40
S1 SUPPORTING INFORMATION Amino-BODIPY as the Ratiometric Fluorescent Sensor for Monitoring Drug Release or “Power Supply” Selector for Molecular Electronics Martin Porubský a , Soňa Gurská b , Jarmila Stanková b , Marián Hajdúch b , Petr Džubák b and Jan Hlaváč b * a Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic. b Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic. E-mail: [email protected] Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S1

SUPPORTING INFORMATION

Amino-BODIPY as the Ratiometric Fluorescent Sensor for Monitoring Drug Release or “Power Supply” Selector for Molecular ElectronicsMartin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr Džubákb and Jan Hlaváčb*

a Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.

b Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic. E-mail: [email protected]

Electronic Supplementary Material (ESI) for RSC Advances.This journal is © The Royal Society of Chemistry 2019

Page 2: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S2

Contents

Synthesis of quinolinone derivatives 1 and 21 .........................................................................................3

Synthesis of quinolinone derivative 2 ......................................................................................................6

Synthesis of BODIPY derivatives 7 and 20 .............................................................................................7

Synthesis of conjugates 4, 18, 19 .............................................................................................................8

Synthesis of conjugates 5, 6 ...................................................................................................................111H and 13C NMR spectra of prepared compounds ..................................................................................15

Fluorescence monitoring of the conjugates 4-6 cleavage.......................................................................35

Figure S1.................................................................................................................................................35

Figure S2.................................................................................................................................................35

Figure S3.................................................................................................................................................36

Figure S4.................................................................................................................................................36

Figure S5.................................................................................................................................................37

Figure S6.................................................................................................................................................37

Figure S7.................................................................................................................................................38

Detection limit ....................................................................................................................................38

Figure S8.................................................................................................................................................39

References ..............................................................................................................................................40

Page 3: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S3

Synthesis of quinolinone derivatives 1 and 21

The derivative 1 and 21 were synthesised according to the following scheme.

O

O

OH

O

NH2

OBr

K2CO3, 2 eq.

DMF100 °C, 2 h

O

ONH2

O

O

OAcOH/H2SO4, reflux, 4h

NH

OOH

O

OH

NH

OOH

O

NHS

OO

NH

OOH

O

NHHS

OH2N

TrtTFA/DCM/ TES

20/10/0.5 ml30 min

R1R1

R1

R1R1

SH2N

O O

SHN

O O

Fmoc Trt TrtpiperidineDMF

1 R1 = 3-NO2, 4-piperidyl21 R1 = H

23a: R1 = H23b: R1 = 3-NO2, 4-Cl

25 26

27a R1 = H27b R1 = 3-NO2, 4-piperidyl

8 or 9

228: R1 = H24: R1 = 3-NO2, 4-Cl9: R1 = 3-NO2, 4-piperidyl

= Rink amide resin

i

i) piperidine, DMSO, 130°C

General procedure to methyl-1-phenacylesters of 2-aminoterephthalic acid 23.

Suspension of 2-amino-4-(methoxycarbonyl)benzoic acid 221 (359 mg, 1.84 mmol) and K2CO3 (254 mg, 1.84 mmol) in DMF (8mL) was heated up to 90°C and stirred for 1h. Then the reaction mixture was allowed to cool to room temperature and corresponding bromoacetophenone (1.84 mmol) was subsequently added portionwise. Resulting mixture was stirred overnight at room temperature. The reaction mixture was then poured on the ice and precipitate was filtered off to give corresponding phenacylester 23. Compounds were used as crude materials for the next step.

4-methyl 1-(2-oxo-2-phenylethyl) 2-aminoterephthalate (23a)

O

ONH2

O

O

O

Yield: 95 %. 1H NMR CDCl3 δ = 8.05 – 8.02 (m, 1H), 7.96 – 7.93 (m, 2H), 7.63 – 7.58 (m, 1H), 7.51 – 7.47 (m, 2H), 7.36 – 7.34 (m, J = 1.4 Hz, 1H), 7.27 – 7.24 (m, 1H), 5.54 (s, 2H), 3.89 (s, J = 5.3 Hz, 3H). 13C NMR δ = 192.38, 167.00, 166.73, 150.49, 135.38, 134.37, 134.23, 132.07, 129.15, 128.05, 118.26, 116.80, 113.30, 66.46, 52.57. MS (ESI) calcd for M+H: 314.10. Found: 314.09.

Page 4: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S4

1-(2-(4-chloro-3-nitrophenyl)-2-oxoethyl) 4-methyl 2-aminoterephthalate (23b)

O

ONH2

O

O

O

Cl

NO2

Yield: 93 %. 1H NMR DMSO-d6 δ = 8.64 (d, J = 1.9 Hz, 1H), 8.28 (dd, J = 8.4, 1.9 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 1.4 Hz, 1H), 7.09 (dd, J = 8.4, 1.5 Hz, 1H), 6.88 (s, 2H), 5.75 (s, 2H), 3.84 (d, J = 9.4 Hz, 3H). 13C NMR δ = 191.18, 166.02, 165.86, 151.32, 147.97, 134.54, 133.56, 132.58, 132.47, 131.39, 130.13, 124.83, 117.79, 114.45, 110.99, 66.83, 52.36. MS (ESI) calcd for M+H: 393.0484. Found: 393.07.

General procedure for synthesis of 3-hydroxy-2-phenylquinolin-4(1H)-one 8 and 24

Phenacylester intermediates 23a or 23b (7.65 mmol) were subjected to cyclization and subsequent hydrolysis reaction in the mixture of AcOH (60mL) and H2SO4 (15mL) under reflux for 4h. After completeness of the reaction the mixture was poured on the ice and precipitate was filtered off to afford corresponding 3-hydroxy-2-phenylquinolones 8 or 24.

3-hydroxy-4-oxo-2-phenyl-1,4-dihydroquinoline-7-carboxylic acid (8)

NH

OOH

O

OH

Yield: 75 %. 1H NMR DMSO-d6 δ= 8.45 (d, J = 1.1 Hz, 1H), 8.27 (dd, J = 8.4, 4.3 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.80 (dd, J = 8.6, 1.3 Hz, 1H), 7.62 – 7.53 (m, 3H). 13C NMR δ= 168.17, 166.83, 138.71, 137.09, 134.59, 132.39, 131.83, 129.78, 129.46, 128.46, 124.86, 123.73, 122.08, 121.07. MS (ESI) calcd for M+H 282.08. Found: 282.25.

2-(4-chloro-3-nitrophenyl)-3-hydroxy-4-oxo-1,4-dihydroquinoline-7-carboxylic acid (24)

NH

OOH

O

OH

NO2

Cl

Yield: 78 %. 1H NMR DMSO-d6 δ= 8.55 (d, J = 1.9 Hz, 1H), 8.39 (s, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.18 (dd, J = 8.4, 1.9 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.5 Hz, 1H) 13C NMR δ = 169.10, 166.78, 147.48, 139.34, 137.44, 134.65, 132.68, 132.20, 131.75, 130.13, 126.27, 125.86, 125.08, 123.99, 121.97, 121.02. MS (ESI) calcd for M+H: 361.02. Found: 361.04.

3-hydroxy-2-(3-nitro-4-(piperidin-1-yl)phenyl)-4-oxo-1,4-dihydroquinoline-7-carboxylic acid (9)

Solution of starting compound 24 (500 mg, 1.39 mmol) in DMSO (5mL) was treated with piperidine (344 µl, 3.48 mmol) and the resulting mixture was heated to 130°C overnight in the sealed tube. The reaction mixture was poured on the ice and resulting solid was filtered off.

