252
Sergey Yurchenko Molecular spectroscopy from first principles

Molecular spectroscopy from first principles

  • Upload
    others

  • View
    7

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Molecular spectroscopy from first principles

Sergey Yurchenko

Molecular spectroscopy from

first principles

Page 2: Molecular spectroscopy from first principles
Page 3: Molecular spectroscopy from first principles

@ExoMol

Page 4: Molecular spectroscopy from first principles

@ExoMolH2CO

HOOH

VO, TiO

HCCH PH3

C3

C2H4

NH3

NH3

SO3

SO2

HNO3

CH4

CO2

O3

H2O

CO2

CrH

ScH, TiH

NaCl,

KCl

Page 5: Molecular spectroscopy from first principles

@ExoMolAhmed

Al-Refaie

Laura

McKemmish

Katy Chubb Clara

Sousa-Silva

Renia Diamantopoulou

Andrey Yachmenev

Phillip ColesAfaf Al-Derzi

Dan

Underwood

Anatoly Pavlyuchko

Sergey

YurchenkoOleg Polyansky

Emil

Zak

Maire Gorman

Lorenzo Lodi

Emma Barton “Zoe”

Na

Page 6: Molecular spectroscopy from first principles

0.0

5.0x10-20

1.0x10-19

1.5x10-19

2.0x10-19

2.5x10-19

3700 3800 3900

2.5x10-19

2.0x10-19

1.5x10-19

1.0x10-19

5.0x10-20

1.0x10-28

In

ten

sity,

cm

/mo

lecu

le

ExoMol

wavenumber, cm-1

Experiment

Theoretical spectroscopy

Theory

Page 7: Molecular spectroscopy from first principles

0.0

5.0x10-20

1.0x10-19

1.5x10-19

2.0x10-19

2.5x10-19

3700 3800 3900

2.5x10-19

2.0x10-19

1.5x10-19

1.0x10-19

5.0x10-20

1.0x10-28

In

ten

sity,

cm

/mo

lecu

le

ExoMol

wavenumber, cm-1

Experiment

Theoretical spectroscopy

This is our 2018-line list for water

Theory

Page 8: Molecular spectroscopy from first principles

Recipe

Page 9: Molecular spectroscopy from first principles

How to make do accurate ab intiio spectra

Page 10: Molecular spectroscopy from first principles

Electronic structure = solving Schrödinger equation for

electrons

Page 11: Molecular spectroscopy from first principles

Electronic structure = solving Schrödinger equation for

electrons

in the Born-Oppenheimer approximation

Page 12: Molecular spectroscopy from first principles

Really ab initio can be onlymicrowave spectra

Page 13: Molecular spectroscopy from first principles

Accurate equilibrium structure using ab initio and vibrational

corrections

Page 14: Molecular spectroscopy from first principles

This is for (almost only) pure rotational spectra of

molecules, even very large molecules

Page 15: Molecular spectroscopy from first principles

… where you start from accurate equilibrium structure

Page 16: Molecular spectroscopy from first principles

… which provides Ae, Be, Ce

Page 17: Molecular spectroscopy from first principles

… and estimate centrifugal distortion constants 𝛼𝑒 as

vibrational corrections

𝐸𝐽𝑣 = 𝐵𝑒 𝐽 𝐽 + 1 − 𝛼𝑒 𝐽 𝐽 + 1 𝑣 +1

2+ ⋯

Page 18: Molecular spectroscopy from first principles

CH2FI: Microwave spectrum

C. Puzzarini …. J. Gauss et al. J. Chem Phys. 134, 174312 (2011)

Page 19: Molecular spectroscopy from first principles
Page 20: Molecular spectroscopy from first principles

Level of ab initio theoryCCSD(T)/cc-pwCVQZ(-PP) level augmented by vibrational corrections at the MP2/cc-pVTZ(-PP) level, quartic, and sextic centrifugal-distortion constants at the MP2/cc-pVTZ(-PP) level, nuclear quadrupole-coupling constants at the SFDC-CCSD(T)/unc-ANO-RCC level, and spin-rotation constants at the MP2/unc-ANO-RCC level of theory

Page 21: Molecular spectroscopy from first principles

No cheating!

