86
Dan Isaak, US Forest Service Monitoring & Modeling Stream Temperatures: Lessons Learned in the Rocky Mountains with Utility for Alaska?

Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Dan Isaak, US Forest Service

Monitoring & Modeling Stream Temperatures: Lessons Learned in the

Rocky Mountains with Utility for Alaska?

Thanks for inviting me Steve Gray, Chris smith Good to see a few familiar faces & also put faces with names I know only via email So I’m going to talk about some of work in Rocky mountain regions & I’m coming at this from a fish biologist’s perspective & am interested in climate effects on aquatic biotas & as we’ve gone from regional bioclimatic models 5 years ago to more local scales ran into a road block wherein we just didn’t have good stream temperature data, organized databases, montiroing protocols, models so I’m taking a brief 5 year diversion to be a stream climatologist & work on some of that but always with the eye towards thinking about what’s going to ultimately be most biologically relevant & hoping in next year or two to be able to start applying this knowledge to more detailed biological questions. So today…

Page 2: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

General outline: 1) Relevance of climate change and temperature

to aquatic biotas

2) Trends in stream/lake temperatures

3) Stream temperature monitoring & sampling designs

4) Extracting climate relevant information from stream temperature data

5) Possible next steps & stream temperature resources

Page 3: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

+0.6 °C during 20th Century

Global Trends in Air Temperatures

Page 4: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Mote et al. 2005

Warmer Air Temps

Westerling et al. 2006

Wildfire Increases

Decreasing Baseflows

Declining Snowpack

s

Mote et al. 2005

(Luce and Holden 2009)

Western US – 20th Century Observed Trends

Page 5: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Wenger et al. 2011. PNAS 108:14175-14180

Species-Specific Habitat Response Curves

Fish survey database ~10,000 sites

Historic Distributions

Western Trout Climate Assessment

Future A1B Distributions

GCM

~50% reduction by 2080 under A1B

Page 6: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Variation in Future Changes

Low Persistence Probability?

High Persistence Probability?

Rieman et al. 2007. TAFS 136:1552-1565

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3rd Code HUC Subregion

+ 1.6 ˚C P

rop

ort

ion

R

em

ain

ing

Page 7: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Air Pattern ≠ Stream Temp

Riparian differences

Wildfires

Groundwater buffering

r² = 0.26

5

10

15

20

8 12 16 20 24

Stre

am T

em

pe

ratu

re (

˚C)

PRISM Air Temperature (˚C) Glaciation

This is spatial pattern of PRISM air vs stream

Page 8: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

0.12 °C/decade

(1951 – 2002)

Climate Wizard Tool (www.climatewizard.org)

Me

an T

em

pe

ratu

re (

°C)

Changing Fast in Rocky Mountains & Northern 48

Girvetz et al. 2009. PLoS ONE 4(12): e8320.

Page 9: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Changing 2x – 3x Faster in Alaska 0.34 °C/decade

Me

an T

em

pe

ratu

re (

°C)

(1951 – 2002)

Page 10: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Mote et al. 2005; 2008

0.6 °C …so far

By 2050 2.5 °C

1.0 °C

Warming Trends Will Continue (& Accelerate?)

Page 11: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Land Use & Water Development

There’s A Lot on the Line…

ESA Listed Species

Climate Boogeyman

High Water Temperature In Grande Ronde Kills 239 Adult Spring Chinook Columbia Basin Bulletin, August 14, 2009 (PST)

Recreational Fisheries

Page 12: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Temperature is Primary Control for Aquatic Ectotherms

McMahon et al. 2007

Brown 2004

Metabolism

Isaak & Hubert 2004

In the lab… & the field

Thermal Niche

Bio

mas

s

Gro

wth

Page 13: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Regional Scale

Stream Scale

Stream Distance

Ele

vati

on

Rieman et al. 2007

Temperature Regulation – Spatial Distributions

Bonneau & Scarnecchia 1996

Page 14: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Temperature Regulation - Life Cycle