Page 5: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S5

NH

OOH

O

OHN

NO2

Yield: 78%. 1H NMR DMSO-d6 δ= 13.14 (bs, 1H), 11.74 (bs, 1H), 8.40 (s, 1H), 8.31 (d, J= 2.0 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.74 (dd, J = 8.5, 1.3 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 3.13 – 3.07 (m, 4H), 1.66 – 1.57 (m, 6H). 13C NMR δ = 170.04, 167.39, 146.76, 140.79, 139.51, 137.84, 134.82, 132.76, 130.89, 127.20, 125.53, 124.49, 123.48, 121.94, 121.24, 120.88, 52.27, 25.90, 23.92. MS (ESI) calcd for M+H: 410.1347. Found: 410.37.

General procedure for synthesis of N-(1-amino-3-mercapto-1-oxopropan-2-yl)-3-hydroxy-2-phenyl-4(1H)-quinolinone-7-carboxamides 1 and 21

NH

OOH

O

NHHS

OH2N

R1

1 R1 = 3-NO2, 4-piperidyl21 R1 = H

Resin 25

The Rink resin (1.0g, loading 0.6 mmol) was treated with solution of piperidine/DMF for 30 min, washed with DMF and DCM three times and then treated with solution of Fmoc-Cys(Trt)-OH (1.05 g, 1.8 mmol), HOBt (243 mg, 1.8 mmol) and DIC (279 ul, 1.8 mmol) in mixture of DCM/DMF (6 mL, 1:1). After 3 hours resin was washed with DMF and DCM three times to give resin 25 directly used for the next step.

Resin 26

Resin 25 was treated with piperidine/DMF for 30 minutes and washed with DMF and DCM three times. The resin was used directly for the next step.

Resin 27a or 27b

Resin 26 was treated with the solution of 8 or 9 (1.2 mmol), HOBt (135 mg, 1.2 mmol) and DIC (155ul, 1.2 mmol) in DMF/Pyridine (6 mL, 1:1) for 3 hours and washed 3 times with DMF and DCM.

Derivatives 1 and 21

Resin 25 was treated in mixture of TFA/DCM/TES (20:10:0.5) for 1h. The solvents were evaporated and the product was precipitated with Et2O to afford pure desired products 1 or 21.

Page 6: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S6

N-(1-amino-3-mercapto-1-oxopropan-2-yl)-3-hydroxy-2-(3-nitro-4-(piperidin-1-yl)phenyl)-4-oxo-1,4-dihydroquinoline-7-carboxamide (1)

NH

OOH

O

NHHS

OH2N

N

NO2

Yield: 94 %. 1H NMR DMSO-d6 δ= 11.74 (bs, 1H), 8.61 (d, J= 7.9 Hz, 1H), 8.30 (s,1H), 8.25 (s, 1H), 8.21 (d, J= 8.5 Hz, 1H), 8.03 (d, J= 8.5 Hz, 1H), 7.75 (d, J= 8.5 Hz, 1H), 7.54 (s, 1H), 7.43 (d, J= 8.8 Hz, 1H), 7.22 (s, 1H), 4.54 (dd, J= 8.3, 12.7 Hz, 1H), 3.10 (s, 4H), 2.95 – 3.03 (m, 1H), 2.83 – 2.92 (m, 1H), 2.39 (t, J= 8.4 Hz, 1H), 1.60 - 1.64 (s, 6H). 13C NMR δ= 172.20, 170.13, 166.58, 145.75, 140.80, 139.22, 137.95, 136.50, 134.83, 130.69, 127.19, 125.15, 123.67, 123.56, 120.88, 120.75, 119.28, 56.51, 52.29, 26.52, 25.91, 23.93. HRMS (ESI) m/z calcd for [C24H25N5O6S]+H: 512.1598; found: 512.1608.

N-(1-amino-3-mercapto-1-oxopropan-2-yl)-3-hydroxy-4-oxo-2-phenyl-1,4-dihydroquinoline-7-carboxamide (21)

NH

OOH

O

NHHS

OH2N

Yield: 95 %. 1H NMR DMSO-d6 δ = 11.82 (bs, 1H), 8.60 (d, J= 7.9 Hz, 1H), 8.26 (s, 1H), 8.22 (d, J= 8.50 Hz, 1H), 7.82 (d, J= 7.2 Hz, 2H), 7.76 (dd, J= 1.2, 8.5 Hz, 1H), 7.50 – 7.60 (m, 4H), 7.22 (s, 1H), 4.50 - 4.58 (m, 1H), 2.94 – 3.03 (m, 1H), 2.82 – 2.93 (m, 1H), 2.39 (t, J= 8.4 Hz, 1H) 13C NMR δ = 171.69, 169.48, 166.09, 138.55, 137.38, 135.93, 132.64, 132.09,129.03, 129.28, 128.31, 124.59, 123.09, 120.26, 118.90, 55.97, 26.00. HRMS (ESI) m/z calcd for C19H17N3O4S: 383.0940; found: 383.0944.

Synthesis of quinolinone derivative 2

The derivative 2 was synthesised according to the following scheme

NH

OOH

O

OOO

HONH

OOH OH

O

OO

HO

HO H2SO4 (cat.)

THF, reflux, on28

2-(2-(2-hydroxyethoxy)ethoxy)ethyl 3-hydroxy-4-oxo-2-phenyl-1,4-dihydroquinoline-7-carboxylate (2)

The suspension of starting acid 82 (300 mg, 1.07 mmol) in THF was mixed with triglycol (1.0 ml, 10.7 mmol) and catalytic amount of H2SO4 (3 drops). The reaction mixture was heated to reflux overnight.

Page 7: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S7

After the full consumption of the starting material, reaction was stopped and ethylacetate (100ml) was added. Resulting solution was washed with 10% aq. NaHCO3, 3 times with water and with brine. Organic layer was dried over Na2SO4 and concentrated under reduced pressure to obtain 285 mg (65 %) of pure product 2.

NH

OOH

O

OO

OHO

Yield: 65 %. 1H NMR DMSO-d6 δ= 11.87 (s, 1H), 8.46 (s, 1H), 8.29 – 8.25 (m, 1H), 7.84 (d, J = 7.2 Hz, 2H), 7.76 (dd, J = 8.6, 1.5 Hz, 1H), 7.60 – 7.53 (m, 3H), 4.47 – 4.44 (m, 2H), 3.81 – 3.78 (m, 2H), 3.62 – 3.60 (m, 2H), 3.56 – 3.53 (m, J = 2.3 Hz, 2H), 3.48 – 3.45 (m, J = 5.1 Hz, 2H), 3.43 – 3.40 (m, J = 4.4 Hz, 2H). 13C NMR δ= 169.58, 165.37, 139.10, 137.23, 132.69, 132.04, 130.91, 129.49, 129.29, 128.34, 125.29, 121.06, 120.93, 72.38, 69.92, 69.77, 68.36, 64.54, 60.22. HRMS (ESI) m/z calcd for [C22H22NO7]+H: 414.1547. Found: 414.1545.

Synthesis of BODIPY derivatives 7 and 20

The derivative 7 and 20 were synthesized according to the following scheme:

N NB

F F Cl

N NB

F F NH2

NH3

MeOH / DCM70oC, on

10 7TEA / MeOH

rt, on

NH

HON N

BF F N

20OH

1,3-dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-5-amino-s-indacene (7)

N NB

F F NH2

The solution of 103 (200mg, 0.79 mmol) in dry dichloromethane (5mL) was treated with 7.0 M NH3 in methanol (2.2 mL). Resulting mixture was stirred at 70°C overnight. After full consumption of starting material, reaction mixture was cooled down to room temperature and concentrated under vacuum. Crude product was purified by column chromatography (EtOAc/n-hexane 1:2) to give dark solid compound. Yield 131 mg (71%).