Page 22: Molecular spectroscopy from first principles

… the equilibrium structure (A,B,C) can be refined using

experimental values …

Page 23: Molecular spectroscopy from first principles

… leads to amazing quality of the ab initio rotational

spectroscopy

Page 24: Molecular spectroscopy from first principles

Vibrational motion however is much more complicated for ab

initio methods

Page 25: Molecular spectroscopy from first principles

Qualitative description of ro-vibrational spectra by

standard ab initio methods is reasonable

Page 26: Molecular spectroscopy from first principles

Qualitative description of ro-vibrational spectra by

standard ab initio methods is reasonable

… but not perfect

Page 27: Molecular spectroscopy from first principles
Page 28: Molecular spectroscopy from first principles

This is pure abinitio C2H2

Page 29: Molecular spectroscopy from first principles

How accurate ab initio line positions?

Page 30: Molecular spectroscopy from first principles

As accurate as ab initio PESs

Page 31: Molecular spectroscopy from first principles

Typically 1-5 cm-1

for the fundamentals using standard CCSD(T)-F12

methods

Page 32: Molecular spectroscopy from first principles

For example CH4

Page 33: Molecular spectroscopy from first principles
Page 34: Molecular spectroscopy from first principles
Page 35: Molecular spectroscopy from first principles
Page 36: Molecular spectroscopy from first principles
Page 37: Molecular spectroscopy from first principles

This is still not good enough

Page 38: Molecular spectroscopy from first principles

You can do a better ab initio if you push really hard …

Page 39: Molecular spectroscopy from first principles

… for example pure ab initio (no cheating) spectrum of CH3F

Page 40: Molecular spectroscopy from first principles

Ab initio PES

Page 41: Molecular spectroscopy from first principles

Ab initio PES

Page 42: Molecular spectroscopy from first principles

Ab initio PES

Basic level

Page 43: Molecular spectroscopy from first principles

Ab initio PES

Basic level

Page 44: Molecular spectroscopy from first principles

Ab initio PES

Basic level

Page 45: Molecular spectroscopy from first principles

Ab initio PES High Order

Page 46: Molecular spectroscopy from first principles

Then ab initio results can be really good

Page 47: Molecular spectroscopy from first principles

CH3F

Page 48: Molecular spectroscopy from first principles

Theory

CH3F

Page 49: Molecular spectroscopy from first principles

Experiment

CH3F

Page 50: Molecular spectroscopy from first principles

DMS is also ab initio

Page 51: Molecular spectroscopy from first principles

CCSD(T)-F12b/aug-cc-pVTZ

DMS is also ab initio

Page 52: Molecular spectroscopy from first principles

In fact intensities are (almost) always ab initio!

Page 53: Molecular spectroscopy from first principles

Accuracy of 10-20% is common for a reasonable level

of theory

Page 54: Molecular spectroscopy from first principles

Ab initio dipole with the standard level of theoryCCSD(T)/aug-cc-pVQZ

Page 55: Molecular spectroscopy from first principles

Comparing to high temperature experiments

T = 500oC

Page 56: Molecular spectroscopy from first principles
Page 57: Molecular spectroscopy from first principles

This istheory

Page 58: Molecular spectroscopy from first principles

Good (10-20%) agreement

Page 59: Molecular spectroscopy from first principles

You can do much better than this with the right levels of ab

initio theory

Page 60: Molecular spectroscopy from first principles

You can do much better than this with the right levels of ab

initio theory

Even asub−percent is

possible

Page 61: Molecular spectroscopy from first principles

Example: Carbon dioxide intensitiesfrom Polyansky, Tennyson,

Zak and CO2-mpany

Page 62: Molecular spectroscopy from first principles

:

OL Polyansky eta al Phys Rev Letts 114, 243001 (2015)

(30013 – 00001)

6200 – 6258 cm-1

Page 63: Molecular spectroscopy from first principles

:

OL Polyansky eta al Phys Rev Letts 114, 243001 (2015)

(30013 – 00001)

6200 – 6258 cm-1

Blue is abinitio

intensiies

Page 64: Molecular spectroscopy from first principles

:

OL Polyansky eta al Phys Rev Letts 114, 243001 (2015)

(30013 – 00001)

6200 – 6258 cm-1

Blue is abinitio

intensiies

AmaizingSub−percents

Page 65: Molecular spectroscopy from first principles

Accurate ro-vibrational line positions?