Coleman and Fausch 2007

Brannon et al. 2004

Incubation length - Chinook salmon

Population viability - cutthroat trout

Spawn timing - Chinook salmon

8/4

8/14

8/24

9/3

7 9 11 13 15 17

Mean Stream Temperature (C)

Media

n R

edd C

om

ple

tion D

ate

Beaver Marsh Sulphur Big Camas Loon

Thurow, unpublished

Dion and Hughes 1994

Growth - Arctic grayling

Migration timing - sockeye salmon

July stream temp

Crozier et al. 2008

Page 15: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Schneider & Hook 2010. Geophysical Research Letters 37 doi:10.1029/2010GL045059

Observed Trends - Lake Temperatures Individual Lake Temperature Trends

Concurrent Air Temperature Trends

Global Lake Temperature Trend

+0.45°C/decade from 1985-2009

Page 16: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Global Trends in River Temperatures

Moatar and Gailhard 2006

Webb and Nobilus 2007

Danube River, Austria (1901 – 2000)

River Loire, France (1880 – 2003)

Page 17: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Regional Trends In Northwest Rivers

Morrison et al. 2002

Fraser River - Annual ∆ = 0.18°C/decade

Crozier et al. 2008

∆ = 0.40°C/decade

Snake River, ID - Summer

∆ = 0.33°C/decade ∆ = 0.27°C/decade

Isaak et al. 2012. Climatic Change 113:499-524.

15

20

1979 1989 1999 2009

Missouri River, MT - Summer

15

20

1979 1989 1999 2009

Columbia River - Summer

Page 18: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

= regulated (11) = unregulated (7)

30+ Year Monitoring Sites in NW U.S. USGS NWIS Monitoring Sites (1980 – 2009)

Page 19: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Seasonal Trends In Temperatures (1980-2009)

Isaak et al. 2012. Climatic Change 113:499-524.

Page 20: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Air

te

mp

era

ture

: d

isch

arg

e p

rop

ort

ion

Inter-annual variation ~ environmental noise

0

0.2

0.4

0.6

0.8

1

Spring Summer Fall Winter

Air Temperature Discharge

Attribution of Stream Warming Trends

Tem

pe

ratu

re

Year

Page 21: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Air

te

mp

era

ture

: d

isch

arg

e p

rop

ort

ion

Inter-annual variation ~ environmental noise

0

0.2

0.4

0.6

0.8

1

Spring Summer Fall Winter

Air Temperature Discharge

Attribution of Stream Warming Trends

Page 22: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

0

0.2

0.4

0.6

0.8

1

Spring Summer Fall Winter

Air Temperature Discharge

-0.21°C 0.66°C 0.27°C 0.11°C 0.32°C

Attribution of Stream Warming Trends Long-term trend ~ environmental signal

Air

te

mp

era

ture

: d

isch

arg

e p

rop

ort

ion

Tem

pe

ratu

re

Year

Page 23: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

0

0.2

0.4

0.6

0.8

1

Spring Summer Fall Winter

Air Temperature Discharge

-0.21°C 0.66°C 0.27°C 0.11°C 0.32°C

Attribution of Stream Warming Trends Long-term trend ~ environmental signal

Air

te

mp

era

ture

: d

isch

arg

e p

rop

ort

ion

Page 24: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Spring Summer Fall Winter

War

min

g r

ate

(

C /

de

cad

e)

White = Air trend Grey = Stream trend (30/30 corrected)

Streams Track Air Temperature Trends

Air Temperature Trend

Stream Temperature Trend

Streams change at ~60% air warming rate

Page 25: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Mean Summer Air Temp Trends (1980 – 2009)

http://www.climate.washington.edu/trendanalysis/

Air Trends as Stream Trend Surrogates?

OWSC Climate Tool map

Page 26: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Long-term Stream Temperature Data?