1H NMR CDCl3 δ= 6.91 (d, 1H, J = 4.6 Hz), 6.72 (s, 1H), 5.89 – 5.93 (m, 2H), 5.50 (s, 2H), 2.45 (s, 3H), 2.16 (s, 3H). 13C NMR δ= 160.61, 159.39, 147.59, 134.19, 133.34, 132.12, 116.91, 115.93, 109.74, 14.12, 11.11. HRMS (ESI) m/z calcd for [C11H12BF2N3]-H: 234.1009; found: 234.1009.

N-(4-hydroxypiperidine)-1,3-dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-5-amino-s-indacene (20)

N NB

F F N

OH

Page 8: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S8

Starting compound 103 (500 mg, 1.97 mmol) was dissolved in MeOH (10ml) and TEA (412 µl, 2.95 mmol), then 4-hydroxypiperidine (219 mg, 2.17 mmol) was added to the solution. Resulting mixture was stirred overnight at room temperature, extracted with EtOAc and washed three times with water. Drying over Na2SO4 was followed by evaporation to dryness. Yield 604 mg (96 %) of pure product.

1H NMR CDCl3 δ= 6.94 (d, 1H, J= 4.8 Hz), 6.65 (s, 1H), 6.13 (d, 1H, J= 4.8 Hz), 5.92 (s, 1H), 4.11 – 4.21 (m, 2H), 3.97 – 4.05 (m, 1H), 3.56 – 3.65 (m, 2H), 2.46 (s, 3H), 2.17 (s, 3H), 2.02 – 2.10 (m, 2H), 1.69 – 1.78 (m, 2H), 1.63 (bs, 1H). 13C NMR δ= 161.13, 146.52, 134.35, 133.42, 131.80, 129.92, 115.85, 115.54, 110.90, 66.73, 47.51, 34.41, 14.27, 11.03. HRMS (ESI) m/z calcd for [C16H20BF2N3O]+H: 320.1740; found: 320.1741.

Synthesis of conjugates 4, 18, 19

The derivative 4, 18 and 19 were synthesised according to the following scheme

N NB

F F HNO

O SS

NN NB

F F NH2

O

O SS NO

NN

N

DCMrt, on

7

11

12

N NB

F F N

20OH

O

O SS NO

NN

N

DCMrt, on

11

N NB

F F N

OO

O SS N

28

N NB

F F HNO

OS

HN

O

OH

O

NHS

OH2N

N NB

F F HN O

O SS N

NH

OOH

O

NHHS

OH2N

DMF60°C, on

+

4112

N NB

F F N

O

OS

SN

28

+NH

OOH

O

NHHS

OH2N21O

N NB

F F N

O

OSO

NH

OOH

O

NHS

OH2N

18

N NB

F F HN O

O SS N

O

NHHS

OH2N+

12

N NB

F F HNO

OS

O

NHS

OH2N

19

N

NO2

N

NO2

31

DMF60°C, on

DMF60°C, on

DMAP, TEA

DMAP, TEA

1,3-dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-5-(carbamoyl-ethylpyridinyldisulfide)-s-indacene (12)

Page 9: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S9

N NBF F HN

O

OS

S

N

To a stirred solution of 7 (100 mg, 0.425 mmol) in dry DCM (10mL) DMAP (68 mg), TEA (178 µl) and activated disulfide linker 114 (193 mg) were added portionwise. Resulting mixture was stirred at room temperature for 3 h. After the reaction was complete solvent was evaporated and crude mixture was directly purified by column chromatography (EtOAc/n-hexane 1:2) to afford 182 mg (95 %) of pure product 12.

Yield: 95 %. 1H NMR CDCl3 δ= 8.46 (d, 1H, J= 4.3 Hz), 8.00 (s, 1H, NH), 7.59 – 7.70 (m, 2H), 7.05 – 7.10 (m, 2H), 6.99 (s, 1H), 6.97 (d, 1H, J= 4.3 Hz), 6.83 (d, 1H, J= 3.9 Hz), 6.03 (s, 1H), 4.45 (t, 2H, J= 6.4 Hz), 3.08 (t, 2H, 6.4 Hz), 2.50 (s, 3H), 2.21 (s, 3H). 13C NMR δ= 159.54, 155.70, 151.43, 149.87, 149.58, 141.25, 137.20, 133.61, 130.87, 129.74, 122.08, 121.06, 120.12, 118.98, 109.26, 63.90, 37.21, 14.64, 11.34. HRMS (ESI) m/z calcd for [C19H19BF2N4O2S2]+H: 449.1083; found: 449.1089.

1-(5,5-difluoro-7,9-dimethyl-5H-4l4,5l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-yl)piperidin-4-yl (2-(pyridin-2-yldisulfanyl)ethyl) carbonate (28)

N NB

F F N

O

O SS

NO

To a stirred solution of 20 (40 mg, 0.13 mmol) in dry DCM (5mL) DMAP (20 mg, 0.17 mmol), TEA (53 µl, 0.17 mmol) and activated disulfide linker 114 (66 mg, 0.20 mmol) was added portionwise. Resulting mixture was stirred at room temperature overnight. After the reaction was complete solvent was evaporated and crude mixture was directly purified by column chromatography (EtOAc/n-hexane 1:2) to afford 66 mg (99 %) of pure product 28.

1H NMR CDCl3 δ = 8.49 (dd, J = 4.5, 1.3 Hz, 1H), 7.72 – 7.64 (m, 3H), 7.15 – 7.11 (m, 1H), 6.95 (d, J = 4.7 Hz, 1H), 6.68 (s, 1H), 6.11 (d, J = 4.7 Hz, 1H), 5.93 (s, 1H), 4.95 – 4.89 (m, 1H), 4.42 (t, J = 6.49 Hz, 2H), 4.05 – 3.99 (m, 2H), 3.79 – 3.73 (m, 2H), 3.09 (t, J = 6.5 Hz, 2H), 2.46 (s, 3H), 2.18 (s, 3H), 2.15 – 2.05 (m, 2H), 1.96 – 1.87 (m, 2H). 13C NMR δ = 160.98, 159.42, 154.17, 149.86, 147.06, 137.20, 134.13, 133.37, 132.42, 130.07, 121.07, 120.02, 119.28, 116.06, 110.60, 73.00, 65.48, 47.11, 37.02, 30.76, 14.31, 11.07. HRMS (ESI) m/z calcd for C24H27BF2N4O3S2: 532.1586; found: 532.1588

General procedure for synthesis of the conjugates 4,18,19.

Starting compound 12 or 28 (0.06 mmol) and 2-acetamido-3-mercaptopropanamide 31 or corresponding quinolinone 1 or 21 (1,13) (0.08 mmol) were dissolved in dry DMF (3mL) and heated to 60°C. Resulting reaction mixture was stirred overnight. After complete consumption of starting materials the reaction mixture was cooled down and diluted with mixture ethylacetate-methanol (5:1) followed by washing with water repetaed 3 times. Organic layer was dried over Na2SO4 and

Page 10: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S10

concentrated. Obtained crude product was purified by HPLC (AcCN/ammonium acetate (10mM) buffer 30:70 to 60:40 gradient) affording pure compounds 4, 18 or 19.