Page 66: Molecular spectroscopy from first principles
Page 67: Molecular spectroscopy from first principles

New NH3 line list

Page 68: Molecular spectroscopy from first principles

New NH3 line list

We had to to re−fineab initio PES

Page 69: Molecular spectroscopy from first principles

Method

Page 70: Molecular spectroscopy from first principles

Method

DIATOMICS

Page 71: Molecular spectroscopy from first principles

Solve Schrödinger equations

Page 72: Molecular spectroscopy from first principles

Solve Schrödinger equations

…. using Born-Oppenheimer approximation for motions of electrons and nuclei

Page 73: Molecular spectroscopy from first principles

Single electronic state example

Page 74: Molecular spectroscopy from first principles

1 2 30

10000

20000

30000

40000

50000

60000

70000

Po

ten

tial e

ne

rgy c

urv

es, cm

-1

bond length, Å

LEVEL 8.0 R. Le Roy, Waterloo, CanadaOur Duo program

ℏ2

2𝜇𝑟2𝐽 𝐽 + 1 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Ab initio Spectra (SiO)

1. Ab initio Potential Energy Curve

2. Ab initio Dipole Moment Curve

4. Calculation of Intensities (Einstein coefficients)

3. Solution of Schrödinger equation (Energies and

Wavefunctions)

Page 75: Molecular spectroscopy from first principles

1 2 30

10000

20000

30000

40000

50000

60000

70000

Po

ten

tial e

ne

rgy c

urv

es, cm

-1

bond length, Å

LEVEL 8.0 R. Le Roy, Waterloo, CanadaOur Duo program

ℏ2

2𝜇𝑟2𝐽 𝐽 + 1 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Ab initio Spectra (SiO)

2. Ab initio Dipole Moment Curve

4. Calculation of Intensities (Einstein coefficients)

3. Solution of Schrödinger equation (Energies and

Wavefunctions)

Page 76: Molecular spectroscopy from first principles

1 2 30

10000

20000

30000

40000

50000

60000

70000

Po

ten

tial e

ne

rgy c

urv

es, cm

-1

bond length, Å

LEVEL 8.0 R. Le Roy, Waterloo, CanadaOur Duo program

ℏ2

2𝜇𝑟2𝐽 𝐽 + 1 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Ab initio Spectra (SiO)

4. Calculation of Intensities (Einstein coefficients)

3. Solution of Schrödinger equation (Energies and

Wavefunctions)

Page 77: Molecular spectroscopy from first principles

1 2 30

10000

20000

30000

40000

50000

60000

70000

Po

ten

tial e

ne

rgy c

urv

es, cm

-1

bond length, Å

LEVEL 8.0 R. Le Roy, Waterloo, CanadaOur Duo program

ℏ2

2𝜇𝑟2𝐽 𝐽 + 1 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Ab initio Spectra (SiO)

4. Calculation of Intensities (Einstein coefficients)

Page 78: Molecular spectroscopy from first principles

1 2 30

10000

20000

30000

40000

50000

60000

70000

Po

ten

tial e

ne

rgy c

urv

es, cm

-1

bond length, Å

LEVEL 8.0 R. Le Roy, Waterloo, CanadaOur Duo program

ℏ2

2𝜇𝑟2𝐽 𝐽 + 1 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Ab initio Spectra (SiO)

Page 79: Molecular spectroscopy from first principles

1 2 30

10000

20000

30000

40000

50000

60000

70000

Po

ten

tial e

ne

rgy c

urv

es, cm

-1

bond length, Å

LEVEL 8.0 R. Le Roy, Waterloo, CanadaOur Duo program

ℏ2

2𝜇𝑟2𝐽 𝐽 + 1 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Ab initio Spectra (SiO)

The ab initioPEC has tobe refined

Page 80: Molecular spectroscopy from first principles

Most of the systems are not single-state

Page 81: Molecular spectroscopy from first principles

Ab initio spectrum (MgO)

PEC

Spin-orbit

Dipolles

Lx

4. Electronic angular momenta couplings

1. Ab initio Potential Energy Curves

2. Ab initio Dipole Moment Curves

3. Spin-Orbit couplings

Page 82: Molecular spectroscopy from first principles

Ab initio spectrum (MgO)

PEC

Spin-orbit

Dipolles

Lx

4. Electronic angular momenta couplings

2. Ab initio Dipole Moment Curves

3. Spin-Orbit couplings

Page 83: Molecular spectroscopy from first principles

Ab initio spectrum (MgO)

PEC

Spin-orbit

Dipolles

Lx

4. Electronic angular momenta couplings

3. Spin-Orbit couplings

Page 84: Molecular spectroscopy from first principles

Ab initio spectrum (MgO)

PEC

Spin-orbit

Dipolles

Lx

4. Electronic angular momenta couplings

Page 85: Molecular spectroscopy from first principles

Ab initio spectrum (MgO)