USGS NWIS Database (http://waterdata.usgs.gov/nwis)

Mohseni et al. 2003

764 USGS gages in lower 48 have some data

Page 27: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Easy Method for Full Year Monitoring Underwater Epoxy Protocol

Data retrieved from underwater

Underwater epoxy cement

$130 = 5 years of data

Isaak & Horan 2011. NAJFM 31:134-137

Annual Flooding Concerns

Sensors or PVC housings glued to large boulders

Page 28: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Big Boulders & Small Sensors

Bridge pilings, roadbed riprap…

Keep sun & sediment off…

Page 29: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Large Scale Field Durability Assessment

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.050 0.100 0.150 0.200

Pro

po

rtio

n R

etai

ne

d

NHD+ Stream Slope

Pred Retention Obs Retention (n = 86)

•300 sensors deployed in 2010 •Stream slopes ranging from 0.1% - 16%

•86 sensors revisited in 2011 •74% average retention success •85% retention in slopes < 3%

Stream slope (%)

Re

ten

tio

n s

ucc

ess

(%

)

Year 1 retention: 85% (64/75) retained in stream slopes <3% Year 2 retention: >90% retention

Page 30: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Rock Heat Conduction Effect? No

Sensor

Page 31: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Sunlight biases measurements ~0.2 – 0.5

C

Direct Sunlight Effect? Yes Solar Shields are Mandatory

Page 32: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Solar Shield Alternatives… Neoprene flap & directly glue sensor to rock

PVC housing protects sensor & easy to retrieve data or replace sensor (preferred method)

Page 33: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Large Rivers and Streams as a Monitoring Priority

Annual Temperature Cycle

Annual Temperature Cycle

Summer

Time

Page 34: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Northern Rockies River Temperature Network

Also Norton

•Cost = $50,000; •n = 210 sites; •3 replicates/river; •70 rivers; •2 technicians; •1 summer of work; •1,000 years of data

NoRRTN: Northern Rockies River Temperature Network

Page 35: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

•Instrument rivers @ road crossings & easy access points •Continue building from there…

Trans-Alaskan Pipeline River Temperature Network? Backbone of statewide monitoring network?

Page 36: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Full Year Stream Temperature Monitoring Becoming Popular… 2,761 Current full-year monitoring sites

~1,000 New deployments last year

Page 37: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Site Information •Stream name •Data steward contact information •Agency •Site Initiation Date

Webpage:

Query Individual Sites

A GoogleMap Tool for Dynamic Queries of Temperature Monitoring Sites

Google Search “USFS Stream Temperature”

Regional Sensor Network

Page 38: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

GoogleMap Tool Full Year Stream Temperature Monitoring Sites

Page 39: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

To Pair (With Air), or Not to Pair? That is the question…

Air microclimate models – Boise network And Zack Detailed, process based to understand But more involved and won’t necessarily get a better answer for status or trend, costs more in terms of fewer stream sites

There are trade-offs, so answer depends… +

Page 40: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

To Pair (With Air), or Not to Pair? That is the question…

Air microclimate models – Boise network And Zack Detailed, process based to understand But more involved and won’t necessarily get a better answer for status or trend, costs more in terms of fewer stream sites

There are trade-offs, so answer depends… +

Page 41: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Logistics & Efficient Data Collection In USFS, we like to push them out of planes over the tops of wildfires sometimes to get to these hard to reach places…

Stream sensors ($20 - $120)

Page 42: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Pressure transducers for stream discharge ($500)

Miniature sensors & multiyear memory / battery life

Logistics & Efficient Data Collection Crews deploy multiple sensor types? Integrated terrestrial-aquatic monitoring?

In USFS, we like to push them out of planes over the tops of wildfires sometimes to get to these hard to reach places…

Standardized protocols needed

Air sensors ($20 - $100) Stream sensors ($20 - $120)

Page 43: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

How Long Should Temperatures be Monitored?

