. In the Mediterranean, theFO has been described from Zone NN6 (Fornaciari and Rio1996), and the FCO of R. pseudoumbilicus > 7.0 μm to definethe z ones MNN6a and MNN6b (Fornaciari et al. 1996); in theEastern equatorial Pacific the event was recorded near theNN5/NN6 boundary (Raffi and Flores 1995). However, Howeand Sblendorio−Levy (1998) described the FO of R. pseudo−umbilicus > 7 μm from the upper part of Zone NN 2 in the At−lantic Ocean near Madeira. This correlates with its FO in theCentral Paratethys in Zone NN2 (Molčíková and Straník1987; this paper). The FCO of R. pseudoumbilicus > 7 μm inthe Central Paratethys has been recorded from the NN4 Zone.(Molčíková 1983; Švábenická et al. 2003; Eva Halásová, per−sonal communication 2009; this paper).

The Central Paratehys FOs of all three size categories in R.haqii–pseudoumbilicus group occurred earlier in the globalocean (including the Mediterranean realm) and cannot be usedfor interregional biostratigraphic correlations.

The evolution of size in the R. haqii–pseudoumbilicusgroup in the Central Paratethys would suggest an earlier ap−

pearance of larger specimens owing to specific conditions inan intracontinental basin. However, the most important mor−phological changes in the R haqii–pseudoumbilicus group canbe correlated with the opening of new pathways between theCentral Paratethys and the Mediterranean and the immigrationof incoming species in the Central Paratethys (Fig. 11). First,the FO of R. haqii is associated with the reopening of sea−waysafter the Kiscellian anoxia, which is marked by the immigra−tion of foraminifera (Holcová 2008). Second at the upper partof Zone NN2 marked by the FO of H. ampliaperta, largerspecimens of R. haqii (6–7 μm) with small central opening(1.5–1.7 μm) were recorded. The FO of H. ampliaperta can becorrelated with transgression from the Mediterranean via thePre−Alpine passage (Rögl 1998; Popov et al. 2004). The trans−gression is characterized by substantial faunal turnovermarked by numerous first occurrences of species of westernMediterranean origin (Kroh and Harzhauser 1999; Vávra1979; Mandic and Steininger 2003; Piller et al. 2007). Third,the FCO of R. pseudoumbilicus > 7 μm at the base of ZoneNN4 correlates with the transgression and paleogeographic re−organization and the establishment of a new broad connectionvia the “Trans−Tethyan trench corridor”. The connection en−abled faunal exchange between the Mediterranean and Para−tethys (Rögl 1998; Rögl et al. 2003; Popov et al. 2004).Fourth, the FO of R. pseudoumbilicus > 8 μm is associatedwith the reopening of the Mediterranean–Indo−Pacific sea−way (Rögl and Steininger 1983; Rögl 1998, 1999; Popov et al.2004). This large transgression caused rapid immigration ofthe marine fauna (e.g., Harzhauser and Piller 2007; Holcová2008) termed the EBBE, or Early Badenian−Build−up−Event(Harzhauser and Piller 2007).

Slight gradual size changes in the R. haqii–pseudoumbi−licus group were recorded during periods without paleogeo−graphical changes (Fig. 11). The decrease in the placoliths sizein the late Egerian (upper NP25 to NN1 zonal interval) maycorrespond with cooling interpreted from occurrence of arcto−tertiary elements among palynomorphs (Planderová 1990).Also Kürschner et al. (2008) hypothesized a cooling duringthis interval correlatable with the Mi1/1a event.

The size of placoliths slightly increased in the Eggen−burgian, although this increase is not general (Figs. 5, 6, 9).This size increase can be correlated with warming (Kürschneret al. 2008).

