Monocots Versus Dicots

  • Upload
    manp13

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 7/28/2019 Monocots Versus Dicots

    1/4

    Monocots versus Dicots

    The Two Classes of Flowering Plants

    The history behind the classes.

    Traditionally, theflowering plantshave been divided into two major groups, orclasses,: the

    Dicots (Magnoliopsida) and theMonocots(Liliopsida). Many people take this separation intotwo classes for granted, because it is "plainly obvious", but botanists have not always recognized

    these as the two fundamental groups of angiosperms. Although Theophrastus (circa 370 BC) is

    credited with first recognizing differences between the two groups, classification of plants was

    based upon overall growth form -- trees, herbs, vines -- until the 1600s.

    In 1682,John Raypublished his MethodusPlantarum Nova, in which Dicotyledones andMonocotyledones were first given formal taxonomic standing. This system was popularized by

    the French botanist Antoine Laurent de Jussieu in his Genera Plantarum of 1789, a work which

    improved upon, and gradually replaced, the system of plant classification devised byLinnaeus.

    The fuzzy distinction between the classes.

    Even after the general acceptance of Monocots and Dicots as the primary groups of flowering

    plants, botanists did not always agree upon the placement of families into one or the other class.Even in this century some plants calledpaleoherbshave left problems for taxonomy of

    angiosperms. These plants have a mix of characters which do not occur together in most other

    flowering plants. For instance, theNymphaeales, or water lilies, have reticulate venation in their

    leaves, and what may be a single cotyledon in the embryo. It is not clear whether it is a singlelobed cotyledon, or two which have been fused. The water lilies also have a vascular

    arrangement in their stem similar to that of monocots.

    There are also monocots which posses characters more typical of dicots. TheDioscorealesand

    Smilacaceae have broad reticulate-veined leaves; the Alismataceae have acropetal leaf

    development; and Potamogeton is one of several monocots to have floral parts in multiples of

    four.

    This "fuzziness" in the definitions of Monocotyledonae and Dicotyledonae is not simply the

    result of poor botany. Rather, it is a real phenomenon resulting from the shared ancestry of the

    two groups. It is now believed that some of the dicots are more closely related to monocots thanto the other dicots, and that the angiosperms do not all fit neatly into two clades. In other words,

    http://www.ucmp.berkeley.edu/anthophyta/anthophyta.htmlhttp://www.ucmp.berkeley.edu/anthophyta/anthophyta.htmlhttp://www.ucmp.berkeley.edu/anthophyta/anthophyta.htmlhttp://www.ucmp.berkeley.edu/monocots/monocot.htmlhttp://www.ucmp.berkeley.edu/monocots/monocot.htmlhttp://www.ucmp.berkeley.edu/monocots/monocot.htmlhttp://www.ucmp.berkeley.edu/history/ray.htmlhttp://www.ucmp.berkeley.edu/history/ray.htmlhttp://www.ucmp.berkeley.edu/history/ray.htmlhttp://www.ucmp.berkeley.edu/history/linnaeus.htmlhttp://www.ucmp.berkeley.edu/history/linnaeus.htmlhttp://www.ucmp.berkeley.edu/history/linnaeus.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/paleoherbs.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/paleoherbs.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/paleoherbs.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/nymphaeales.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/nymphaeales.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/nymphaeales.htmlhttp://www.ucmp.berkeley.edu/monocots/liliflorae/dioscoreales.htmlhttp://www.ucmp.berkeley.edu/monocots/liliflorae/dioscoreales.htmlhttp://www.ucmp.berkeley.edu/monocots/liliflorae/dioscoreales.htmlhttp://www.ucmp.berkeley.edu/monocots/liliflorae/dioscoreales.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/nymphaeales.htmlhttp://www.ucmp.berkeley.edu/anthophyta/paleoherbs/paleoherbs.htmlhttp://www.ucmp.berkeley.edu/history/linnaeus.htmlhttp://www.ucmp.berkeley.edu/history/ray.htmlhttp://www.ucmp.berkeley.edu/monocots/monocot.htmlhttp://www.ucmp.berkeley.edu/anthophyta/anthophyta.html
  • 7/28/2019 Monocots Versus Dicots

    2/4

    the dicots include a basal paraphyletic group from which the monocots evolved.Click herefor a

    cladogram which illustrates our current understanding of basal angiosperm relations.

    The characters which distinguish the classes.

    Despite the problems in recognizing basal angiosperm taxa, the standard distinctions between

    dicots and monocots are still quite useful. It must be pointed out, however, that there are manyexceptions to these characters in both groups, and that no single characterin the list below will

    infallibly identify a flowering plant as a monocot or dicot.