Long-term records are rare…

…but spatial variation among sites contains majority of “information” about thermal regimes

So some sites should be monitored indefinitely

So some sites could be monitored for short periods (2 – 3 years) & sensors rotated to new sites.

Webb and Nobilus 2007

Page 44: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Other Reasons for Temperature Monitoring Ecological Temperature Sensor Networks

Chinook salmon natal & migratory habitats

Bull Trout natal habitats

Page 45: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Other Reasons for Temperature Monitoring Describing Network Scale Spatial Heterogeneity

Stratify network (easy with GIS) & densely sample to represent strata

Pick few key watersheds

Sensor locations

Elevation

Wat

ers

he

d s

ize

Page 46: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Seasonal/Temporal Relationships

Fall mean

Fall SD

Winter Mean

Winter SD

Spring mean

Spring SD

Summer Mean

Fall SD 0.87 ---

Winter Mean 0.50 0.02 ---

Winter SD 0.70 0.35 0.83 ---

Spring mean 0.95 0.76 0.51 0.78 ---

Spring SD 0.69 0.77 -0.05 0.29 0.74 ---

Summer Mean 0.91 0.92 0.23 0.45 0.88 0.87 ---

Summer SD 0.62 0.77 -0.02 0.15 0.48 0.49 0.65

1) Basic descriptors of stream climate

Information from Data:

Spatial Patterns

Page 47: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

What is an Isotherm? How Does it Apply to Streams?

Line connecting locations with equal temperatures

Applies equally well to streams

Ele

vati

on

Distance

16 °C isotherm

14 °C isotherm

18 °C isotherm

Longitudinal view

Plan view

Salmon River FLIR profile

Page 48: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

1) Stream temperature lapse rate (°C / 100 m) 2) Long-term stream warming rate (°C / decade) 3) Stream slope (degrees) 4) Stream sinuosity

Stream Distance

Ele

vati

on

16 °C isotherm

Stream-Specific Predictions of Isotherm Shifts Add Precision

Lacking precise estimates of fish shift rates, a useful first approximation can be provided by predicting isotherm shift rates through a stream. Need 4 bits of information to do this. Can be obtained in 1 summer or year of measurement

Page 49: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

1. Calculate vertical displacement for a given stream lapse rate and long-term warming rate.

A Use for High School Trigonometry!

Displacement (a) = Warming rate

Lapse rate =

0.2⁰C/decade

0.4⁰C/100m = +50m/decade

c

3. Multiply slope distance by stream sinuosity ratio in meandering streams. c’

2. Translate displacement to distance along stream of a given slope.

a

c

A ⁰

a Slope distance (c) sin A⁰

=

Page 50: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Stream lapse rate = 0.8 °C / 100 m

0.1

0.2

0.4

0.8

1.6

3.2

6.4

12.8

25.6

51.2

102.4

204.8

409.6

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8

Iso

the

rm s

hif

t ra

te (

km/d

eca

de

)

Stream slope (%)

+0.1 C/decade

+0.2 C/decade

+0.3 C/decade

+0.4 C/decade

+0.5 C/decade

(y = 3.75x-1)

(y = 5.00x-1)

(y = 6.25x-1)

(y = 2.50x-1)

(y = 1.25x-1)

Isotherm Shift Rate Curves

x Sinuosity

Mountain Stream

Flat Streams

Stream warming rate

Isaak & Rieman. 2012. Global Change Biology 18, doi: 10.1111/gcb.12073

Page 51: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Mapping Climate Change “Velocity”

ISR (km/decad

e)

sensu Loarie et al. 2009. Nature 462:1052-1055.