Bimodal size distribution in the R. haqii–pseudoumbi−licus group was recorded firstly during the Zone NN1 and inthe lower part of the Zone NN2 (Fig. 9, 10). The smaller

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 665

Z, AA. Borehole LR−9/350 m, Zone NP25. AB. Borehole LR−2/98 m, Zone NP25. AC–AE. Borehole C−2/500 m, Zone NP25. AF, AG. Borehole EH2/160 m,Zone NN1. AH, AI. Borehole EH−1/105 m, Zone NN2. AJ, AK. Borehole EH−1/85 m, Zone NN2. AL. Borehole EH−2/75 m, Zone NN2. AM, AN. BoreholeLKŠ−1/340 m, Zone NN3. AO–Q. Borehole LKŠ−1/181 m, Zone NN4. AR, AS. Borehole LKŠ−1/105 m, Zone NN4. AT–BE Reticulofenestra haqii–pseudoumbilicus group (5–7 μm), zones NP25–NN4. AT, AU. Borehole LR−10/350 m, Zone NP25. AV. Borehole LR−9/350 m, Zone NP25. AW, AX. Bore−hole C−2/500 m, Zone NP25. AY. Borehole EH2/160 m, Zone NN1. AZ, BA. Borehole EH−1/105 m, Zone NN2. BB, BC. Borehole EH−1/85 m, Zone NN2.BD, BE. Borehole EH−2/155 m, Zone NN2. BF–BK. Reticulofenestra haqii–pseudoumbilicus group (6–7 m) narrow central opening, Zone NN2. BF, BG.Borehole EH−1/155 m, Zone NN2. BH, BI. Borehole EH−1/105 m, Zone NN2. BJ, BK. Borehole EH−2/85m, Zone NN2. BL–BQ. Reticulofenestrahaqii–pseudoumbilicus group (6–8 μm), Zone NN4. BL, BM. Borehole LKŠ−1/105 m, Zone NN4. BN, BO. Borehole LKŠ−1/26 m, Zone NN4. BP, BQ Bore−hole BE−2/114 m, Zone NN4. BR, BU. Reticulofenestra haqii–pseudoumbilicus group (> 8 μm), Zone NN5. BR. Borehole PY−1/2.2 m. BS. BoreholePY−1/1.5 m. BT, BU. Section Kralice, sample 4.

morphotype (< 6 μm) is characterized by a small centralopening 0.5–1.5 μm. Larger morphotype (> 6 μm) havelarger central openings (Fig. 10).

Backman (1980) and Beaufort and Aubry (1992) de−scribed a dependence of the morphometric variability of R.pseudoumbilicus on seasonal or latitudinal temperature dif−ferences during the Miocene and Pliocene. According toBackman (1980) low latitude individuals are characterizedby a larger central opening and can be slightly larger. Highlatitude individuals are distinguished by a smaller centralopening. Beaufort and Aubry (1992) have proposed alterna−tions of winter and summer morphotypes in the Lower Mio−cene of high−latitude populations. The occurrence of two sizecategories (3.5–6 μm and 6–8 μm) in the late Egerian–earlyEggenburgian of analysed samples may also represent sea−sonal morphotypes: the smaller morphotype could representthe winter morphotype while the larger morphotype with alarger central opening could represent the summer morpho−type (Fig. 10) This assumed seasonality has been corrobo−rated by palaeoclimate estimates based on plant macrofossilspreserved in the Břešťany Clay from the Most Basin (Teo−doridis and Kvaček 2006; Kvaček and Teodoridis 2007).These studies have shown a significant difference between aColdest Month Mean Temperature (CMMT) and WarmestMonth Mean Temperature (WMMT), which is 15–20�C(Teodoridis 2007; Teodoridis et al. 2011).

ConclusionsBased on biometric analysis, two size groups of ellipticalreticulofenestrids from the NP25–NN5 zonal interval weredistinguished. One group corresponds to the small R. minuta(< 3 μm); the other is the R. haqiii–pseudoumbilicus group(3.5–10 μm). A clear criterion upon which to define species inthis group has not been found, and species taxonomy (R. haqiivs. R. pseudoumbilicus) can only be conventional (Fig. 12).

Two blooms of small R minuta were observed. The earliestMiocene bloom (NN1 and lower part of Zone NN2) is proba−bly a local event for the northern part of the Pannonian Basin.The early Middle Miocene bloom (Zone NN5) was alreadyknown and has a global occurrence in the Central Paratethysbasins. These blooms can be correlated with the expansion ofnear−shore facies associated with transgression, the incursionsof warm water into the Paratethys, which may cause changesin water circulation due to the mixing of warmer and colderwater masses. Unstable conditions with short−term oscillationsof ecological parameters (probable salinity in the upper layersof water column) can be also expected.