PEC

Spin-orbit

Dipolles

Lx

Page 86: Molecular spectroscopy from first principles

Ab initio spectrum (MgO)

PEC

Spin-orbit

Dipolles

Lx

The ab initioPECs haveto be refined

Page 87: Molecular spectroscopy from first principles

Ab initio spectrum (MgO)

PEC

Spin-orbit

Dipolles

Lx

as well asspin−orbits

Page 88: Molecular spectroscopy from first principles

A more sophisticated code for a coupled system is required

Our code Duo Yurchenko et al Comp. Phys. Comm. (2016)

ℏ2

2𝜇𝑟2 𝑅2 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Page 89: Molecular spectroscopy from first principles

A more sophisticated code for a coupled system is required

Our code Duo Yurchenko et al Comp. Phys. Comm. (2016)

ℏ2

2𝜇𝑟2 𝑅2 −

ℏ2

2𝜇

𝜕2

𝜕𝑟2+ 𝑉 𝑟 Ψ = 𝐸Ψ

Page 90: Molecular spectroscopy from first principles

MgO

Page 91: Molecular spectroscopy from first principles

The spectrum ismore complex, withmultiple interacting

electronic bands

MgO

Page 92: Molecular spectroscopy from first principles

In fact: for diatomics pure ab initio calculations is almost never

good enough

Page 93: Molecular spectroscopy from first principles

In fact: for diatomics pure ab initio calculations is almost never

good enough

… at least for practical applications

Page 94: Molecular spectroscopy from first principles

Example: CrH ab initio spectra

Page 95: Molecular spectroscopy from first principles

CrH ab initio absorption at T=2000 K

Experiment:0-0, 1-0, 0-1

Page 96: Molecular spectroscopy from first principles

CrH ab initio absorption at T=2000 K

Experiment:0-0, 1-0, 0-1

High level ab initioic-MRCI/aug-cc-pV5Z

Page 97: Molecular spectroscopy from first principles

CrH ab initio absorption at T=2000 K

Experiment:0-0, 1-0, 0-1

High level ab initioic-MRCI/aug-cc-pV5Z

Page 98: Molecular spectroscopy from first principles

CrH ab initio absorption at T=2000 K

Experiment:0-0, 1-0, 0-1

High level ab initioic-MRCI/aug-cc-pV5Z

High level

Page 99: Molecular spectroscopy from first principles

CrH ab initio absorption at T=2000 K

Experiment:0-0, 1-0, 0-1

High level

Page 100: Molecular spectroscopy from first principles

CrH ab initio absorption at T=2000 K

Experiment:0-0, 1-0, 0-1

It looks completely different!

Page 101: Molecular spectroscopy from first principles

Refinement of our pure theoretical model to experiment

is always mandatory

Page 102: Molecular spectroscopy from first principles

How accurate are we?

Page 103: Molecular spectroscopy from first principles

Experiment

Theory

Page 104: Molecular spectroscopy from first principles

Experiment

Theory

MgO: Onlyafter

refinement

Page 105: Molecular spectroscopy from first principles

For most of hot diatomicsno experimental intensities or lifetimes are available

but hugely needed!

Page 106: Molecular spectroscopy from first principles

More on diatomics: see my presentation this afternoon

Page 107: Molecular spectroscopy from first principles

More on diatomics: see my presentation this afternoon

WH05 (small molecules) at 14:53

Page 108: Molecular spectroscopy from first principles

Polyatomic molecules

Page 109: Molecular spectroscopy from first principles

We have produced a new water line list POKAZATEL, fully complete and more

accurate

Oleg Polyansky et al MNRAS re-submitted (2018)

Page 110: Molecular spectroscopy from first principles

All bound states up to dissociation

Page 111: Molecular spectroscopy from first principles
Page 112: Molecular spectroscopy from first principles

The majority ofexperimental line

positions are reproducedwithin 0.01 cm−1

Page 113: Molecular spectroscopy from first principles

The majority ofexperimental line

intensities are cloaeto 1%

Page 114: Molecular spectroscopy from first principles

This summarises our main goals…

Page 115: Molecular spectroscopy from first principles

Accurate line positions

Page 116: Molecular spectroscopy from first principles

Accurate line intensities

Page 117: Molecular spectroscopy from first principles

To be complete for high excitations and hot spectra

Page 118: Molecular spectroscopy from first principles

These goals however are not always compatible

Page 119: Molecular spectroscopy from first principles

It is too difficult or even impossible to be accurate and

complete

Page 120: Molecular spectroscopy from first principles

Luckily, most of applications require to be either accurate

or complete

Page 121: Molecular spectroscopy from first principles

For example, the microwave spectral applications must be

accurate but not so much complete

Page 122: Molecular spectroscopy from first principles

Most of the opacity applications (atmospheric retrievals) require to be complete not so much

accurate

Page 123: Molecular spectroscopy from first principles

Example: brown dwarf spectra

Page 124: Molecular spectroscopy from first principles

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Page 125: Molecular spectroscopy from first principles