ISR (km/decade)

River Outlet

0

500

1000

1500

0.5 1 2 4 8 16 > 16

ISR CategoryS

tream

sites

Page 52: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

4

8

12

16

20

1000 1200 1400 1600 1800 2000 2200 2400

Summer 2011

Summer 2012

Elevation (m)

Stre

am t

em

pe

ratu

re (

˚C)

2) Short-term sensitivity analysis

Interannual Stream temp diffs Systematic change = 2.19°C Average site-level deviation = 0.71°C So 75% of interannual change is common, 25% site level Translate to ISR pred error to make biological sense

Inter-annual Climate Change Flow Δ = -50% Air Temp Δ = +2.5˚C

Information from Data:

Page 53: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Variation in Temperature Changes

Glacial Valley Buffering?

6

8

10

12

14

16

18

Present Future

Str

ea

m T

em

pe

ratu

re

Systematic Change?

Or Different Sensitivity?

Site-level Change?

Different Climate Forcing?

Page 54: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

3) Site reconstructions of stream thermal chronologies

Mohseni et al. 1998. WRR 34;

Long-Term Air Records

Air-Stream Link Functions

Dendrochronology for Stream Flow

Few years stream temp data

Long-Term Stream Record

van Vliet et al. 2011. WRR 47

Information from Data:

Page 55: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Mohseni et al. 1998. WRR 34:2685-2692.

How Far is Too Far for Air Temperatures?

Page 56: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Mohseni et al. 1998. WRR 34:2685-2692.

How Far is Too Far for Air Temperatures?

Where are best long-term air temperature records?

Page 57: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Projecting Temp Increases from Short-Term Records

Mantua et al. 2010. Climatic Change 102:187-223.

Maximum Weekly Stream Temperature Increases

Air Δ = +2.9

C

Air Δ = +1.8

C

Air Δ = +1.2

C

Air Δ = +4.7

C

Air Δ = +2.7

C

Air Δ = +1.7

C

Site specific air-stream temp relationships

r2 = 0.7 – 0.9

Page 58: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Dan Isaak, Seth Wenger1, Erin Peterson2, Jay Ver Hoef3 Charlie Luce, Steve Hostetler4, Jason Dunham4, Jeff Kershner4, Brett Roper, Dave Nagel, Dona Horan, Gwynne Chandler, Sharon Parkes, Sherry Wollrab

NorWeST: A Regional Stream

Temperature Database & Model for High-Resolution Climate Vulnerability Assessments

4) Stream temperature climate maps

Information from Data:

Page 59: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Air Temperatures… •Meisner 1988, 1990 •Eaton & Schaller 1996 •Keleher & Rahel 1996 •Rahel et al. 1996 •Mohseni et al. 2003 •Flebbe et al. 2006 •Rieman et al. 2007 •Kennedy et al. 2008 •Williams et al. 2009 •Wenger et al. 2011 •Almodovar et al. 2011 •Etc.

Regional BioClimatic Assessments No stream temperature component

PRISM Air Map

Page 60: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Air Pattern ≠ Stream Temp

Riparian differences

Wildfires

Groundwater buffering

r² = 0.26

5

10

15

20

8 12 16 20 24

Stre

am T

em

pe

ratu

re (

˚C)

PRISM Air Temperature (˚C) Glaciation

This is spatial pattern of PRISM air vs stream

Page 61: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

45,000,000+ hourly records 45,000+ summers measured 15,000+ unique stream sites

Stealth Sensor Network

Page 62: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Regional Temperature Model

Cross-jurisdictional “maps” of stream temperatures

Accurate temperature models

Consistent datum for strategic assessments across 350,000 stream kilometers

55 National Forests

+ Training on left 2007 validation on right

y = 0.68x + 3.82

4

9

14

19

4 9 14 19

Summer Mean

y = 0.55x + 7.79

5

10

15

20

25

30

5 10 15 20 25 30

y = 0.86x + 2.43

5

10

15

20

25

30

5 10 15 20 25 30

Summer Mean

MWMT MWMT

y = 0.93x + 0.830

4

9

14

19

4 9 14 19

Pre

dic

ted

(C

°)