The FOs of all three size categories in R. haqii–pseudo−umbilicus group (3–5 μm, 5–7 μm, > 7 μm) occurred earlierin the Central Paratehys than in the global ocean and theMediterranean region. They cannot be used for interregionalbiostratigraphical correlations.

The slight gradual changes in size in the R. haqii–pseudo−umbilicus group can be correlated with paleoclimatic trends.

The decrease in size of the placoliths in the late Egerian (up−per Zone NP25 and Zone NN1) may result from cooling dur−ing the Mi1/1a event.

The size of placoliths slightly increased from the Eggen−burgian to the Badenian; the interval can be generally charac−terized by warming.

The two morphotypes occurring in the late Egerian–Early Eggenburgian may represent seasonal morphotypes.The smaller morphotype could represent the winter morpho−type while the larger morphotype with a slightly larger cen−tral opening could represent the summer morphotype.

AcknowledgementsI would like to acknowledge the helpful discussion on Oligocene andMiocene paleoclimate by Zlatko Kvaček and Vasilis Teodoridis (bothCharles University in Prague, Czech Republic). I thank the Marie−PierreAubry (Rutgers University, New Jersey, USA), and Jörg Mutterlose(Ruhr−Universität Bochum, Germany) for their comments and correc−tions, which substantially improved the quality of this manuscript. Thisresearch was supported by grants no. MSM0021620855 and GAČR205/09/0103.

ReferencesAndreyeva−Grigorovich, A.S., Kulchytsky, Y.O., Gruzman, A.D., Lozonyak,

P.Y., Petrashkevich, M.I., Portnyagina, L.O., Ivanina, A.V., Smirnov,S.E., Trofimovich, N.A., and Savitskaya, N.A. 1997. Regional strati−graphic scheme of Neogene formations of the Central Paratethys ofUkraine. Geologica Carpathica 48: 123–136.

Andreyeva−Grigorovich, A.S., Oszczypko, N., Slaczka, A., Oszczypko−Clowes, M., Savitskaya, N.A., and Trofimovich, N.A. 2008. New dataon the stratigraphy of the folded Miocene Zone at the front of the Ukrai−nian Outer Carpathians. Acta Geologica Polonica 58: 325–354.

Backman, J. 1978. Late Miocene–Early Pliocene nannofossil biochronologyand biogeography in the Vera Basin, SE Spain. Stockholm Contributionsin Geology 32: 93–114.

Backman, J. 1980. Miocene–Pliocene nannofossils and sedimentation ratesin the Hatton−Rockall Basin, NE Atlantic Ocean. Stockholm Contribu−tions in Geology 36: 1–91.

Báldi, K. 2006. Paleoceanography and climate of the Badenian (Middle Mio−cene, 16.4–13.0 Ma) in the Central Paratethys based on foraminifera andstable isotope (�18O and �13C) evidence. International Journal of EarthScience (Geologische Rundschau) 95: 119–142.

Báldi T. 1986. Mid−tertiary Stratigraphy and Paleogeographic Evolution ofHungary. 201 pp. Akademiai Kiado, Budapest.

Beaufort, L. and Aubry, M.−P. 1992. Palaeoceanographic implications of a17 m.y. long record of high−latitude Miocene calcareous nannoplanktonfluctuations. Proceeding of Ocean Drilling Program, Scientific Results120: 530–549.

Berggren, W.A., Kent, D.V., Swisher III., C.C., and Aubry, M.−P. 1995.A revised cenozoic geochronology and chronostratigraphy. In: W.A.Berggren, D.V. Kent, and J. Hardenbol (eds.), Geochronology, TimeScale and Global Stratigraphic Correlations: A Unified TemporalFramework for an Historical Geology. Society of Economic Paleontol−ogists and Mineralogists, Special Publication 54: 129–212.

Bicchi, E., Ferrero, E., and Gonera, M. 2003. Palaeoclimatic interpretationbased on Middle Miocene planktonic Foraminifera: the Silesia Basin(Paratethys) and Monferrato (Tethys) records. Palaeogeography, Palaeo−climatology, Palaeoecology 196: 265–303.