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Page 126: Molecular spectroscopy from first principles

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

Page 127: Molecular spectroscopy from first principles

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

Page 128: Molecular spectroscopy from first principles

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

Somethingis missing

Page 129: Molecular spectroscopy from first principles

ExoMolPNAS (2014)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

Page 130: Molecular spectroscopy from first principles

ExoMolPNAS (2014)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

Page 131: Molecular spectroscopy from first principles

ExoMolPNAS (2014)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

ExoMolPNAS (2014)

Page 132: Molecular spectroscopy from first principles

ExoMolPNAS (2014)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

ExoMolPNAS (2014)

Page 133: Molecular spectroscopy from first principles

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

Page 134: Molecular spectroscopy from first principles

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.40.0

0.2

0.4

0.6

0.8

1.0

1.2F

lux,

10

-14 W

m-2

m-1

wavelength, m

T4.5 Brown dwarf 2MASS 0559-14

T 4.5 Observed (SpeX@IRTF)

Cushing Rayner, Vacca (2005)R=2000 (3 cm-1)

Empirical CH4 data

Hydrogen:CIA

Page 135: Molecular spectroscopy from first principles

Example: a Hubble spectrum of HD209458b

analyzed by a Cambridge group(using ExoMol database)

Page 136: Molecular spectroscopy from first principles

MacDonald and Madhusudhan (2017)

HD209458b

Hubble WFC3

Page 137: Molecular spectroscopy from first principles

MacDonald and Madhusudhan (2017)

HD209458b

Hubble WFC3

H2O

Page 138: Molecular spectroscopy from first principles

MacDonald and Madhusudhan (2017)

HD209458b

NH3? HCN?

Hubble WFC3

H2O

Page 139: Molecular spectroscopy from first principles

Water and Methane are usually first to find

Page 140: Molecular spectroscopy from first principles

Example:

a hot Jupiter HD 189733b

Page 141: Molecular spectroscopy from first principles

Swain et al Nature 452, 329-331 (2008)

Page 142: Molecular spectroscopy from first principles

Water

Swain et al Nature 452, 329-331 (2008)

Page 143: Molecular spectroscopy from first principles

Water

CH4

CH4

Swain et al Nature 452, 329-331 (2008)

Page 144: Molecular spectroscopy from first principles

Polyatomics: Method for solving the nuclear motion

Schrödinger equation

Page 145: Molecular spectroscopy from first principles

Polyatomics: Method for solving the nuclear motion

Schrödinger equation

This is waht Ido for living

Page 146: Molecular spectroscopy from first principles

Polyatomics: Method for solving the nuclear motion

Schrödinger equation

TROVE

Page 147: Molecular spectroscopy from first principles

MORBID

Page 148: Molecular spectroscopy from first principles

MORBID

Page 149: Molecular spectroscopy from first principles

DVR3D

MORBID

Page 150: Molecular spectroscopy from first principles

Ingredients and calculation steps are essentially the same

as for diatomics

Page 151: Molecular spectroscopy from first principles

1. Accurate ab initio potential energy surface

Page 152: Molecular spectroscopy from first principles

…computed with CCSD(T)-F12b/aug-cc-pVQZ-DK

MOLPRO

+ corrections:cc-pCVTZ, CCSD(T), CCSDT, and CCSDT(Q) CFOUR

Page 153: Molecular spectroscopy from first principles

2. Accurate ab inition Dipole Moment Surface

Page 154: Molecular spectroscopy from first principles

2. Accurate ab inition Dipole Moment Surface

Typical Dipoles: CCSD(T)/aug-cc-pVQZ

using finite fields

Page 155: Molecular spectroscopy from first principles

3: Solve Schrödinger equation

Page 156: Molecular spectroscopy from first principles

3: Solve Schrödinger equation

𝐻Ψ = 𝐸 Ψ

Page 157: Molecular spectroscopy from first principles

… variationally in the matrix representation:

𝜙1𝜙2𝜙3 … 𝐻 𝜙′1𝜙2′ 𝜙3

′ …

Page 158: Molecular spectroscopy from first principles

The Hamiltonian has to be transferred to the body-fixed

system which makes complicated

Page 159: Molecular spectroscopy from first principles

𝐻 =

𝑖,𝑗

𝜕

𝜕𝑞𝑖𝐺𝑖𝑗 𝑞

𝜕

𝜕𝑞𝑗+

+

𝑖,𝛼

𝜕

𝜕𝑞𝑖𝐺𝑖𝛼 𝑞 𝐽𝛼 − 𝐽𝛼 𝐺𝑖𝛼 𝑞

𝜕

𝜕𝑞𝑖+

+

𝛼,𝛽

𝐽𝛼 𝐺𝛼𝛽 𝑞 𝐽𝛽 +

+𝑈 𝑞 + 𝑉( 𝑞)

Page 160: Molecular spectroscopy from first principles

The most known and widely used is Watsonian

Page 161: Molecular spectroscopy from first principles
Page 162: Molecular spectroscopy from first principles
Page 163: Molecular spectroscopy from first principles

TROVE approach is to numerically expand the kinetic energy operator in the sum-

of-product form

Page 164: Molecular spectroscopy from first principles

𝐺𝑖𝑗 𝑞 =

𝑛1𝑛2𝑛3

𝐺𝑛1𝑛2𝑛3

(𝑖𝑗)𝑞1

𝑛1𝑞2𝑛2𝑞3

𝑛3

Page 165: Molecular spectroscopy from first principles

𝐺𝑖𝑗 𝑞 =

𝑛1𝑛2𝑛3

𝐺𝑛1𝑛2𝑛3

(𝑖𝑗)𝑞1

𝑛1𝑞2𝑛2𝑞3

𝑛3

Obtained numerically

Page 166: Molecular spectroscopy from first principles

𝐺𝑖𝑗 𝑞 =

𝑛1𝑛2𝑛3

𝐺𝑛1𝑛2𝑛3

(𝑖𝑗)𝑞1

𝑛1𝑞2𝑛2𝑞3

𝑛3

Obtained numerically

𝑉 𝑞 =

𝑛1𝑛2𝑛3

𝐹𝑛1𝑛2𝑛3𝑞1

𝑛1𝑞2𝑛2𝑞3

𝑛3

Page 167: Molecular spectroscopy from first principles

𝐺𝑖𝑗 𝑞 =

𝑛1𝑛2𝑛3

𝐺𝑛1𝑛2𝑛3

(𝑖𝑗)𝑞1

𝑛1𝑞2𝑛2𝑞3

𝑛3

Obtained numerically

𝑉 𝑞 =

𝑛1𝑛2𝑛3

𝐹𝑛1𝑛2𝑛3𝑞1

𝑛1𝑞2𝑛2𝑞3

𝑛3

Obtained numerically

Page 168: Molecular spectroscopy from first principles

… which is good for product-type

basis set representations

Page 169: Molecular spectroscopy from first principles

Φ = 𝐽, 𝑘, 𝑚 𝑣1 𝑣2 𝑣3 …

… which is good for product-type

basis set representations

Page 170: Molecular spectroscopy from first principles

We use a symmetry adapted basis so that the

Hamiltonian matrix is block-diagonal

Page 171: Molecular spectroscopy from first principles

𝐻 Ψ = 𝐸 Ψ

Hij

Ci Ci

Page 172: Molecular spectroscopy from first principles

In fact last year we published a paper on an automatic

symmetrisation procedure we use

Page 173: Molecular spectroscopy from first principles
Page 174: Molecular spectroscopy from first principles
Page 175: Molecular spectroscopy from first principles
Page 176: Molecular spectroscopy from first principles

Symmetries help to reduce the dimension

Page 177: Molecular spectroscopy from first principles

A1

A2

E

F1

F2

F1

F2

2,000,000 elements2,0

00,0

00 e

lem

ents

E

F1

F2

… 0 …

… 0 …

Td(M)