Observed (C°)

Replace with validation

Data from 2007

Page 63: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Statistical Stream Models

Advantages: •Flexible & valid covariance structures that accommodate network topology & autocorrelation

•Much improved predictive ability & parameter estimates relative to non spatial models

Valid means of estimation on networks

Ver Hoef et al. 2006; Peterson & Ver Hoef 2010; Ver Hoef & Peterson 2010

Page 64: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Example: Salmon River Basin Data extracted from NorWeST

•4,414 August means •1,737 stream sites •19 climate summers

•Temperature site

Page 65: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

0

10

20

30

40

50

60

70

10

12

14

16

18

20

22

1989 1994 1999 2004 2009

Str

eam

Flo

w (

m3 /

s)

Air

Te

mp

era

ture

(˚C

)

Year

AirMEAN C Flow (m3/s)

Climatic Variability in Historical Record

Extreme years include late 21st-Century “averages”

Δ = 5°C

3x change

Page 66: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Salmon River Temperature Model

Pre

dic

ted

(

C)

Covariate Predictors 1. Elevation (m) 2. Canopy (%) 3. Stream slope (%) 4. Ave Precipitation (mm) 5. Latitude (km) 6. Lakes upstream (%) 7. Glaciers upstream (%) 8. Baseflow Index 9. Watershed size (km2) 10. Discharge (m3/s)* 11. Air Temperature (˚C)#

* = USGS gage data # = NCEP RegCM3 reanalysis

r2 = 0.60; RMSE = 1.68°C

Non-spatial Model

Mean August Temperature

Observed (

C)

Spatial Model

r2 = 0.89; RMSE = 0.86°C

n = 4,414

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

y = 1.0x - 0.00 R² = 0.89

5

10

15

20

25

5 10 15 20 25

Ob

serv

ed

(˚C

)

Predicted (˚C)

y = 1.0x + 0.00 R² = 0.60

5

10

15

20

25

5 10 15 20 25

Ob

serv

ed

(˚C

)

Predicted (˚C)

Page 67: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Salmon River Temperature Map 2002-2011 mean August stream temperatures

1 km prediction resolution 21,000 stream km Temperature

(

C)

Salmon R.

Page 68: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Climate Scenario Maps Many possibilities once model exists…

Adjust air & discharge values to represent scenarios

Page 69: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

14

16

18

20

22

1970 1975 1980 1985 1990 1995 2000 2005 2010

Su

mm

er

Me

an

Air

(C

)

Summer Stream Flow

0

5

10

15

20

25

30

1945 1955 1965 1975 1985 1995 2005

Sum

mer

dis

charg

e (

m3/s

)

Summer Air Temperature

Recent Wildfires

14% burned during 93–06 study period 30% burned from 92-08

1946–2006 -4.8%/decade

Su

mm

er

Dis

char

ge

Su

mm

er

Me

an A

ir (

C)

Study period

Study period

1976-2006 +0.44°C/decade

Historical Climate Changes…

Page 70: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

0%

20%

40%

60%

80%

100%

Basin Scale Burned Areas

Radiat ion

Air Temperature

Stream Flow

∆0.38

C 0.27°C/10y

∆0.70

C 0.50°C/10y

Thermal Gain Map

Isaak et al. 2010. Ecol. Apps. 20:1350-1371

Changes in Average Summer Temperatures from 1993-2006

Temperature (

C)

Page 71: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

0

4

8

12

16

7 9 11 13 15

Summer Mean (C)

Juvenile b

ull t

rout

(#/1

00 m

2)

Suitable

High Quality

0

5

10

15

20

25

7 9 11 13 15

Summer mean (C)

Ra

inb

ow

tro

ut (#

/10

0 m

2) Suitable

High Quality

Rai

nb

ow

tro

ut

(#/1

00

m2 )