    The table summarizes the major morphological differences between monocots and dicots; each

    character is dicussed in more detail below. For more information, refer to the page onmonocot

    morphology.

    MONOCOTS DICOTS

    Embryo with single

    cotyledonEmbryo with two cotyledons

    Pollen with single furrow or

    pore

    Pollen with three furrows or

    pores

    Flower parts in multiples of

    three

    Flower parts in multiples of

    four or five

    Major leaf veins parallel Major leaf veins reticulated

    Stem vacular bundlesscattered

    Stem vascular bundles in aring

    Roots are adventitious Roots develop from radicle

    Secondary growth absentSecondary growth often

    present

    Number of cotyledons -- The number of cotyledons found in the embryo is the actual basis fordistinguishing the two classes of angiosperms, and is the source of the names Monocotyledonae

    ("one cotyledon") and Dicotyledonae ("two cotyledons"). The cotyledons are the "seed leaves"

    produced by the embryo. They serve to absorb nutrients packaged in the seed, until the seedling

    is able to produce its first true leaves and begin photosynthesis.Pollen structure -- The first angiosperms had pollen with a single furrow or pore through the

    outer layer (monosulcate). This feature is retained in the monocots, but most dicots are

    descended from a plant which developed three furrows or pores in its pollen (triporate).

    Number of flower parts -- If you count the number of petals, stamens, or other floral parts,you will find that monocot flowers tend to have a number of parts that is divisible by three,

    usually three or six. Dicot flowers on the other hand, tend to have parts in multiples of four or

    http://www.ucmp.berkeley.edu/anthophyta/anthophytasy.htmlhttp://www.ucmp.berkeley.edu/anthophyta/anthophytasy.htmlhttp://www.ucmp.berkeley.edu/anthophyta/anthophytasy.htmlhttp://www.ucmp.berkeley.edu/monocots/monocotmm.htmlhttp://www.ucmp.berkeley.edu/monocots/monocotmm.htmlhttp://www.ucmp.berkeley.edu/monocots/monocotmm.htmlhttp://www.ucmp.berkeley.edu/monocots/monocotmm.htmlhttp://www.ucmp.berkeley.edu/anthophyta/anthophytasy.html
  • 7/28/2019 Monocots Versus Dicots

    3/4

    five (four, five, ten, etc.). This character is not always reliable, however, and is not easy to use in

    some flowers with reduced or numerous parts.

    Leaf veins -- In monocots, there are usually a number of major leaf veins which run parallel thelength of the leaf; in dicots, there are usually numerous auxillary veins which reticulate betweenthe major ones. As with the number of floral parts, this character is not always reliable, as there

    are many monocots with reticulate venation, notably the aroids and Dioscoreales.Stem vascular arrangement -- Vascular tissue occurs in long strands called vascular bundles.

    These bundles are arranged within the stem of dicots to form a cylinder, appearing as a ring ofspots when you cut across the stem. In monocots, these bundles appear scattered through the

    stem, with more of the bundles located toward the stem periphery than in the center. This

    arrangement is unique to monocots and some of their closest relatives among the dicots.

    Root development -- In most dicots (and in most seed plants) the root develops from the lowerend of the embryo, from a region known as the radicle. The radicle gives rise to an apical

    meristem which continues to produce root tissue for much of the plant's life. By contrast, the

    radicle aborts in monocots, and new roots arise adventitiously from nodes in the stem. Theseroots may be called prop roots when they are clustered near the bottom of the stem.

    Secondary growth -- Most seed plants increase their diameter through secondary growth,producing wood and bark. Monocots (and some dicots) have lost this ability, and so do not

    produce wood. Some monocots can produce a substitute however, as in the palms and agaves.

    Common questions about the classes.

    Having taught in introductory botany for more than five years, I have fielded many questions

    from students, and present below some of the more common questions and misconceptions.

    Thanks go to my students for taking an active role in their own education, and asking thesequestions

    Q: Are pine trees monocots or dicots?

    A: Pines are conifers, and are neither monocots nor dicots. Only flowering plants are consideredto be members of these two classes. This question is similar to asking whether a chicken is a

    monocot or a dicot; it is neither.

    Q: Do all dicots produce flowers?

    A: Yes, sort of. All dicots and monocots are flowering plants, and so are descended from flower-producing plants. However, the flowers are not always large and showy the way we expect

    flowers to be. Oaks, maples, and sycamore are all dicot trees, but they do not produce obviousflowers. Grasses and cattails are monocots whose flowers are often overlooked because they do

    not have sepals or petals.

    There are also some flowering plants which flower only rarely. Duckweeds are tiny floweringplants which reproduce and spread primarily by vegetative growth; they grow by cellular

    division, and the resulting cluster will then break apart.

  • 7/28/2019 Monocots Versus Dicots

    4/4