Böhme, M. 2003. The miocene climatic optimum: evidence from ectothermic

666 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013

vertebrates of Central Europe. Palaeogeography, Palaeoclimatology,Palaeoecology 195: 389–401.

Bollmann, J., Baumann, K.H., and Thierstein, H.R. 1998. Global domi−nance of Gephyrocapsa coccoliths in the late Pleistocene: Selectivedissolution, evolution, or global environmental change? Paleoceano−graphy 13: 517–529.

Brzobohatý, R. 1987. Contribution to paleogeography of the Miocene bas−ins of the Central Paratethys from otolith fauna. Miscellanea Micro−palaeontologica II/2, Knihovnička zemního plynu a nafty 6b: 101–111.

Chira, C. 2004. Early Miocene calcareous nannofossils assemblages fromTransylvania. Acta Paleontologica Romaniae 4: 81–88.

Chlupáč, I., Brzobohatý, R., Kovanda, J., and Stráník, Z. 2002. Geologickáminulost České republiky. 436 pp. Academia, Praha.

Cita, M.B., Wright, R.C., Ryan, W.B.F., and Longinelli, A. 1978. Messinianpaleoenvironments, Initial Reports of the Deep Sea Drilling Project42A: 1003–1035.

Ćorić, S. and Hohenegger, J. 2008. Quantitative analyses ofcalcareous nanno−plankton assemblages from the Baden−Sooss section (Middle Miocene ofVienna Basin, Austria). Geologica Carpathica 59: 447–460.

Ćorić, S. and Rögl, F. 2004. Roggendorf−1 borehole, a key−section for LowerBadenian transgressions and the stratigraphic positin of the Grund Forma−tion (Molasse Basin, Lower Austria). Geologica Carpathica 55: 165–178.

Ćorić, S. and Švábenická, L. 2004. Calcareous nannofossil biostratigraphyof the Grund Formation (Molasse Basin, Lower Austria). GeologicaCarpathica 55: 147–155.

Flores, J.A., Sierro, F.S., Francés, G., Vasquez, A., and Zamarreno, I. 1997.The last 100,000 years in the western Mediterranean: Sea surface waterand frontal dynamics as revealed by coccolithophores. Marine Micro−paleontology 29: 351–366.

Fornaciari, E. and Rio, D. 1996. Latest Oligocene to early middle Miocenequantitative calcareous nannofossil biostratigraphy in the Mediterra−nean region. Micropaleontology 42: 1–36.

Fornaciari, E., Di Stefano, A., Rio, D., and Negri, A. 1996. Middle Miocenequantitative calcareous nannofossil biostratigraphy in the Mediterra−nean region. Micropaleontology 42: 37–63.

Gartner, S., Chen, M.P., and Stanton, R.J. 1983. Late Neogene nanofossilbiostratigraphy and paleoceanography of the northeastern Gulf of mex−ico and adjacent areas. Marine Micropaleontology 8: 17–50.

Gonera, M., Peryt, T.M., and Durakiewicz, T. 2000. Biostratigraphical andpaleoenvironmental implications of isotopic studies (18O, 13C) of Mid−dle Miocene (Badenian) foraminifers in the Central Paratethys. TerraNova 12: 231–238.

Halásová, E., Hudáčková , N., Holcová, K., Vass, D., Elečko, M., and Pere−szlényi, M. 1996. Sea ways connecting the Fiľakovo−Pétervasara Basinwith the Eggenburgian/Burdigalian open sea. Slovak Geological Maga−zine 2: 125–136.

Hallock, P. 1987. Fluctuations in the trophic resource continuum: a factor inglobal diversity cycles? Paleooceanography 2: 457–471.

Haq, B.U. 1980. Biogeographic history of the Miocene calcareous nanno−plankton and paleoceanography of the Atlantic Ocean. Micropaleonto−logy 26: 414–443.

Haq, B.U., Hardenbol, J., and Vail, P.R. 1988. Mesozoic and Cenozoicchronostratigraphy and cycles of sea−level change. Society of EconomicPaleontologists and Mineralogists, Special Publication 42: 71–108.