2-((3-amino-2-(3-hydroxy-2-(3-nitro-4-(piperidin-1-yl)phenyl)-4-oxo-1,4-dihydroquinoline-7-carboxamido)-3-oxopropyl)disulfanyl)ethyl (5,5-difluoro-7,9-dimethyl-5H-4l4,5l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-yl)carbamate (4)

N NB

F F HNO

OS

HN

O

OH

O

NHS

OH2N

N

NO2

1H NMR DMSO-d6 δ= δ 11.23 (s, 1H), 8.09 – 7.99 (m, 3H), 7.96 (d, J = 7.1 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.65 (s, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.00 (s, 1H), 6.85 (d, J = 8.5 Hz, 1H), 6.74 – 6.70 (m, 1H), 6.67 – 6.63 (m, 1H), 6.42 – 6.37 (m, 1H), 6.21 (s, 1H), 5.71 (s, 1H), 4.68 – 4.58 (m, 1H), 4.18 – 4.06 (m, 2H), 3.12 – 2.99 (m, 4.4 Hz, 2H), 2.96 – 2.87 (m, 2H), 2.79 (s, 4H), 2.72 – 2.67 (m, 2H), 2.12 (s, 3H), 1.87 (s, 3H), 1.40 (s, 4H), 1.32 (s, 2H). 13C NMR δ= 166.77, 166.59, 155.12, 151.11, 149.07, 146.73, 141.81, 141.18, 140.50, 137.70, 135.94, 135.69, 134.10, 133.27, 130.80, 129.38, 127.21, 126.65, 125.00, 122.72, 122.35, 122.11, 120.25, 119.83, 118.83, 118.74, 108.87, 63.99, 52.10, 40.87, 40.77, 36.46, 25.56, 23.69, 14.34, 11.09. HRMS (ESI) m/z calcd for [C38H39BF2N8O8S2]-H : 847.2310; found: 847.2307. Yield: 34 %.

2-((3-amino-2-(3-hydroxy-4-oxo-2-phenyl-1,4-dihydroquinoline-7-carboxamido)-3-oxopropyl)disulfanyl)ethyl (1-(5,5-difluoro-7,9-dimethyl-5H-4l4,5l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-yl)piperidin-4-yl) carbonate (18)

N NB

F F N

O

OS

HN

O

OH

O

NHS

OH2N

O

1H NMR DMSO-d6 δ= 11.81 (s, 1H), 8.81 (d, 1H, J = 7.7 Hz), 8.30 – 8.20 (m, 2H), 8.04 (s, 1H), 7.82 (d, 2H, J = 6.5 Hz), 7.75 (d, 1H, J = 8.2 Hz), 7.64 – 7.48 (m, 4H), 7.21 – 7.32 (m, 2H), 6.94 (s, 1H), 6.57 (d, 1H, J = 4.2 Hz), 5.90 (s, 1H), 4.84 (s, 1H), 4.72 (s, 1H), 4.33 (s, 2H), 4.05 (s, 2H), 3.75 (s, 2H), 3.20 – 3.11 (m, 2H), 2.98 – 3.09 (m, 2H), 2.30 (s, 3H), 2.12 (s, 3H), 2.03 (s, 2H), 1.71 (s, 2H). 13C NMR δ= 171.71, 169.65, 166.07, 160.82, 153.58, 143.25, 138.58, 137.41, 135.84, 134.63, 132.38, 132.09, 129.26, 128.78, 128.27, 124.61, 123.13, 121.64, 121.33, 120.09, 119.41, 118.90, 114.97, 114.62, 112.90, 72.56, 65.18, 52.61, 46.76, 40.43, 36.04, 30.49, 13.87, 13.85, 10.61. HRMS (ESI) m/z calcd for [C38H39BF2N6O7S2]-H : 803.2299; found: 803.2298. Yield: 32 %.

3-(((2-((2-acetamido-3-amino-3-oxopropyl)disulfanyl)ethoxy)carbonyl)amino)-5,5-difluoro-7,9-dimethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (19)

Page 11: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S11

N NB

F F HNO

OS

O

NHS

OH2N

1H NMR CDCl3 δ= 8.09 (s, 1H), 8.00 (s, 1H), 7.01 (s, 1H), 6.99 (d, J = 4.4 Hz, 1H), 6.85 (d, J = 4.3 Hz, 1H), 6.77 – 6.72 (m, 2H), 6.05 (s, 1H), 5.88 (s, 1H), 4.81 – 4.77 (m, 1H), 4.50 – 4.47 (m, 2H), 3.12 (t, J = 6.5 Hz, 2H), 3.00 (t, J = 6.5 Hz, 2H), 2.50 (s, 3H), 2.21 (s, 3H), 2.02 (s, 3H). 13C NMR δ= 172.43, 170.75, 162.71, 155.87, 151.69, 149.41, 141.48, 133.70, 130.90, 129.72, 122.21, 119.10, 109.25, 77.41, 77.16, 76.91, 64.18, 52.25, 40.80, 37.05, 36.64, 31.58, 23.20, 14.71, 11.40. HRMS (ESI) m/z calcd for [C19H23BF2N5O4S2]-H : 498.1258; found: 498.1255. Yield: 38 %.

Synthesis of conjugates 5, 6

The conjugates 5 and 6 were synthesised according to the following scheme:

NH

OOH

O

OOO

O

N NBF F HN OS

SO

O

O

DCM

5

2

N NBF F HN

OSSO

O

O

ON

NN

14

rt, on

3

N

NBF

FNH OS

SO

O

O

HN

O

OH

HN

6

N NB

F F NH2

N NB

F F HN

OHS

SO

O

N NB

F F HN

OS

SO

O

OO N

NN

O

OS

SO O

ONN N

1) TEA, DMAP, DCM, rt, 3h

2) K2CO3, THF/MeOH, rt, on

1) triphosgene, TEA, DCM; 0°C; 1h

2) HOBt, TEA, DCM; rt, on

7

13

30 14

O

OS

SOH

1) triphosgene, TEA, DCM, 0°C2) HOBt, TEA, DCM 0°C to rt

29

DMAP, TEA

DMAP, TEA

rt, onDCM

2-((2-((((1H-benzo[d][1,2,3]triazol-1-yl)oxy)carbonyl)oxy)ethyl)disulfanyl)ethyl acetate (13)

2-((2-Hydroxyethyl)disulfanyl)ethyl acetate5 29 (0.5g, 2.55 mmol) was dissolved in DCM (20mL) and cooled to 0°C. Then triethylamine (391 µl, 2.81 mmol) was added followed by addition of solution of triphosgene (250 mg, 0.84 mmol) in DCM (5 mL). After stirring for 1 hour at 0°C the solution of HOBt (379 mg, 2.81 mmol) and triethylamine (391 µl, 2.81 mmol) in DCM (5mL) was added slowly to the reaction mixture. The reaction mixture was then stirred overnight at room temperature. Reaction solution was diluted with DCM (100mL) and washed with water 3x80mL and brine. Organic layer was dried over Na2SO4 and concentrated under reduced pressure to obtain the desired product. Yield 774 mg (85%)

O

OS

SO O

ONN N

Page 12: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S12

1H NMR CDCl3 δ = 8.23 – 8.20 (m, 1H), 8.02 – 7.99 (m, 1H), 7.79 – 7.75 (m, 1H), 7.57 – 7.53 (m, 1H), 4.80 (t, J = 6.7 Hz, 2H), 4.34 (t, J = 6.5 Hz, 2H), 3.13 (t, J = 6.7 Hz, 2H), 2.98 (t, J = 6.5 Hz, 2H), 2.07 (s, 3H). 13C NMR δ = 170.90, 147.29, 133.52, 132.98, 126.55, 120.75, 115.96, 115.27, 77.42, 77.16, 76.91, 66.64, 62.32, 37.42, 36.62, 20.97. HRMS (ESI) m/z calcd for [C13H16N3O5S2]+H: 358.0526; found: 358.0523.

