27
CNR2011, Prague, Czech Republic, Sep. 19–23, 2011 Monte Carlo Simulation for Statistical Decay of Compound Nucleus T. Kawano, P. Talou, M.B Chadwick Los Alamos National Laboratory

Monte Carlo Simulation for Statistical Decay of Compound ... · Explore Unknown C.S. By Combining Theory and Experiments prompt -rays from a decay of compound nucleus this is partial

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • CNR2011, Prague, Czech Republic, Sep. 19–23, 2011

    Monte Carlo Simulation forStatistical Decay of Compound Nucleus

    T. Kawano, P. Talou, M.B ChadwickLos Alamos National Laboratory

  • Compound Nuclear Reaction, and Related Models

    Resonance and Hauser-Feshbach Theoris are CentralNuclear Databasemass, structure, discrete levels,ground state deformation,fission barrier

    Modelsoptical model, level density,photo strength function,fission

    Non-CN Contributionsdirect reaction, DSD capture,pre-equilibrium emission

    All physical quantities can be evaluatedby microscopic, phenomenological, orexperimental approache

    Sta

    tistic

    alH

    ause

    r-F

    eshb

    ach

    Width FluctuationCorrectionGOE, Moldauer, HRTW, KKM

    Off-DiagonalMatrix ElementsKKM, NWY,generalized transmission,EW transformation,detailed barance

    However, accurate knowledge about nucleus is crucial.

  • HF Theory: Significance in Nuclear Data World

    Neutron capture on 89YCalculated cross sections often reasonable from keV to 150 MeV

    0.0001

    0.001

    0.01

    0.1

    0.001 0.01 0.1 1 10

    Cap

    ture

    Cro

    ss S

    ectio

    n [b

    ]

    Neutron Incident Energy [MeV]

    ENDF/B-VII.0 70groupBoldeman

    ENDF/B-VII.1 70group

    Nowadays, the HF codes play a central role in the nuclear data evaluation above theresonance regions.

  • Inferred Cross Section

    Explore Unknown C.S. By Combining Theory and Experiments

    •• prompt γ-rays from a decay of compound nucleus•• this is partial information — requires supplemental theoretical calculations

    73.04180.22

    138.89

    357.69

    521.90

    180.06

    361.86

    516.57

    478.98

    299.35

    563.35

    469.38

    3/2[402]

    1/2[400]11/2[505]

    3/2+

    5/2+

    7/2+

    9/2+

    1/2+

    3/2+

    5/2+

    7/2+

    11/2-

    13/2-

    15/2-

    7/2-

    9/2-

    0

    219keV

    483keV

    399keV

    389keV

    Ir193

    IT 100%

    10.53 d

    0

    0.5

    1

    1.5

    2

    0 5 10 15 20

    Pro

    duct

    ion

    Cro

    ss S

    ectio

    n [b

    ]

    Neutron Energy [MeV]

    GEANIE 4 Gammas sumBayhurst (1975)

    CN spin-dist. (4 Gammas)CN spin-dist. (Total)

    FKK spin-dist. (4 Gammas)FKK spin-dist. (Total)

    Isomeric state production cross section for 193Ir.

  • Many aspects involved in Compound Reactions

    •• foramlism of compound nuclearreactions

    •• experimental technique, includingdirect / indirect methods

    •• surrogate reaction technique•• microscopic descriptions of

    nuclear properties•• time-dependent simulations for

    dynamical compound nuclearreaction process

    •• non-equilibrium process•• strong connection with applications•• and more ...