Harzhauser, M. and Piller, W.E. 2007. Benchmark data of a changingsea—palaeogeograpgy, palaebiogeography and events in the CentralParatethys during the Miocene. Palaeogeography, Palaeoclimatology,Palaeoecology 253: 8–31.

Hohenegger, J., Andersen, N., Báldi, K., Ćorić, S,, Pervesler, P., Rupp, C., andWagreich, M. 2008. Paleoenvironment of the Early Badenian (MiddleMiocene) in the southern Vienna Basin (Austria)—multivariate analysisof the Baden−Sooss section. Geologica Carpathica 59: 461–487.

Hohenegger, J., Coric, S., Khatun, M., Pervesler, P., Rögl, F., Rupp, Ch.,Selge, A., Uchman, A., and Wagreich, M. 2009. Cyclostratigraphic dat−ing in the Lower Badenian (Middle Miocene) of the Vienna Basin (Aus−tria)—the Baden−Sooss core. International Journal of Earth Sciences98: 915–930.

Holcová, K. 2001. New methods in foraminiferal and calcareous nanno−

plankton analysis and evolution of Oligocene and Miocene basins of theSouthern Slovakia. Slovak Geological Magazine 7: 19–41.

Holcová, K. 2002. Calcareous nannoplankton from the Eggenburgian strato−types (Lower Miocene, Central Paratethys). Geologica Carpathica 53:381–390.

Holcová, K. 2005. Quantitative calcareous nannoplankton biostratigraphyof the Oligocene/Miocene boundary interval in the northern part of theBuda Basin (Central Paratethys). Geological Quarterly 49: 263–274.

Holcová, K. 2008. Foraminiferal species diversity in the Central Paratethys—a reflection of global or local events? Geologica Carpathica 59: 71–85.

Howe, R.W. and Sblendorio−Levy, J. 1998. Calcareous nannofossil bio−stratigraphy and sediment accumulation of turbidite sequences on the Ma−deira abyssal plain, sites 950–952. In: P.P.E. Weaver, H.U. Schmincke,and J.V. Firth (eds.), Proceeding of the Ocean Drilling Program, Scien−tific Results 157: 501–520.

Jamrich, M. and Halásová, E. 2010. The evolution of the Late Badenian calcar−eous nannofossil assemblages as a reflexion of the palaeoenvironmentalchanges of the Vienna Basin (Devínska Nová Ves−clay pit). Acta Geo−logica Slovaca 2: 123–140.

Kameo, K. 2002. Late Pliocene Caribbean surface water dynamics and cli−matic changes based on calcareous nannofossil records. Palaeogeogra−phy, Palaeoclimatology, Palaeoecology 179: 211–226.

Kováč, M. 2000. Geodynamic, Paleogeographical and Structural Develop−ment of the Carpathian–Pannonian Region During the Miocene. 202 pp.Veda, Bratislava.

Kroh, A. and Harzhauser, M. 1999. An echinoderm fauna from the LowerMiocene of Austria: Paleoecology and implications for Central Para−tethys paleogeography. Annalen des Naturhistorischen Museums inWien 101A: 145–191.

Kürschner, W.M., Kvaček, Z., and Dilcher, D.L. 2008. The impact of Mio−cene atmospheric carbon dioxine fluctuations on climate and the evolu−tion of terrestrial ecosystems. Proceedings of the National Academy ofSciences of the United States of America 105: 449–453.

Kvaček, Z. and Teodoridis, V. 2007. Tertiary macrofloras of the BohemianMassif: a review with correlations within Boreal and Central Europe.Bulletin of Geosciences 82: 383–408.

Lehotayová, R. 1975. Reticulofenestra excavata n. sp. from the Eggen−burgian to Karpatian of Central Slovakia. Západné Karpaty, sériapaleontológia 2: 39–40.

Lehotayová, R. 1982. Miocene nannoplankton zones in west Carpathians.Západné Karpaty, séria paleontológia 8: 91–110.

Lehotayová, R. 1984. Lower Miocene calcareous nannoflora of the WestCarpathians. Západné Karpaty, séria paleontológia 9: 99–110.

Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J., and Wilson, D. 2004. TheNeogene period. In: F. Gradstein, J. Ogg, and A. Smith (eds.), A Geologi−cal Time Scale, 409–440. Cambridge University Press, Cambridge.

Mandic, O. and Steininger, F.F. 2003. Computer−based mollusc stratigra−phy—a case study from the Eggenburgian (Lower Miocene) type region(NE Austria). Palaeogeography, Palaeoclimatology, Palaeoecology197: 263–291.

Martini, E. 1971. Standard Tertiary and Quaternary calcareous nanoplanktonzonation. In: A. Farinacci (ed.), Proceeding of 2nd Planktonic Confer−ence, Roma 1970, Roma, 739–785. Tecnoscienza, Rome.

Márton, E., Vass, D., and Túnyi, I. 1995. The Late Tertiary rotation of themegaunit Pelsö and the adjecent West Carpathians area. KnihovničkaZemní Plyn a Nafta 16: 97–108.

Marunteanu, M. 1992. Distribution of the Miocene calcareous nannofossilsin the Intra− and Extra− Carpathian areas of Rumania. KnihovničkaZemní Plyn Nafta 14b (2): 247–262.

Marunteanu, M. 1999. Litho−and biostratigraphy (calcareous nannoplankton)of the Miocene deposits from the Outer Moldavides. Geologica Carpa−thica 50: 313–324.

McIntyre, A. and Be, A.W.H. 1967. Coccolithus neohelis sp.n. a coccolithfossil type in contemporary seas. Deep−Sea Research 14: 369–371.

Molčíková, V. 1983. The Karpatian and Lower Badenian Calcareous nanno−flora of the Carpathian Foredeep in Moravia. Knihovnička Zemní Plyn aNafta 4: 283–304.

Molčíková, V. and Straník, Z. 1987. Calcareous nannoplankton from the

http://dx.doi.org/10.4202/app.2009.0006

HOLCOVÁ—RETICULOFENESTRID NANNOFOSSILS FROM THE CENTRAL PARATETHYS 667

Ždánice−Hustopeče Formation and their relation to underlying forma−tions. Knihovnička Zemní Plyn a Nafta 6b: 59–76.

Piller, W.E., Harzhauser, M., and Mandic, O. 2007. Miocene CentralParatethys stratigraphy—current status and future directions. Stratigra−phy 4: 151–168.

Planderová, E. 1990. Miocene Microflora of Slovak Central Paratethys andits Biostratigraphical Significance. 144 pp. Geologický Ústav DionýzaŠtúra, Bratislava.

Popov, S.V., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G., andKováč, M. 2004. Lithological−Paleogeographic maps of Paratethys.Courier Forschungsinstitut Senckenberg 250: 1–46.

Pujos, A. 1985. Cenozoic nannofossils, central equatorial Pacific, deep seaDrilling Project Leg 85. In: L. Mayer and F. Theyer (eds.), Initial Re−ports of the Deep Sea Drilling Project 85: 581–608.

Raffi, I. and Flores, J.A. 1995. Pleistocene through Miocene calcareousnannofossils from Eastern Equatorial Pacific Ocean (Leg 138). In: N.G.Pisias, L.A. Mayer, T.R. Janecek, A. Palmer−Julson, and T.H. vanAndel (eds.), Proceedings of the Ocean Drilling Program, ScientificResults 138: 233–286.

Raffi, I., Rio, D., d`Atri, A., Fornaciari, E., and Rochetti, S. 1995. Quantita−tive distribution patterns and biomagnetostratigraphy of middle and lateMiocene calcareous nannofossils from western equatorial Indian andPacific Oceans (Legs 115, 130, and 138). In: N.G. Pisias, L.A. Mayer,T.R. Janecek, A. Palmer−Julson, and T.H. van Andel (eds.), Proceedingof Oceanic Drilling Project, Scientific Results 138: 479–502.

Rahman, A. and Roth, P.H. 1990. Late Neogene paleoceanography andpaleoclimatology of the Gulf of Aden region based on calcareousnannofossils. Paleoceanography 5: 91–107.