Synthesis of 5,5-difluoro-3-(((2-((2-hydroxyethyl)disulfanyl)ethoxy)carbonyl)amino)-7,9-dimethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (30)

DMAP (68 mg, 0.557 mmol), TEA (178 µl, 1.277 mmol) and disulfide linker 13 (228 mg, 0.638 mmol) was added portionwise to a stirred solution of 7 (100 mg, 0.425 mmol) in dry DCM (10mL). Resulting mixture was stirred at room temperature for overnight. After the reaction was complete solvent was evaporated, dissolved in THF/MeOH 3:1 (10 mL) and treated with K2CO3 (176 mg, 1.275mmol). After stirring overnight ethylacetate (100mL) was added and organic phase was washed 3 times with water, dried over Na2SO4 and concentrated under vacuum. Crude product was purified by column chromatography (hexane/EtOAc 2:1) to afford pure product 31. Yield 113 mg (64 %).

NNB

F F HNOH

SS

O

O

1H NMR CDCl3 δ = 8.08 (s, 1H), 7.01 (s, 1H), 7.00 (d, J = 4.4 Hz, 1H), 6.88 (d, J = 4.3 Hz, 1H), 6.05 (s, 1H), 4.49 (t, J = 6.7 Hz, 2H), 3.91 (t, J = 5.8 Hz, 1H), 3.00 (t, J = 6.7 Hz, 2H), 2.92 (t, J = 5.8 Hz, 2H), 2.51 (s, 3H), 2.23 (s, 3H). 13C NMR δ = 155.77, 151.65, 149.57, 141.35, 133.68, 130.91, 129.78, 122.15, 119.03, 109.29, 64.36, 60.40, 41.84, 37.05, 14.66, 11.36. HRMS (ESI) m/z calcd for [C16H19BF2N3O3S2]-H: 414.0934; found: 414.0930.

3-(((2-((2-((((1H-benzo[d][1,2,3]triazol-1-yl)oxy)carbonyl)oxy)ethyl)disulfanyl)ethoxy)carbonyl)amino)-5,5-difluoro-7,9-dimethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (14)

NNB

F F HN OSSO

OO

ON

NN

Solution of TEA (214 uL, 1.536 mmol) and triphosgene (146 mg, 0.492 mmol) dissolved in DCM (1 mL) was slowly added to a solution of compound 30 (510 mg, 1.229 mmol) in dry DCM (6 mL) at 0°C. Resulting reaction mixture was stirred for 2h at 0°C. Subsequently the solution of TEA (214 uL, 1.536 mmol) and HOBt (183 mg, 1.352 mmol) dissolved in DCM (2 mL) was added at 0°C. Reaction was allowed to warm to room temperature and was stirred overnight. Then EtOAc (200mL) was added to reaction mixture and organic layer was washed with water and brine. Organic layer was dried over Na2SO4 and concentrated under reduced pressure to give product 14. Yield 657 mg (93 %).

Page 13: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S13

1H NMR CDCl3 δ = 8.18 (d, J = 8.5 Hz, 1H), 8.04 (s, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.75 – 7.71 (m, 1H), 7.53 – 7.48 (m, 1H), 6.98 – 6.93 (m, 2H), 6.84 (d, J = 4.3 Hz, 1H), 6.02 (s, 1H), 4.80 (t, J = 6.7 Hz, 2H), 4.49 (t, J = 5.9 Hz, 2H), 3.16 (t, J = 6.7 Hz, 2H), 3.05 (t, J = 6.5 Hz, 2H), 2.47 (s, 3H), 2.21 (s, 3H). 13C NMR δ = 155.76, 151.52, 149.49, 147.23, 141.33, 133.64, 133.45, 132.87, 130.87, 129.73, 126.40, 122.10, 119.02, 115.81, 115.26, 109.22, 66.63, 64.16, 41.85, 37.46, 37.06, 36.64, 14.62, 11.36. HRMS (ESI) m/z calcd for [C23H22BF2N6O5S2]-H: 575.1160; found: 575.1149.

General procedure for synthesis conjugates 5 and 6.

Starting compound 14 (0.06 mmol) and corresponding quinolinone derivative 2 or 3 (0.06 mmol) were dissolved in dry DCM (3mL). Subsequntly TEA (0.18 mmol) and DMAP (0.18 mmol) were added to the stirred solution of starting materials. Resulting reaction mixture was stirred overnight. After complete consumption of starting materials the mixture was diluted with ethylacetate and washed three times by water. Organic layer was dried over Na2SO4 and concentrated. Obtained crude product was purified by HPLC (AcCN/ammonium acetate buffer 30:70 to 60:40 gradient) affording pure compounds 5 or 6.

1-((5,5-difluoro-7,9-dimethyl-5H-4l4,5l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-yl)amino)-1,10-dioxo-2,9,11,14,17-pentaoxa-5,6-dithianonadecan-19-yl 3-hydroxy-4-oxo-2-phenyl-1,4-dihydroquinoline-7-carboxylate (5)

HN

O

OH

O

O

N

NBF

FNH

OS

SO

O

O

OO

O

1H NMR DMSO-d6 δ= 11.83 (s, 1H), 8.46 (s, 1H), 8.26 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 7.3 Hz, 2H), 7.75 (d, J = 8.6 Hz, 1H), 7.55 (dt, J = 24.6, 7.0 Hz, 4H), 7.24 (d, J = 4.0 Hz, 1H), 6.78 (t, J = 5.6 Hz, 1H), 6.20 (d, J = 9.0 Hz, 1H), 4.43 (dt, J = 12.7, 5.9 Hz, 4H), 4.30 (t, J = 6.3 Hz, 2H), 4.20 – 4.13 (m, 2H), 3.81 – 3.75 (m, 2H), 3.66 – 3.59 (m, 4H), 3.56 (dd, J = 5.7, 3.2 Hz, 2H), 3.07 (t, J = 6.4 Hz, 2H), 3.02 (t, J = 6.1 Hz, 2H), 2.42 (d, J = 6.5 Hz, 3H), 2.23 (d, J = 5.6 Hz, 3H). 13C NMR δ= 169.53, 165.30, 154.86, 154.32, 151.36, 148.92, 141.48, 139.01, 137.23, 133.02, 132.57, 131.98, 131.56, 130.89, 129.42, 129.22, 128.26, 125.20, 124.09, 123.59, 120.98, 120.86, 118.88, 109.09, 69.80, 69.70, 68.32, 68.12, 66.86, 65.13, 64.42, 63.77, 54.71, 36.29, 36.18, 14.15, 10.90. HRMS (ESI) m/z calcd for [C39H40BF2N4O11S2]-H: 853.2202; found: 853.2191. Yield: 35 %.

2-((2-(((4-(3-hydroxy-4-oxo-1,4-dihydroquinolin-2-yl)phenyl)carbamoyl)oxy)ethyl)disulfanyl)ethyl (5,5-difluoro-7,9-dimethyl-5H-4l4,5l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-yl)carbamate (6)

N

NBF

FNH

OSSO

O

O

HN

OOH

HN

1H NMR DMSO-d6 δ= 11.66 (s, J = 13.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.60 (s, 1H), 7.33 (s, 1H), 7.31 (s, 1H), 7.25 (d, J = 4.4 Hz, 1H), 6.79 (d, J = 4.4

Page 14: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S14

Hz, 1H), 6.71 (d, J = 8.6 Hz, 2H), 6.21 (s, 1H), 5.75 (s, 1H), 4.46 – 4.38 (m, 4H), 3.11 – 3.03 (m, 4H), 2.43 (s, 3H), 2.23 (s, 3H). 13C NMR δ= 169.44, 162.26, 154.92, 152.66, 151.32, 150.94, 148.87, 143.39, 141.54, 139.07, 133.04, 131.64, 131.58, 130.78, 129.79, 129.40, 124.69, 123.67, 122.90, 118.90, 118.47, 116.86, 113.24, 109.13, 65.90, 63.82, 54.87, 36.21, 14.17, 10.91. HRMS (ESI) m/z calcd for [C32H31BF2N5O6S2]-H: 692.1626; found: 692.1624. Yield: 40 %.