    CNR* 2007(+2n): an ideal place for exchanging our expertise

  • HF Theory: Challenges for Future Development

    Digging into better modeling / parameters in Hauser-Feshbach Modelmicroscopic descriptions•• neutron capture off-stability, fission, reactions on excited state

    improved systematics•• reduce uncertainties•• better prediction for unknown reaction cross section

    Beyond Cross Sectionsapplication to other nuclear processes•• new approach — Monte Carlo (this talk)

    •• more sensitive to nuclear structure•• coincidence, correlation

    •• new applications•• gamma-ray strength function•• level density•• fission neutron•• event generator in transport simulations

  • Two Implementations for MCHF at LANL

    Computer Programs — CoH3 and CGMCoH3 + ECLIPSE (talks at CNR2009 and SNA&MC 2010)

    •• general Hauser-Feshbach and pre-equilibrium calculation code•• generate decay probabilities P for all reaction channels first,

    P (cn, kn, cm, km) =T (cmkm → cnkn)∑

    cmkm T (cmkm → cnkn)

    •• then, Monte Carlo calculations are done with another code, ECLIPSE•• calculation fast, but angular momenta conserved only in an average sense

    TK, P. Talou, et al. J. Nucl. Sci. Technol. 47, 462 (2010)

    CGM (present work)

    •• calculate compound nucleus decay by using both deterministic and stochastic (MC)methods, with very fine energy grid

    •• include neutron and γ-ray channels only, but conserve spin and parity•• multi-neutron emission, with non-constant energy grid

    (just technical, but will be important)

  • CGM — Cascading Gamma-ray and Multiplicity

    CGMGamma-ray cascade simulationBeta-decay calculation

    Nuclear MassesAW & FRDM

    Statistical DecayParticle TransmissionGamma-ray Transmission

    Entrance ChannelOptical Model(transmission generator)

    RIPL-3Discrete Levels

    Level DensityGilbert-Cameronparameters

    Spectra of gamma-ray, neutron,electron, and neutrinofor beta-decay

    QRPAGamow-TellerStrength

    ENSDFbeta-decay tolow-lying states

    Spectra of gamma-ray and neutron,and multiplicities from a given state deterministic, or Monte Carlo

    CGM (about 70% of the code are from CoH3) was developed

    (a) for studying β-delayed neutron and γ emission,(b) as an event generator in a transport code (MCNP6), and(c) a Monte Carlo approach to the prompt fission neutron spectrum (talk by P. Talou).

  • Neutron, Gamma-ray Emission Probability

    Z, A Z, A-1

    Sn

    E1Ex

    E0

    gamma-ray emission

    P (�γ)dE0 =Tγ(Ex − E0)ρ(Z, A, E0)

    NdE0

    neutron emission

    P (�n)dE1 =Tn(Ex − Sn − E1)ρ(Z, A − 1, E1)

    NdE1

    where Tn,γ are the transmission coefficients, ρ(Z, A, E) isthe level density, and the normalization N is given by

    N =∫ Ex0

    Tγ(Ex − E0)ρ(Z, A, E0)dE0

    +∫ Ex−Sn0

    Tn(Ex − Sn − E1)ρ(Z, A − 1, E1)dE1

    •• integration performed only for spin and parityconserved states

    •• at low excitation energies, discrete level data are used(taken from RIPL-3)

  • Monte Carlo Hauser-Feshbach Method

    Z, A Z, A-1

    S (A)n

    (c)

    (b)

    (a)

    Z, A-2

    S (A-1)n

    (d)

    Tot

    al E

    xcita

    tion

    Ene

    rgy

    Algorithm in CGM•• starting at (Z, A, E0), P (�n) and P (�γ)

    are calculated•• choose a next state (Z, A − 1, E1)

    by a random sampling method•• repeat this until the state reaches

    at a discrete level•• each time P ’s are re-calculated

    •• it is faster if all the P ’s are calculatedat the beginning, but the memory sizecan be ∼ GByte

    •• at a discrete level, do Monte Carlogamma-ray cascade based onbranching ratios in RIPL-3

  • Gamma-Ray Energy and Multiplicity

    238U + n (Eth), γ-ray production probabilities

    •• E1, M1, and E2 are included•• m = 4.77•• �γ = 1.01 MeV

    •• M1 added•• Eγ = 2 MeV, Γγ = 0.6,

    σ0 = 1.2 mb (assumed)•• m = 4.52•• �γ = 1.06 MeV

  • Gamma-Ray Energy Spectra for n+U238

    Looking for pygmy resonance / scissors mode

    0.001

    0.01

    0.1

    1

    10

    100

    0 1 2 3 4 5

    Gam

    ma-

    Ray

    Spe

    ctra

    [1/M

    eV]