1/8

Page 178: Molecular spectroscopy from first principles

… and obligatory for intensity calculations

Page 179: Molecular spectroscopy from first principles

Then we diagonalize the Hamiltonian matrices

Page 180: Molecular spectroscopy from first principles

100,000

Page 181: Molecular spectroscopy from first principles

100,000

J ≤ 20

Page 182: Molecular spectroscopy from first principles

100,000

J ≤ 20

200,000

𝐽 = 20 − 30

Page 183: Molecular spectroscopy from first principles

100,000

J ≤ 20

200,000

𝐽 = 20 − 30

1-2 M CPUh total

400,000

J = 30 − 50

Page 184: Molecular spectroscopy from first principles

Diagonalization: Time vs size

100,000

5 hours

16 cores64 Gb

200,000

12 hours160 cores

1.2 Tb

1-2 M CPUh total

400,000

25 hours740 cores

5.3 Tb

Page 185: Molecular spectroscopy from first principles

1,000,000

And sometimes (J~200)

Page 186: Molecular spectroscopy from first principles

1,000,000

And sometimes (J~200)

This is toomuch!

Page 187: Molecular spectroscopy from first principles

We have constructed an efficient machinery for accurate production

of molecular spectra

Page 188: Molecular spectroscopy from first principles

We have constructed an efficient machinery for accurate production

of molecular spectra

for atmospheric applications (stars and

exoplantes)

Page 189: Molecular spectroscopy from first principles

This is where we started

Page 190: Molecular spectroscopy from first principles

Already available

To-Do

VO FeH AlH C3

YO AlO BeH MgH

H3+ O3 HDO

H2D+ O2 HOOH HNO3

CNCH

NH3

CrH HCN HNC

C2 CaH SiO

SO3 H2CO PH3

NiH TiH SiH

LiH OH

HeH+ NO

H2

CH4

H2O

H2S

SO2

TiO

C2H2

C2H4

C3H8

C2H6

CO CO2

2011

Page 191: Molecular spectroscopy from first principles

Already available

To-Do

VO FeH AlH C3

YO AlO BeH MgH

H3+ O3 HDO

H2D+ O2 HOOH HNO3

CNCH

NH3

CrH HCN HNC

C2 CaH SiO

SO3 H2CO PH3

NiH TiH SiH

LiH OH

HeH+ NO

H2

CH4

H2O

H2S

SO2

TiO

C2H2

C2H4

C3H8

C2H6

CO CO2

2011

This isbefore

Page 192: Molecular spectroscopy from first principles

Done

To-Do

F

SiH4

PO

VO FeH

AlH CS

YO

AlO

H3+ O3 H2CO HDO

H2D+ O2 HOOH

HNO3

CNCH

NH3

CrH

C2

SO3

PH3

NiH TiH CH3Cl

LiH OH

HeH+ NO

H2

H2O

H2S

SO2

CO

C2H2

C2H4

C3H8

C2H6

CO2

HCl NaCl SiO

CaH

BeH

MgH

KCl

CH4

PS HCN HNC

CH3D

SO SiH

PN ScH

NaH

SH

P2H2

CH3Cl

TiO FeH CaO C3

YOCH3D

SO

SH

P2H2

SiC PS

BaO VN PH

2018

NS

ZnS

CH3F

SiS MgO

Page 193: Molecular spectroscopy from first principles

Done

To-Do

F

SiH4

PO

VO FeH

AlH CS

YO

AlO

H3+ O3 H2CO HDO

H2D+ O2 HOOH

HNO3

CNCH

NH3

CrH

C2

SO3

PH3

NiH TiH CH3Cl

LiH OH

HeH+ NO

H2

H2O

H2S

SO2

CO

C2H2

C2H4

C3H8

C2H6

CO2

HCl NaCl SiO

CaH

BeH

MgH

KCl

CH4

PS HCN HNC

CH3D

SO SiH

PN ScH

NaH

SH

P2H2

CH3Cl

TiO FeH CaO C3

YOCH3D

SO

SH

P2H2

SiC PS

BaO VN PH

2018

NS

ZnS

CH3F

SiS MgO

This is now

Page 194: Molecular spectroscopy from first principles

Not all of them are actively used for retrievals yet

Page 195: Molecular spectroscopy from first principles

Done

To-Do

F

SiH4

PO

VO FeH

AlH CS

YO

AlO

H3+ O3 H2CO HDO

H2D+ O2 HOOH

HNO3

CNCH

NH3

CrH

C2

SO3

PH3

NiH TiH CH3Cl

LiH OH

HeH+ NO

H2

H2O

H2S

SO2

CO

C2H2

C2H4

C3H8

C2H6

CO2

HCl NaCl SiO

CaH

BeH

MgH

KCl

CH4

PS HCN HNC

CH3D

SO SiH

PN ScH

NaH

SH

P2H2

CH3Cl

TiO FeH CaO C3

YOCH3D

SO

SH

P2H2

SiC PS

BaO VN PH

2018

NS

ZnS

CH3F

MgOSiS

Only these

Page 196: Molecular spectroscopy from first principles

Larger molecules

Page 197: Molecular spectroscopy from first principles

Barry Mant

Page 198: Molecular spectroscopy from first principles

Ethylene: new ExoMol song line list

Barry Mant

Page 199: Molecular spectroscopy from first principles
Page 200: Molecular spectroscopy from first principles