Page 15: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S15

1H and 13C NMR spectra of prepared compounds

Compound 1 (DMSO-d6)

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

7.89

1.14

1.14

1.17

4.27

1.00

1.07

1.03

1.01

1.04

1.11

1.17

1.06

1.07

1.11

1.00

1.60

1.64

2.37

2.39

2.41

2.50

2.87

2.88

2.89

2.91

2.96

2.97

2.98

2.99

3.00

3.00

3.01

3.10

4.54

4.55

7.22

7.42

7.44

7.54

7.74

7.76

8.02

8.03

8.20

8.21

8.25

8.29

8.60

8.61

11.7

4

2030405060708090100110120130140150160170180f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

23.3

725

.36

25.9

8

39.0

239

.19

39.3

539

.52

39.6

939

.78

39.8

539

.94

40.0

2

51.7

4

55.9

5

118.

7112

0.33

123.

1112

4.59

126.

6313

0.14

134.

2813

5.93

137.

4113

8.66

140.

24

146.

19

166.

0316

9.58

171.

64

NH

OOH

O

NHHS

OH2N

N

NO2

Page 16: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S16

Compound 2 (DMSO-d6)

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

2.00

2.06

2.04

2.01

2.01

2.00

3.16

1.07

2.01

1.00

1.00

0.99

35404550556065707580859095105115125135145155165175f1 (ppm)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

60.2

2

64.5

4

68.3

669

.77

69.9

272

.38

120.

9312

1.06

125.

2912

8.34

129.

2912

9.49

130.

9113

2.04

132.

69

137.

2313

9.10

165.

37

169.

58

NH

OOH

O

OO

OHO

Page 17: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S17

Compound 4 (CDCl3/DMSO-d6)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

2.14

4.13

3.15

2.92

4.04

2.01

3.97

2.16

1.80

2.07

1.07

1.01

0.93

0.95

1.02

1.01

1.03

1.00

0.96

1.03

1.06

1.02

2.24

0.85

1.35

1.42

1.90

2.14

2.27

2.27

2.30

2.31

2.66

2.71

2.72

2.81

2.91

2.94

2.95

3.07

3.09

3.10

4.14

4.15

4.65

4.66

5.73

6.23

6.41

6.42

6.66

6.67

6.74

6.86

6.88

7.02

7.26

7.27

7.40

7.42

7.67

7.80

7.82

7.97

7.98

8.03

8.07

8.08

11.2

5

102030405060708090100110120130140150160170f1 (ppm)

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

10.6

2

13.8

7

23.2

225

.09

28.9

539

.00

39.1

639

.33

39.5

039

.67

39.8

340

.00

40.2

840

.39

51.6

352

.20

63.5

2

76.9

077

.16

77.4

2

108.

39

118.

2711

9.35

119.

7812

1.63

122.

2412

4.52

126.

1712

8.90

130.

3213

2.79

133.

6213

5.21

137.

2413

8.38

140.

0214

0.70

146.

2514

8.59

150.

6415

4.65

166.

11

171.

71

N NB

F F HNO

OS

HN

O

OH

O

NHS

OH2N

N

NO2

Page 18: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S18

Compound 5 (DMSO-d6)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

3.04

3.02

2.11

2.07

2.05

3.90

2.00

2.00

2.03

4.06

1.03

1.09

1.04

4.08

1.01

1.88

1.00

1.05

0.71

2.22

2.42

3.00

3.02

3.03

3.05

3.07

3.08

3.56

3.61

3.62

3.62

4.16

4.17

4.18

4.29

4.30

4.32

4.40

4.42

4.43

4.44

4.44

4.45

5.75

6.20

6.77

6.78

7.52

7.54

7.56

7.57

7.59

7.74

7.76

7.83

7.84

8.25

8.27

8.46

102030405060708090100110120130140150160170180f1 (ppm)

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

10.9

0

14.1

5

36.1

836

.29

54.7

1

63.7

764

.42

65.1

366

.86

68.1

268

.32

69.7

069

.80

109.

0911

8.88

120.

8612

0.98

123.

5912

4.09

125.

2012

8.26

129.

2212

9.42

130.

8913

1.56

131.

9813

2.57

133.

0213

7.23

139.

01

148.

9215

1.36

154.

3215

4.86

165.

30

169.

53

HN

O

OH

O

ON

NBF

FNH

OSSO

O

O

OOO

Page 19: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S19

Compound 6 (DMSO-d6)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3.02

3.01

0.53

0.56

4.00

4.00

1.14

0.97

1.95

0.97

0.95

1.10

1.13

0.86

1.01

1.05

0.96

0.95

2.23

2.43

2.50

2.50

2.50

2.51

2.73

2.89

3.05

3.06

3.07

3.08

3.09

3.32

4.39

4.41

4.42

4.43

4.45

5.75

6.21

6.70

6.72

6.78

6.79

7.25

7.25

7.31

7.33

7.60

7.71

8.10

8.11

11.6

6

102030405060708090100110120130140150160170180f1 (ppm)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

10.9

1

14.1

7

36.2

1

54.8

7

63.8

265

.90

109.

1311

3.24

116.

8611

8.47

118.

9012

2.90

123.

6712

4.69

129.

4012

9.79

130.

7813

1.58

131.

64

139.

0714

1.54

143.

39

148.

8715

0.94

151.

3215

2.66

154.

92

162.

26

169.

44

N

NBF

FNH

OS

SO

O

O

HN

OOH

HN

Page 20: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S20

Compound 7 (CDCl3)

1.41.82.22.63.03.43.84.24.65.05.45.86.26.67.07.27.4f1 (ppm)

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

3.06

3.08

1.95

1.92

1.03

1.00

1.58

2.18

2.47

5.52

5.93

5.94

6.74

6.93

6.94

7.26

102030405060708090100110120130140150160170f1 (ppm)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

11.1

8

14.2

0

76.9

177

.16

77.4

1

109.

81

116.

0111

6.98

131.

0213

2.20

133.

4213

4.26

147.

66

159.

45

N NB

F F NH2

Page 21: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S21

Compound 8 (DMSO-d6)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

3.03

1.05

1.94

1.08

1.00

2.50

2.50

2.50

2.51

7.55

7.56

7.58

7.59

7.59

7.61

7.79

7.79

7.81

7.81

7.83

7.85

7.85

8.26

8.27

8.45

8.45

404550556065707580859095100105110115120125130135140145150155160165170f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

39.1

939

.35

39.5

239

.69

39.8

5

121.

0712

2.08

123.

7312

4.86

128.

4612

9.46

129.

7813

1.83

132.

3913

4.59

137.

0913

8.71

166.

8316

8.17

NH

OOH

O

OH

Page 22: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S22

Compound 9 (DMSO-d6)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.07

4.27

4.04

0.99

1.00

1.01

0.96

0.98

0.94

0.85

1.59

1.60

1.64

1.64

2.08

2.50

2.50

2.50

2.54

3.09

3.10

3.11

7.42

7.44

7.73

7.73

7.75

7.75

8.02

8.04

8.21

8.22

8.31

8.31

8.40

11.7

4

2030405060708090100110120130140150160170f1 (ppm)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

23.4

325

.41

39.0

239

.19

39.3

539

.52

39.6

939

.78

39.8

539

.94

40.0

240

.43

51.7

8

120.