    Gamma-Ray Energy [MeV]

    without scissors modewith scissors mode

    0.001

    0.01

    0.1

    0 1 2 3 4 5

    Gam

    ma-

    Ray

    Spe

    ctra

    [1/M

    eV]

    Gamma-Ray Energy [MeV]

    without scissors modewith scissors mode

    Total Energy Spectra Spectra for m = 2

    4π-calorimeter experiments like DANCE, and high-intensity γ-ray source like HIγS atTUNL are able to identify these dipole resonances(priv. comm. M. Krtička, J. Ullmann, A. Tonchev).

  • Gamma-Ray Spectra w/o Neutron Competition154Gd below and above Sn

    Jπ = 1−,2− Jπ = 5−,6−

    0.001

    0.01

    0.1

    1

    10

    100

    0 0.2 0.4 0.6 0.8 1

    Gam

    ma-

    Ray

    Spe

    ctra

    [/M

    eV d

    ecay

    ]

    Gamma-Ray Energy [MeV]

    100 keV above Snbelow Sn

    0.001

    0.01

    0.1

    1

    10

    100

    0 0.2 0.4 0.6 0.8 1G

    amm

    a-R

    ay S

    pect

    ra [/

    MeV

    dec

    ay]

    Gamma-Ray Energy [MeV]

    100 keV above Snbelow Sn

  • Gamma-Ray Spectra Depends on Parity Distribution

    0.001

    0.01

    0.1

    1

    10

    100

    0 0.2 0.4 0.6 0.8 1

    Gam

    ma-

    Ray

    Spe

    ctra

    [/M

    eV d

    ecay

    ]

    Gamma-Ray Energy [MeV]

    100 keV above Sneven parity 80%even parity 20%

    154Gd above Snparity distribution important•• odd (negative) parity at

    neutron capture state•• parity flips by E1 transition•• γ-ray multiplicity = 2 – 3•• fewer even parity states

    suppress γ branching•• an exact parity distribution in

    the continuum unknown

  • Variable Bin Width Calculation

    Behavior of low energy neutrons•• constant energy-bin

    •• calculations faster•• no information on neutrons when energies are

    less than ∆E•• variable energy-bin

    •• slower, algorithm becomes complicated•• gives correct spectrum shape at low energies

    neutron and gamma-rays from 137Xe at 10 MeV

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0.001 0.01 0.1 1 10

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Energy [MeV]

    gamma-ray (x1000)neutron

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0 10

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Energy [MeV]

    gamma-ray (x1000)neutron

    Z, A Z, A-1

    S (A)n

    Z, A-2

    S (A-1)nTot

    al E

    xcita

    tion

    Ene

    rgy

    Z, A-3

    S (A-2)n

    low energy neutrons comefrom all the every compounddecay stages

  • Evaporation (Weisskopf) or Maxwellian ?

    Asymptotic form at very low energies

    •• Evaporation: fE(�) = A� exp(−�/T )•• f ′E(� → 0) = 1•• fE(�) ∼ � for � → 0•• Maxwellian: fM(�) = A√� exp(−�/T )•• f ′M(� → 0) = 12√�•• fM(�) ∼ √�/2 for � → 0•• Watt: fW (�) = A sinh(√B�) exp(−�/T )•• f ′W (� → 0) =

    √B

    2√

    �•• fW (�) ∼ √�/2 for � → 0 0.001

    0.01

    0.1

    1

    0.01 0.1 1 10

    Spe

    ctra

    [arb

    . uni

    t]

    Emission Energy [arb. unit]