Rio, D., Fornaciari, E., and Raffi, I. 1990. Late Oligocene through earlyPleistocene calcareous nannofossils from western equatorial IndianOcean (Leg 115). Proceedings of the Ocean Drilling Program, Scien−tific Results 115: 175–221.

Rögl, F. 1998. Paleogeographic considerations for Mediterranean and Para−tehys seaways (Oligocene to Miocene). Annalen des NaturhistorischeMuseum in Wien 99A: 279–310.

Rögl, F. 1999. Mediterranean and Paratethys. facts and hypotheses of anOligocene to Miocene paleogeography (short overview). GeologicaCarpathica 50: 339–349.

Rögl, F. and Steininger, F.F. 1983. Vom Zerfall der Tethys zu Mediterranund Paratethys—Die neogene Palaegeographie and Palinspastik deszirkummediterranen Raumes. Annalen des Naturhistorische Museum inWien 85/A: 135–164.

Rögl, F., Ćorić, S., Daxner−Höck, G., Harzhauser, M., Mandić, O., Švá−benická, L., and Zorn, I. 2003. Correlation of the Karpatian Stage. In: R.Brzobohatý, I. Cicha, M. Kováč, and F. Rögl (eds.), The Karpatian—aLower Miocene Stage of the Central Paratethys, 27—35. Masaryk Uni−versity, Brno.

Seneš, J. 1961. Paläogeographie des Westkarpatischen Raumes in Beziehungzur übringen Paratethys in Miozän. Geologické práce 60: 160–194.

Spezzaferri, S. and Ćorić, S. 2001. Ecology of Karpatian (Early Miocene) fora−minifera and calcareous nannoplankton from Laa an der Thaya, LowerAustria: a statistical approach. Geologica Carpathica 52: 361–374.

Spezzaferri, S., Ćorić, S., and Stingl, K. 2009. Palaeoenvironmental recon−struction of the Karpatian–Badenian (Late Burdigalian–Early Langhian)transition in the Central Paratethys. A case study from theWagna Section(Austria). Acta Geologica Polonica 59: 523–544.

Švábenická, L. 2002. Calcareous nannofossils of the Upper Karpatian andLower Badenian Deposits in the Carpathian Foredeep, Moravia (CzechRepublic). Geologica Carpathica 53: 197–210.

Švábenická, L., Coric, S., Andreyeva−Grigorovich, A.S., Halásová, E., Ma−runteanu, M., Nagymarosi, A., and Oszcypko−Clowes, M. 2003. CentralParatethys Karpatian Calcareous Nannofossils. R. Brzobohatý, I. Cicha,M. Kováč, and F. Rögl (eds.), The Karpatian—a Lower Miocene Stage ofthe Central Paratethys, 151–168. Masaryk University, Brno.

Teodoridis, V. 2007. Overview of macrofloras from the Most Basin (CzechRepublic) and their phytostratigraphical correlation within Central andBoreal Europe. In: Organizing Committee in Bonn (eds.), Terra Nostra

2, IPC−XII /IOPC−VIII Bonn, Germany 2008, Abstract Volume, 280.GeoUnion Alfred−Wegener−Stiftung, Berlin.

Teodoridis, V. and Kvaček, Z. 2006. Palaeobotanical research of the EarlyMiocene deposits overlying the main coal seam (Libkovice and LomMbs.) in the Most Basin (Czech Republic). Bulletin of Geosciences 81:93–113.

Teodoridis, V., Mazouch, P., Spicer, R.A., and Uhl, D. 2011. RefiningCLAMP—Investigations towards improving the Climate Leaf AnalysisMultivariate Program. Palaeogeography, Palaeoclimatology, Palaeo−ecology 299: 39–48.

Tomanová Petrová, P. and Švábenická, L. 2007. Lower Badenian biostrati−graphy and paleoecology: a case study from the Carpathian Foredeep(Czech Republic). Geologica Carpathica 58: 333–352.

Váňová, M. 1975. Lepidocyclina and Miogypsina from the facistratotype lo−calities Budikovany and Bretka (South Slovakia). In: T. Báldi and J.Seneš (eds.), OM—Egerien, Chronostratigraphie und Neostratotypen,315–339. Slovak Academy of Sciences, Bratislava.

