52
Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden [email protected]

Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden [email protected]

Embed Size (px)

Citation preview

Page 1: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Molecular Nanostuctures

1. Introduction. Carbon hybridization and allotropes

Alexey A. Popov, IFW [email protected]

Page 2: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Carbon

Page 3: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

6 CCarbon

Mass fraction in the Earth‘s crust: 0.087%Atomic mass: 12.011Isotops: 12C (98.9 %)

13C (1.1 %)14C (nicht stabil, < 10−9 %)

Electron configuration: 1s2 2s2p2

...

Material

Carbon Nano-Material

Page 4: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

6 CCarbon

Material

Bonding

Molecular Structure

Compounds

Crystal Structure

Carbon Nano-Material

Page 5: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

6 CCarbon

Material

Bonding

Molecular Structure

Compounds

Crystal Structure

Properties

Applications

Characterization methods

Theory

Methods of Synthesis

Carbon Nano-Material

Page 6: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Ene

rgie

Carbon: atomic structure

main quantum number

Page 7: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Ene

rgie

Ground state

C: 1s2 2s2p2

Carbon: atomic structure

main quantum number

Page 8: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Ene

rgie

main quantum number

Ground state Excited state

C: 1s2 2s2p2 C: 1s2 2s1p3

Carbon: atomic structure

Page 9: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Carbon: hybridization

C-sp3

C-sp2

C-sp

Excited state

Page 10: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp

𝑠𝑝𝛼=√0.5 ∙(2𝑠+2𝑝𝑧)

𝑠𝑝𝛽=√0.5 ∙(2 𝑠−2𝑝𝑧)

180º

Carbon: sp-hybridization

Page 11: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp2

Three sp2 hybrid orbitals

120º

Carbon: sp2-hybridization

Page 12: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp3

Four sp3 hybrid orbitals

109.5º

Carbon: sp3-hybridization

Page 13: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Excited state C-sp3

C-sp2

C-sp

Carbon: hybridization

Page 14: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Bonding between atoms: H2 molecule, σ-bondingConstructive

overlap

Page 15: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

𝜎 1𝑠=√0.5 ∙ {1𝑠 ( 𝐴 )+1𝑠 (𝐵 )}

𝜎 ∗1𝑠❑ =√0.5 ∙ {1𝑠 ( 𝐴 )−1𝑠 (𝐵 ) }

antibonding σ*-Orbital

bonding σ-Orbital

Bonding between atoms: H2 molecule, σ-bonding

Page 16: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

antibondingσ*-orbital

bondingσ-orbital

Atomic orbitals Molecular orbital

bondingπ-orbital

antibondingπ-orbital

Bonding between atoms: σ- and π-bonding

Molecular orbitalAtomic orbitals

Page 17: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Bonding between atoms: σ- and π-bonding

Page 18: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

+

C-sp3 compounds: ethane C2H6, single bond

Only σ-bondng, single bond

Page 19: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp2 compounds: ethylene C2H4, double bond

σ-bonding π-bonding

σ- and π-bonding, double bond

Page 20: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp2 compounds: ethylene C2H4, double bond

σ-bonding π-bonding

σ- and π-bonding, double bond

Page 21: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp compounds: acetylene C2H2, triple bond

π-bonding

σ-bonding

σ- and 2 π-bondsTriple bond

Page 22: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Single- versus double- versus triple- CC bonds

Bond length Bond energy

1.53 Å 368 kJ/mol

1.34 Å 611 kJ/mol (+243)

1.20 Å 820 kJ/mol (+209)

Rotation around C-C bond has low barrier (free rotation at room temperature)

Rotation around C=C bond requires breaking of π-bonding, hence high barrier (no rotation at room temperature, rigid framework)

Page 23: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp3 Bonding: Diamond

The lattice structure of cubic diamond and ist elemntal cell

The lattice structure of hexagonal diamond (Lonsdaleit).

Page 24: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp bonding

R(−C≡C−)nR, n = 2–14

The existence of carbyne is myth based on bad science and perhaps even wishful thinking.