    MaxwellianEvaporation

    Watt

    from Hauser-Feshbach

    •• s-wave neutron transmission coefficient T0 = 2πS0 ∝ √�•• level density is assumed to be constant within a small energy width•• fHF (�) ∝ T0ρ(Ex) = C√� for � → 0

  • Comparison with CGM No-Cascade Mode

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0.001 0.01 0.1 1 10

    Neu

    tron

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Neutron Energy [MeV]

    10 MeV

    CGMMaxwellian

    EvaporationWatt

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0.001 0.01 0.1 1 10

    Neu

    tron

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Neutron Energy [MeV]

    15 MeV

    CGMMaxwellian

    EvaporationWatt

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0.001 0.01 0.1 1 10

    Neu

    tron

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Neutron Energy [MeV]

    20 MeV

    CGMMaxwellian

    EvaporationWatt

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0 2 4 6 8 10

    Neu

    tron

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Neutron Energy [MeV]

    10 MeV

    CGMMaxwellian

    EvaporationWatt

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0 2 4 6 8 10

    Neu

    tron

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Neutron Energy [MeV]

    15 MeV

    CGMMaxwellian

    EvaporationWatt

    0.0001

    0.001

    0.01

    0.1

    1

    10

    0 2 4 6 8 10

    Neu

    tron

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Neutron Energy [MeV]

    20 MeV

    CGMMaxwellian

    EvaporationWatt

    The evaporation spectrum does not give a correct spectrum shape in the low energy region.

    The Watt spectrum better describes the Hauser-Feshbach spectrum (but in CMS).

  • Watt Spectrum?

  • Asymptotic Gamma-Ray Energy Spectra

    •• from Hauser-Feshbach•• transmission coefficient — E1 assumed

    T (�) = C�3

    •• level density — constant temperatureρ(Ex) =

    1

    Texp

    (Ex

    T

    )•• spectrum will be

    f(�) = T (�)ρ(Ex) = C′�3 exp

    (−

    T

    )•• Lemaire et al. (Phys. Rev. C 73, 014602 (2006))

    f(�) =�2

    2T2exp

    (−

    T

    ) 0.0001

    0.001

    0.01

    0.1

    1

    10

    0.01 0.1 1 10

    Gam

    ma-

    Ray

    Spe

    ctra

    [arb

    . uni

    t]

    Gamma-Ray Energy [MeV]

    E2 exp(-E/T)E3 exp(-E/T)

    CGM

  • Sequential Neutron Emission

    Neutron and gamma-ray emission spectra from excited 140Xe

    •• initial spin distribution by the level density•• 100,000 events — 1 ∼ 2 hours on a laptop computer

    0.001

    0.01

    0.1

    1

    10

    0 1 2 3 4 5 6 7 8 9 10

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Energy [MeV]

    10 MeV first neutronsecond neutron

    gamma-ray

    0.001

    0.01

    0.1

    1

    10

    0 1 2 3 4 5 6 7 8 9 10

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Energy [MeV]

    15 MeV first neutronsecond neutron

    gamma-ray

    0.001

    0.01

    0.1

    1

    10

    0 1 2 3 4 5 6 7 8 9 10

    Spe

    ctru

    m [/

    MeV

    ]

    Secondary Energy [MeV]

    20 MeV first neutronsecond neutron

    third neutrongamma-ray

    10 MeV 15 MeV 20 MeV�γ = 0.87 MeV 0.89 MeV 1.06 MeV�n = 1.37 MeV 1.44 MeV 1.48 MeV

  • Correlation Between First and Second Neutrons

    Energy correlation in the emitted neutrons from excited 140Xe

    10 MeV 15 MeV 20 MeV

    •• the joint probability normalized to [decay, n-MeV, γ-MeV]−1•• patterns shown are due to discrete levels in the residual nucleus