Vass, D. 1995. Global sea level changes reflected on Northern margin of theHungarian Paleogene the Filakovo and Novohrad (Nograd) LowerMiocene Basin (South Slovakia). Mineralia slovaca 27: 193–206.

Vass, D. 1996. The origin and disappearance of Hungarian Paleogene Bas−ins and short−term Lower Miocene Basin in Northern Hungary andSouthern Slovakia. Slovak Geological Magazine 1: 81–95.

Vass, D. and Elečko, M. 1982. Litostratigraphic units of the Kiscellian−Eggenburgian of the Rimava Basin and Cerová Upland. GeologickéPráce, Správy 77: 111–124.

Vass, D., Elečko, M., Pristaš, J., Lexa, J., Hanzel, V., Mordlitba, I., Jánová, V.,Bodnár, J., Husák, Ľ., Filo, M., Májovský, J., and Linkeš, V. 1989. Geol−ogy of the Rimavska Kotlina Depression. 160 pp. Geologický ÚstavDionýza Štúra, Bratislava.

Vass, D., Hók, J., Kováč, P., and Elečko, M. 1993. Succesion of the Paleo−gene and Neogene tectonic events in the light of tectonical analysis.Mineralia Slovaca 25: 79–82.

Vass, D., Konečný, V., and Šefara, J. 1979. Geology of the Ipeľ basin andKrupinská Planina Upland. 227 pp. Geologický Ústav Dionýza Štúra,Bratislava.

Vass, D., Elečko, M., Konečný, V., Krippel, M., Kubeš, P., Lexa, J., Pristaš,J., Zakovič, M., Vozár, J., Vozárová, A., Bodnár, J., Husák, Ľ., Filo, M.,Lacika, J., and Linkeš, V. 2007. Geology of Lučenecká kotlina Depres−sion and Cerová vrchovina Upland. 284 pp. Geologický Ústav DionýzaŠtúra, Bratislava.

Vávra, N. 1979. Die Bryozoenfaunen des österreichischen Tertiärs. NeuesJahrbuch für Geologie und Paläontologie, Abhandlungen 157: 366–392.

Wade, B.S. and Bown, P.R. 2006. Calcareous nannofossils in extreme envi−ronments: the Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeo−geography, Palaeoclimatology, Palaeoecology 233: 271–286.

Wells, P. and Okada, H. 1997. Response of nannoplankton to major changesin seasurface temperatrure and movements of hydrological fronts oversite DSDP 594 (south Chatham Rise, southeastern New Zealand), dur−ing the last 130 kyr. Marine Micropalaeontology 32: 341–363.

Young, Y.R. 1990. Size variations of neogene Reticulofenestra coccolithsfrom Indian DSDP cores. Journal of Micropaleontology 9: 71–86.

Young, Y. 1999. Neogene. In: P.R. Bown (ed.), Calcareous NannofossilBiostratigraphy, 225–265. Cambridge University Press, Cambridge.

Zachos, J.M., Pagani, L., Sloan, E.T., and Billups, K. 2001. Trends, rhythms,and aberrations in global climate 65 Ma to present. Science 292: 686–693.

Zágoršek, K., Holcová, K., and Trasoň, T. 2008. Bryozoan event from Mid−dle Miocene (Early Badenian) lower neritic sediments from the localityKralice nad Oslavou (Central Paratethys, Moravian part of the Carpa−thian Foredeep). International Journal of Earth Sciences (GeologischeRundschau) 97: 835–850.

Zágoršek, K., Nehyba, S., Holcová, K., Hladiková, Š., and Kroh A. 2009.Fauna from the Middle Miocene (Early Badenian) sediments from thesection Kralice nad Oslavou (Central Paratethys, Moravian part of theCarpathian Foredeep). Bulletin of Geosciences 84: 465–496.

Zágoršek, K. and Holcová, K. 2009: The oldest Early Badenian Bryozoaevent in the Carpathian Foredeep from the Přemyslovice (PY−1, PY−2)boreholes. Přírodovědné Studie Muzea Prostějovska 10–11: 53–59.

668 ACTA PALAEONTOLOGICA POLONICA 58 (3), 2013