50 billion lines

Page 201: Molecular spectroscopy from first principles

3 band model: Vibrational spectrum of C2H4

Page 202: Molecular spectroscopy from first principles
Page 203: Molecular spectroscopy from first principles
Page 204: Molecular spectroscopy from first principles
Page 205: Molecular spectroscopy from first principles
Page 206: Molecular spectroscopy from first principles

Extract their shapes

Page 207: Molecular spectroscopy from first principles
Page 208: Molecular spectroscopy from first principles
Page 209: Molecular spectroscopy from first principles
Page 210: Molecular spectroscopy from first principles

… and apply to all other bands

Page 211: Molecular spectroscopy from first principles

… and apply to all other bands

Low cost vibrational band intensities

Page 212: Molecular spectroscopy from first principles

… and apply to all other bands

Low cost vibrational band intensities

Cheating on variationalcalculations

Page 213: Molecular spectroscopy from first principles
Page 214: Molecular spectroscopy from first principles
Page 215: Molecular spectroscopy from first principles
Page 216: Molecular spectroscopy from first principles
Page 217: Molecular spectroscopy from first principles
Page 218: Molecular spectroscopy from first principles
Page 219: Molecular spectroscopy from first principles
Page 220: Molecular spectroscopy from first principles
Page 221: Molecular spectroscopy from first principles
Page 222: Molecular spectroscopy from first principles
Page 223: Molecular spectroscopy from first principles
Page 224: Molecular spectroscopy from first principles
Page 225: Molecular spectroscopy from first principles
Page 226: Molecular spectroscopy from first principles
Page 227: Molecular spectroscopy from first principles

Using these shapes

Page 228: Molecular spectroscopy from first principles

10-24

10-23

10-22

10-21

10-20

10-19

10-18

T = 500 KRovibrational

Page 229: Molecular spectroscopy from first principles

10-24

10-23

10-22

10-21

10-20

10-19

10-18

T = 500 KRovibrational

Page 230: Molecular spectroscopy from first principles
Page 231: Molecular spectroscopy from first principles
Page 232: Molecular spectroscopy from first principles

Hightemperature

Page 233: Molecular spectroscopy from first principles

Ammonia

Page 234: Molecular spectroscopy from first principles

Very Large Telescope (VLT) Multi Unit Spectroscopic

Explorer (MUSE) instrument in the spectral range

0.48–0.93 μm

Page 235: Molecular spectroscopy from first principles

Visible spectrum of Jupiter: Ammonia bands

Page 236: Molecular spectroscopy from first principles
Page 237: Molecular spectroscopy from first principles

Ammonia

Page 238: Molecular spectroscopy from first principles
Page 239: Molecular spectroscopy from first principles
Page 240: Molecular spectroscopy from first principles
Page 241: Molecular spectroscopy from first principles
Page 242: Molecular spectroscopy from first principles
Page 243: Molecular spectroscopy from first principles

They tried our new empirical line list for NH3

Page 244: Molecular spectroscopy from first principles

P. Irwin et. al Icarus 302 (2018) 426–436

Page 245: Molecular spectroscopy from first principles

P. Irwin et. al Icarus 302 (2018) 426–436

Page 246: Molecular spectroscopy from first principles

P. Irwin et. al Icarus 302 (2018) 426–436

Page 247: Molecular spectroscopy from first principles

P. Irwin et. al Icarus 302 (2018) 426–436

Giver et al. (1975): observed at 294 K;

Page 248: Molecular spectroscopy from first principles

P. Irwin et. al Icarus 302 (2018) 426–436

Lutz and Owen (1980): low resolution absorption coefficients.

Page 249: Molecular spectroscopy from first principles

Our theoretical spectrum is

represented by the green and red lines

P. Irwin et. al Icarus 302 (2018) 426–436

Page 250: Molecular spectroscopy from first principles

Quasi-continuum

Page 251: Molecular spectroscopy from first principles

Methane line list contains 34 billion transitions

Page 252: Molecular spectroscopy from first principles