  • Correlation Between Gamma Energy and Neutrons

    Energy correlation between total γ-ray energy and neutrons fromexcited 140Xe

    10 MeV 15 MeV 20 MeV

    •• the joint probability normalized to [decay, n-MeV, γ-MeV]−1

  • Neutrons and Gamma-Ray Multiplicity Correlation

    Neutron spectra from 140Xe∗ for each gamma-ray multiplicity

    0

    0.1

    0.2

    0.3

    0.4

    0 1 2 3 4 5 6 7 8 9 10

    Pro

    babi

    lity

    Multiplicity

    0

    0.1

    0.2

    0.3

    0.4

    0 1 2 3 4 5 6 7 8 9 10

    Pro

    babi

    lity

    Multiplicity

    0

    0.1

    0.2

    0.3

    0.4

    0 1 2 3 4 5 6 7 8 9 10

    Pro

    babi

    lity

    Multiplicity

  • Initial Spin Distribution Important

    Multiplicity depends on average spin in CN (σ2 doubled case)

    0

    0.1

    0.2

    0.3

    0.4

    0 1 2 3 4 5 6 7 8 9 10

    Pro

    babi

    lity

    Multiplicity

    0

    0.1

    0.2

    0.3

    0.4

    0 1 2 3 4 5 6 7 8 9 10

    Pro

    babi

    lity

    Multiplicity

    0

    0.1

    0.2

    0.3

    0.4

    0 1 2 3 4 5 6 7 8 9 10

    Pro

    babi

    lity

    Multiplicity

  • Conclusion

    MCHF: Monte Carlo Hauser-Feshbach Method

    •• In this study we performed Monte Carlo simulationsfor neutron and γ-ray emissions.

    •• CGM: Monte Carlo Hauser-Feshbach code developed at LANL•• The evaporation spectrum does not give a correct asymptotic shape at low energies,

    which should be√

    �.•• Correlated neutron - gamma-ray emission from excited nucleus;

    with the MCHF technique it is possible to calculate:

    •• correlated neutron and γ-ray emissions•• neutron energy spectra for individual gamma-ray multiplicity

    Perspective

    •• Neutron and γ-ray generator in a transport simulation•• radiation shielding, detector efficiency simulation, etc.

    •• More detailed comparison with experimental data•• MCHF method sensitive to nuclear structure

  • Level Density Parameter Systematics

    0

    10

    20

    30

    40

    50

    0 50 100 150 200 250 300

    Leve

    l Den

    sity

    Par

    amet

    er [M

    eV-1

    ]

    Mass Number

    a(from D0 data)a(asymptotic)

    Least-Squares Fit

    Washing-out of shell effects•• shell correction (δW ) and pairing

    energies (∆) taken fromKTUY05 mass formula

    a = a∗{1 +

    δW

    U

    (1 − e−γU

    )}

    a∗ = 0.126A + 7.52 × 10−5A2

    •• at low excitation energies, the constanttemperature model is used with

    T = 47.1A−0.89√

    1 − 0.1δW

    •• obtained from discrete level data ofmore than 1000 nuclei

    TK, S. Chiba, H. Koura, J. Nucl. Sci. Technol., 43, 1 (2006)

    and updated parameters by TK in 2009

  • Gamma-Ray Strength Function and Transmission

    •• Standard LorentzianfE1(�γ) = Cσ0Γ0

    �γΓ0(�2γ − E20)2 + �2γΓ

    20

    •• Generalized Lorentzian, finite value at low energies, energy dependent widthfE1(�γ) = Cσ0Γ0

    �γΓ(�γ, T )(�2γ − E20)2 + �2γΓ2(�γ, T ) + 0.7Γ(�γ = 0, T )

    E30

    where C = 8.68 × 10−8 mb−1MeV−2

    •• in CGM, E1, M1, and E2 are considered•• pygmy resonance and scissors mode can beincluded if necessary•• γ-ray transmission coefficient is given by

    Tγ(�γ) = 2π∑m

    E2L+1γ fm(�γ)

    10-10

    10-9

    10-8

    10-7

    10-6

    0 5 10 15 20 25 30

    Str

    engt

    h F

    unct

    ion,

    f(E

    )

    E [MeV]

    Generalized LorentzianStandard Lorenzian