Effects on Thermal Habitat

Juve

nile

bu

ll tr

ou

t (#

/10

0 m

2 )

Suitable habitat = > 9.0°C High-quality habitat = 11.0-14.0°C

Suitable habitat < 12.0°C High-quality habitat < 10.0°C

Bull Trout

Rainbow Trout

Define using thermal criteria

Page 72: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Gain No change Loss

No net gain/loss in habitat

Changes in Rainbow Trout Habitat (1993-2006)

Isaak et al. 2010. Ecol. Apps. 20:1350-1371

Page 73: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Salmon River Bull Trout Habitats

2002-2011 Historical

Unsuitable Suitable

11.2 ˚C isotherm

Page 74: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Salmon River Bull Trout Habitats

+1˚C Stream Temperature

Unsuitable Suitable

11.2 ˚C isotherm

Page 75: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Salmon River Bull Trout Habitats

+2˚C Stream Temperature

Unsuitable Suitable

11.2 ˚C isotherm

Page 76: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Variation in Habitat Loss

+1˚C Stream Temperature

+2˚C Stream Temperature

Unsuitable Suitable 2002-2011 Mean August Stream Temperatures

11.2 ˚C isotherm

Where to invest?

2002-2011 historical scenario

EFK. Salmon

White Clouds

Page 77: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Variation in Habitat Loss 2002-2011 Historical

+1˚C stream temperature scenario +2˚C Stream Temperature

Unsuitable Suitable

11.2 ˚C isotherm

Where to invest? Where to invest?

11.2 ˚C isotherm

Where to invest?

EFK. Salmon

White Clouds

Page 78: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Spatial Variation in Habitat Loss 2002-2011 Historical

+1˚C Stream Temperature

+2˚C stream temperature scenario

Unsuitable Suitable

11.2 ˚C isotherm

Where to invest? Where to invest?

11.2 ˚C isotherm

Where to invest?

EFK. Salmon

White Clouds

Page 79: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Models Developed from Everyone’s Data

Management Decisions

GCM

Data Collected by Local Bios & Hydros

Collaborative Management Responses?

Page 80: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

More Precise Bioclimatic Assessments

Wenger et al. 2011. PNAS.

Rieman et al. 2007

Williams et al. 2009

Dunham et al., In prep.

Page 81: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

How Will Global Patterns Affect Temperatures in Aquatic Systems?

Riverine Landscape

Regional Global Climate

Terrestial Landscape

Page 82: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Key Lessons… 1)Take stock of existing data. Simple maps showing where

data exist are great organizing tools.

2) Where data are sparse, be opportunistic & aggressive with establishing new sites (worry about “perfect” later). The world is literally burning after all…

3) Use standardized protocols – georeference, monitor full year temperatures, use solar shields.

4) Long-term stream monitoring records are rare, so commit to some sites indefinitely. Supplement these with many others to describe spatial patterns (first 2 – 3 years yield most information).

5) New data will accumulate quickly, be prepared to organize and archive. Engage the research community to design procedures for extracting relevant information.

Page 83: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Relevant Publications… Regional Stream Temperature Trends…

Stream Temperature Modeling Approach…

Epoxy field test and validation work …

Epoxy “How-to” protocol…

Page 84: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

•Stream temperature publications & project descriptions & recent talks

•Protocols for temperature data collection & demonstration videos

•Processing macro for temperature data •Dynamic GoogleMap showing current temperature monitoring sites

Resources – Stream Temperature Website Google “ Forest Service Stream Temperature”

Page 85: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

Connect the Dots to Map the Future & the People & the Agencies

v

Urbanization & Population Growth

Climate Change

Land & Species Management

Page 86: Monitoring & Modeling Stream Temperatures: Lessons …for Aquatic Ectotherms McMahon et al. 2007 Brown 2004 Metabolism Isaak & Hubert 2004 In the lab… & the field Thermal Niche s

The End