3712

0.77

121.

5112

3.05

123.

9512

4.97

126.

7213

0.50

132.

5213

4.34

137.

3913

9.00

140.

28

146.

27

167.

00

NH

OOH

O

OHN

NO2

Page 23: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S23

Compound 12 (CDCl3)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

3.00

2.90

2.05

1.96

0.95

0.94

1.96

1.19

2.18

1.01

1.08

2.23

2.52

3.09

3.10

3.12

4.46

4.47

4.48

6.05

6.85

6.86

6.98

6.99

7.01

7.08

7.09

7.10

7.26

7.65

7.67

7.67

7.69

7.70

8.02

8.47

8.48

0102030405060708090100110120130140150160170f1 (ppm)

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

11.4

0

14.6

9

37.2

7

63.9

6

76.9

177

.16

77.4

1

109.

31

119.

0212

0.17

121.

1212

2.14

129.

7913

0.92

133.

6813

7.26

141.

30

149.

6414

9.92

151.

4815

5.73

159.

59

N NB

F F HNO

O

SS

N

Page 24: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S24

Compound 13 (CDCl3)

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3.00

2.14

1.92

2.07

1.97

1.15

1.04

0.95

1.00

2.07

2.96

2.98

2.99

3.12

3.13

3.15

4.33

4.34

4.35

4.79

4.80

4.81

7.53

7.53

7.55

7.55

7.55

7.56

7.57

7.76

7.76

7.77

7.78

7.78

7.79

7.79

8.00

8.00

8.00

8.01

8.02

8.02

8.21

8.21

8.22

0102030405060708090100110120130140150160170180f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.020

.97

36.6

237

.42

62.3

2

66.6

4

76.9

177

.16

77.4

2

115.

2711

5.96

120.

75

126.

55

132.

9813

3.52

147.

29

170.

90

O

OS

SO O

ONN N

Page 25: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S25

Compound 14 (CDCl3)

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.89

2.97

1.98

2.00

2.07

1.97

0.94

0.94

1.94

1.02

1.00

0.97

0.97

1.00

1.23

1.25

1.26

2.03

2.21

2.21

2.47

2.50

3.04

3.05

3.07

3.15

3.16

3.17

4.10

4.12

4.49

4.80

6.02

6.83

6.84

6.96

6.96

6.98

7.00

7.26

7.50

7.52

7.52

7.72

7.73

7.96

7.97

8.04

8.17

8.19

102030405060708090100110120130140150160f1 (ppm)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.6511.3

6

14.6

2

36.6

437

.06

37.4

6

41.8

5

64.1

666

.63

109.

22

115.

2611

5.81

119.

0212

2.10

126.

4012

9.73

130.

8713

2.87

133.

4513

3.64

141.

33

147.

2314

9.49

151.

52

155.

76

NNB

F F HN OSSO

OO

ON

NN

Page 26: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S26

Compound 18 (DMSO-d6)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1.99

1.96

2.95

2.62

2.07

2.09

1.93

1.92

2.22

1.12

1.11

0.71

0.79

0.86

2.06

4.16

1.09

2.13

2.13

1.04

1.00

1.72

2.03

2.07

2.12

2.30

2.50

3.04

3.13

3.17

3.33

3.74

4.05

4.32

4.72

4.84

5.90

6.58

6.94

7.23

7.26

7.57

7.60

7.81

7.82

8.22

8.23

8.26

8.81

8.82

11.8

1

102030405060708090100110120130140150160170f1 (ppm)

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

10.6

2

13.8

8

29.0

130

.51

39.1

939

.35

39.5

239

.69

39.8

540

.02

46.7

6

52.6

0

65.1

9

72.5

7

112.

9111

4.64

114.

9811

8.91

119.

4212

0.10

123.

1412

4.62

128.

2812

8.79

129.

2713

2.10

132.

3813

4.64

135.

8413

7.41

137.

7713

8.59

143.

26

149.

63

153.

59

160.

83

166.

0816

9.66

171.

72

N NB

F F N

O

OS

HN

O

OH

O

NHS

OH2N

O

Page 27: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S27

Compound 19 (CDCl3)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3.09

3.08

3.07

2.14

1.67

2.00

1.19

1.03

1.03

2.02

1.04

1.10

1.10

1.00

1.03

2.02

2.21

2.50

3.00

3.12

4.46

4.47

4.48

4.48

4.49

4.49

4.78

4.79

4.80

5.88

6.05

6.73

6.75

6.84

6.85

6.98

6.99

7.01

8.00

8.10

0102030405060708090100110120130140150160170180190f1 (ppm)

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.020

0.021

11.3

9

14.7

1

23.2

0

31.5

8

36.6

437

.05

40.8

0

52.2

5

64.1

8

109.

25

119.

1012

2.21

129.

7213

0.90

133.

70

141.

48

149.

4115

1.69

155.

87

162.

71

170.

7517

2.43

N NB

F F HNO

OS

O

NHS

OH2N

Page 28: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S28

Compound 20 (CDCl3)

1.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2.13

2.05

2.94

2.85

2.05

1.03

2.07

0.89

0.98

0.94

1.00

1.70

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.76

2.04

2.05

2.06

2.06

2.07

2.18

2.46

3.58

3.59

3.60

3.61

3.62

3.63

3.64

4.00

4.01

4.02

4.02

4.03

4.14

4.15

4.15

4.16

4.17

4.17

4.18

4.19

5.93

6.13

6.14

6.65

6.94

6.95

7.26

102030405060708090100110120130140150160f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.08011.0

9

14.3

3

34.4

8

47.5

347

.58

47.6

2

66.8

0

76.9

177

.16

77.4

1

110.

97

115.

6011

5.90

129.

9913

1.86

133.

4813

4.41

146.

59

161.

19

N NB

F F N

OH

Page 29: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S29

Compound 21 (DMSO-d6)

2.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.94

1.11

1.07

1.08

0.97

4.28

1.05

2.13

1.12

1.07

1.01

1.00

2.40

2.50

2.50

2.50

2.87

2.88

2.89

2.90

2.91

2.96

2.97

2.98

2.99

3.00

3.00

4.52

4.53

4.53

4.54

4.55

4.56

7.23

7.56

7.58

7.82

7.83

7.83

8.22

8.27

8.27

8.60

8.62

11.8

5

2030405060708090100110120130140150160170f1 (ppm)

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

26.0

1

39.0

239

.19

39.3

539

.52

39.6

939

.78

39.8

539

.94

40.0

2

55.9

8

118.

9112

0.26

123.

1012

4.60

126.

2612

8.32

129.

0412

9.29

129.

4313

2.09

132.

6413

5.93

137.

3913

8.56

143.

79

166.

10

171.

70

NH

OOH

O

NHHS

OH2N

Page 30: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S30

Compound 23a (CDCl3)

4.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

2.96

1.97

0.92

0.93

2.07

1.03

2.01

1.00

3.91

5.56

7.26

7.27

7.28

7.29

7.37

7.37

7.49

7.50

7.51

7.53

7.61

7.61

7.61

7.63

7.64

7.96

7.96

7.97

7.98

7.98

8.05

8.06

5060708090100110120130140150160170180190f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.052.5

0

66.3

9

76.8

477

.16

77.4

7

113.

2211

6.73

118.

18

127.

9812

9.08

131.

9913

4.16

134.

3013

5.31

150.

42

166.

6616

6.92

192.