H. Kroto

Page 25: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp2 bonding: butadiene, conjugation

Band gap

Page 26: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Free electron, time independent Schrödinger equation

22 ( ) ( )

2r E r

m

2 2 22

2 2 2x y z

( )( ) x y zi k x k y k zx y zr N N N e

2 2 22 2 2( ) ( )

2 2x y z

kE k k k k

m m

2 2 2x y zk k k k

1( ) i

r

e

k rk r

kinetic energy

k wave vector

standing plane wave

Page 27: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Particle in a box (electron in the infinite potential well)

0, 0( )

, 0,

x LV x

x x L

0 L x

V = 0V = ∞ V = ∞

Page 28: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Particle in a box (electron in the infinite potential well)

2 2

2( ) ( ) ( )

2 x xV x x E xm x

0, 0( )

, 0,

x LV x

x x L

( ) sin( ) ( )x x A kx Bcos kx

0 L x

V = 0V = ∞ V = ∞

Page 29: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Particle in a box (electron in the infinite potential well)

2 2

2( ) ( ) ( )

2 x xV x x E xm x

0, 0( )

, 0,

x LV x

x x L

( ) sin( ) ( )x x A kx Bcos kx

2 2

2n

n

kE

m

, 1,2,3,4,...n

nk n

L

sin( ), 0( )

0, 0,n

x

A k x x Lx

x x L

0 L x

V = 0V = ∞ V = ∞

Page 30: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Free electron versus electron in infinite well

2 2

2n

n

kE

m

2 2

2

kE

m

n

nk

L

continuousk

( ) sin( )x x A kx ( ) xik xx xx N e

infinite wellfree electron

dispersion relation

Page 31: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp2 bonding: butadiene, conjugation

Band gap

Page 32: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

2 22~ 1/

2

nn

kE L

m , 1,2,3,4,...n

nk n

L

Conjugated C-sp2 systems: π-electron as an electron in a box

Page 33: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp2 bonding: increasing the conjugation length

Increase of the π-system → decrease of the distance between the levels, decrease of the gap

Page 34: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Kekulé

C-sp2 bonding: benzene, PAH(Polycyclic aromatic hydrocarbons)

Naphthalin Anthracen

Phenanthren

Tetracen

ChrysenCoronen (Hexabenzobenzol)

1.39 Å 564 kJ/mol

Bond length Bond energy

1.53 Å 368 kJ/mol

1.34 Å 611 kJ/mol

Page 35: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

„Small molecule“ Organic Semiconductors: Acenes

pentacene

tetracene

naphthalene

anthracene

hexacene

3.97 eV

3.84 eV

2.72 eV

2.31 eV

1.90 eV

gap

popular material for OFET

Page 36: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

C-sp2 bonding: graphite

Page 37: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

3.35 Å

1.42 Å

C-sp2 bonding: graphite

Page 38: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

CC Bindungen

1.53 Å 368 kJ/mol

1.34 Å 611 kJ/mol (+243)

1.20 Å 820 kJ/mol (+209)

1.53 Å 357 kJ/molDiamond

Graphite1.42 Å ~474 kJ/mol intra3.35 Å ~4.5 kJ/mol inter

Bond length Bond energy

1.39 Å 564 kJ/mol Benzene

Page 39: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Graphite versus Diamond

Page 40: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley

"for their discovery of fullerenes".

Page 41: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov

"for groundbreaking experiments regarding the two-dimensional material graphene"

Page 42: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

2011

2013

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

2011

2013

0

200

400

600

800

1000

1200 Fullerene~ 19,000

Nanotube~66,000

Graphene~32,000

Statistics for carbon structures in the title of publications

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

2011

2013

0

1000

2000

3000

4000

5000

6000

7000

8000

Page 43: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

laser evaporation of graphite

Discovery of fullerenes

Mass-spectrometry analysis of the

clusters

Page 44: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Mass Spectrometry

Time of flightMagnet (Lorenz Force)

Page 45: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

laser evaporation of graphite

Mass spectraC60

C70

Discovery of fullerenes

Mass-spectrometry analysis of the

clusters

Page 46: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

laser evaporation of graphite

Mass spectra

C60

C70

Page 47: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Richard Buckminster Fuller1895–1983

“Buckminsterfullerene”

Page 48: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Monometallofullerenes

Page 49: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

1985 1986 1987 1988 1989 1990 19910

20

40

60

80

100

120

140

160

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

2011

2013

0

200

400

600

800

1000

1200

Publication with “Fullerene” in the title

1 3 5 5 5 12

160

Kroto et al, Nature 1985

Page 50: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Wolfgang Krätschmer Donald R. Huffman

Page 51: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de
Page 52: Molecular Nanostuctures 1. Introduction. Carbon hybridization and allotropes Alexey A. Popov, IFW Dresden a.popov@ifw-dresden.de

Fullerene formation mechanism:molecular dynamics