30

O

ONH2

O

O

O

Page 31: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S31

Compound 23b (DMSO-d6)

2.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

0.69

3.01

1.98

1.99

0.99

1.02

1.06

0.99

1.01

1.00

2.50

3.31

3.85

5.75

6.87

7.08

7.08

7.10

7.10

7.48

7.48

7.91

7.92

8.00

8.02

8.26

8.27

8.28

8.28

8.64

8.64

102030405060708090100110120130140150160170180190200f1 (ppm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.4538

.90

39.1

039

.31

39.5

239

.73

39.9

440

.15

52.3

7

66.8

4

111.

0011

4.46

117.

80

124.

8413

0.14

131.

4013

2.48

132.

5913

3.57

134.

55

147.

98

151.

33

165.

8716

6.02

191.

19

O

ONH2

O

O

O

Cl

NO2

Page 32: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S32

Compound 24 (DMSO-d6)

2.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

0.99

1.02

0.94

1.04

0.97

1.00

2.50

7.77

7.78

8.00

8.02

8.17

8.17

8.18

8.19

8.24

8.26

8.39

8.54

8.55

30405060708090100110120130140150160170180f1 (ppm)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

38.8

939

.10

39.3

139

.52

39.7

339

.94

40.1

5

121.

0312

1.98

124.

0012

5.09

125.

8712

6.28

130.

1413

1.76

132.

2113

2.69

134.

6613

7.45

139.

35

147.

49

166.

7916

9.11

172.

12

NH

OOH

O

OH

NO2

Cl

Page 33: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S33

Compound 28 (CDCl3)

2.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1.94

2.81

2.81

2.00

1.94

1.91

2.03

1.00

0.82

0.87

0.95

0.96

1.23

2.20

0.96

1.93

1.94

1.94

2.10

2.10

2.11

2.12

2.14

2.18

2.46

3.08

3.09

3.11

3.75

3.76

3.77

3.77

3.78

3.78

3.79

4.00

4.01

4.02

4.39

4.40

4.41

4.42

4.43

4.90

4.91

4.91

4.92

4.93

5.93

6.11

6.11

6.68

6.95

6.96

7.13

7.13

7.13

7.14

7.26

7.64

7.64

7.67

7.67

7.68

7.69

7.69

7.71

8.49

8.49

8.50

8.50

102030405060708090100110120130140150160f1 (ppm)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

11.0

7

14.3

1

30.7

6

37.0

2

47.1

1

65.4

8

73.0

076

.91

77.1

677

.41

110.

60

116.

0611

9.28

120.

0212

1.07

130.

0713

2.42

133.

3713

4.13

137.

20

147.

06

149.

86

154.

17

159.

4216

0.98

N NB

F F N

O

O

SS

N

O

Page 34: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S34

Compound 30 (CDCl3)

1.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

2.93

3.00

2.10

2.09

2.07

2.03

0.95

0.94

1.03

1.01

0.97

2.23

2.51

2.91

2.92

2.93

2.98

3.00

3.01

3.90

3.91

3.92

4.48

4.49

4.51

6.05

6.88

6.89

6.99

7.00

7.01

7.26

8.08

102030405060708090100110120130140150160f1 (ppm)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

11.3

6

14.6

6

37.0

5

41.8

4

60.4

0

64.3

6

109.

29

119.

03

122.

15

129.

7813

0.91

133.

68

141.

35

149.

5715

1.65

155.

77

N NB

F F HN

OHS

SO

O

Page 35: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S35

Fluorescence monitoring of the conjugates 4-6 cleavage

Figure S1. Decreasing of emission intensity of conjugate 4 (left) upon excitation by 510 nm and increasing of emission intensity upon excitation by 480 nm (right) in time during cleavage of conjugate 4 (5µM) by GSH (5mM, DMSO/HEPES 2:1, pH 7.4, 37°C).

Figure S2. Increasing of emission intensity change of conjugate 5 upon excitation by 510 nm (left) and upon excitation by 480 nm (right) in time during cleavage of conjugate 5 (5µM) by GSH (5mM, 0.1M HEPES Buffer, pH 7.4, 37°C).

Page 36: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S36

Figure S3. Decreasing of emission intensity of conjugate 5 (left) upon excitation by 510 nm and increasing of emission intensity upon excitation by 480 nm (right) in time during cleavage of conjugate 5 (5µM) by GSH (5mM, DMSO/HEPES 2:1, pH 7.4, 37°C).

Figure S4. Increasing of emission intensity change of conjugate 6 upon excitation by 510 nm (left) and upon excitation by 480 nm (right) in time during cleavage of conjugate 6 (5µM) by GSH (5mM, 0.1M HEPES Buffer, pH 7.4, 37°C).

Page 37: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S37

Figure S5. Decreasing of emission intensity of conjugate 6 (left) upon excitation by 510 nm and increasing of emission intensity upon excitation by 480 nm (right) in time during cleavage of conjugate 6 (5µM) by GSH (5mM, DMSO/HEPES 2:1, pH 7.4, 37°C).

Figure S6. Comparison of the ratio of fluorescence emission at 525nm upon excitation at 480nm and 510nm (I480/I510) for the Probe 4 (5µM) in HEPES Buffer (0.1M, pH 7.4, 37°C) and DMSO/HEPES Buffer 2:1 (0.1M, pH 7.4, 37°C) during GSH (5mM) cleavage.

Page 38: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S38

Figure S7. Emission intensity change of conjugate 19 (5µM) upon excitation by 510 nm (left upper) and upon excitation by 480 nm (right upper) in time during cleavage by GSH (2.5mM, 0.1M HEPES Buffer, pH 7.4, 37°C) and representation by the fluorescence ratio (I480/I510) change in time (bottom).

Detection limitDetection limit (LOD) was calculated as follows:

𝐿𝑂𝐷 = 3·𝜎

𝑠

σ – standard deviation of response

s – slope of the calibration curve

Page 39: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S39

0 20 40 60 80 100

0.49

0.56I4

85/I5

10

Concentration ()

Equation y = a + b*xAdj. R-Square 0.99999

Value Standard ErrorF Intercept 0.48021 1.02533E-4F Slope 0.00101 1.82687E-6

0 20 40 60 80 100

0.42

0.49

0.56

I485

/I510

Concentration ()

Equation y = a + b*xAdj. R-Square 0.99994

Value Standard ErrorE Intercept 0.40474 4.21248E-4E Slope 0.00168 7.50555E-6

Figure S8. Detection limit determination for compounds 5 (LOD = 305 nM) and 6 (LOD = 752 nM). (GSH concentration 0 µM to 90µM, 0.1M HEPES Buffer, 7.4 pH, 37°C, 2h).

Page 40: Molecular Electronics SUPPORTING INFORMATION Monitoring … · 2019. 8. 13. · Molecular Electronics Martin Porubskýa, Soňa Gurskáb, Jarmila Stankováb, Marián Hajdúchb, Petr

S40

References

(1) Ursuegui, S.; Yougnia, R.; Moutin, S.; Burr, a; Fossey, C.; Cailly, T.; Laayoun, a; Laurent, a; Fabis, F. Org. Biomol. Chem. 2015, 13 (12), 3625–3632.

(2) Soural, M.; Funk, P.; Kvapil, L.; Hradil, P.; Hlaváč, J.; Bertolasi, V. Arkivoc 2010, 2010 (10).

(3) Leen, V.; Leemans, T.; Boens, N.; Dehaen, W. European J. Org. Chem. 2011, No. 23, 4386–4396.

(4) Krajčovičová, S.; Gucký, T.; Hendrychová, D.; Kryštof, V.; Soural, M. J. Org. Chem. 2017, 82 (24), 13530–13541.

(5) Azéma, L.; Lherbet, C.; Baudoin, C.; Blonski, C. Bioorganic Med. Chem. Lett. 2006, 16 (13), 3440–3443.