92
MOLECULAR CHARACTERIZATION OF OVINE GM1 GANGLIOSIDOSIS BY KRISTEN M. WALKER THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Animal Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2012 Urbana, Illinois Master’s Committee: Professor Jonathan E. Beever, Chair Professor Sandra L. Rodriguez-Zas Assistant Professor Anna C. Dilger

MOLECULAR CHARACTERIZATION OF OVINE GM1

  • Upload
    trantu

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MOLECULAR CHARACTERIZATION OF OVINE GM1

MOLECULAR CHARACTERIZATION OF OVINE GM1 GANGLIOSIDOSIS

BY

KRISTEN M. WALKER

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Animal Sciences

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Master’s Committee:

Professor Jonathan E. Beever, Chair

Professor Sandra L. Rodriguez-Zas

Assistant Professor Anna C. Dilger

Page 2: MOLECULAR CHARACTERIZATION OF OVINE GM1

ii

Abstract

Ovine GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder.

Affected lambs are born relatively normal, however at approximately four months of age they

begin exhibiting severe neurological symptoms. Pathology progresses rapidly in affected lambs

ultimately resulting in death by five to six months of age. In humans and other species,

mutations in the β-galactosidase (GLB1) gene are responsible for similar disease phenotypes.

The production of non-functional β-galactosidase results in a buildup of GM1 gangliosides and

other terminally linked galactose-containing molecules in the brain and visceral tissues. Using

the Illumina® OvineSNP50 BeadChip platform, seven affected and ten unaffected animals were

genotyped and a genome wide association analysis was performed using PLINK. A significant

association was detected for multiple SNPs on OAR19; further investigation showed this area

was orthologous to HSA3 containing GLB1. Sequence analysis revealed a G to T nucleotide

transversion in exon six of ovine GLB1 resulting in a nonsynonymous cysteine to phenylalanine

(Cys229Phe) amino acid substitution. A PCR-RFLP assay using AciI restriction enzyme was

designed for genotyping lambs. To date, 1664 animals have been genotyped using the DNA-

based diagnostic and all affected lambs were homozygous for this mutation. Conversely,

individuals with normal phenotypes were either heterozygous or homozygous for the

alternative allele. Affected lambs will be used as an animal model to further explore the

disease and potentially identify therapies for humans.

Page 3: MOLECULAR CHARACTERIZATION OF OVINE GM1

iii

Contents

Chapter 1: Literature Review ......................................................................................................... 1

1.1 Lysosomal storage disorders .................................................................................................. 1

1.2 Gangliosides ........................................................................................................................... 6

1.3 GLB1, the structural gene for β-galactosidase ....................................................................... 8

1.4 Mapping ................................................................................................................................. 9

1.5 GM1 gangliosidosis in sheep ................................................................................................ 12

Chapter 2: Molecular Genetic Characterization of Ovine GM1 Gangliosidosis:

An Animal Model ................................................................................................................. 15

2.1 Background ........................................................................................................................... 15

2.2 Materials and methods ........................................................................................................ 16

2.3 Results .................................................................................................................................. 21

2.4 Discussion ............................................................................................................................. 24

2.5 Conclusions ........................................................................................................................... 27

References .................................................................................................................................... 37

Appendix A: Appendix Figures ..................................................................................................... 43

Page 4: MOLECULAR CHARACTERIZATION OF OVINE GM1

1

Chapter 1: Literature Review

Animal models of human diseases can serve a valuable purpose by providing

opportunities for improved treatments and therapies. Laboratory animals like mice and rats

are often used due to their relative ease of care and lower economic costs as compared to

larger animals. However, large animals like sheep, pigs, and larger breed dogs have an anatomy

and life span more similar to humans than do rodents. Additionally, the relative size of the

body and organs also offers an advantage in that translation of results to human physiological

scale is less of an issue. Due to these similarities, the symptoms of larger species are also

typically more representative of those seen in humans [1]. Sheep and other non-laboratory

animals have been used as models for diseases such as retinal degeneration [2], cardiovascular

disease [3], congestive heart failure [3-5], cardiomyopathy [6], muscular dystrophy [7],

Parkinson’s disease [8], and hemophilia [1].

1.1 Lysosomal storage disorders

Lysosomal storage disorders have been observed in many species and are highly

variable in severity. They were first discussed by Hers in 1965 [9] whose publication describing

such a disease led to the classification of many others [10]. A lysosomal storage disorder

usually results from a deficiency of an enzyme responsible for partial or complete breakdown of

a molecule within the lysosome. The accumulation of one or more of these molecules can

cause a multitude of symptoms that are often incompatible with life. In most types of these

disorders, the deficiency is a result of a mutation in the structural gene encoding the respective

Page 5: MOLECULAR CHARACTERIZATION OF OVINE GM1

2

lysosomal enzyme, where mutated alleles often fail to produce mature functional proteins [10,

11].

In a review of lysosomal storage disorders, Vellodi points out that the high complexity of

lysosomal enzymes makes for an increased chance of dysfunction [12]. Since Hers first

published work discovering a storage disorder [13] there have been over 40 other diseases

characterized [12]. Patel and Pentchev reviewed the major categories of storage issues that

can be seen in animal models [11]. Sphingolipidoses are the category of disorders that include

the gangliosidoses. These disorders are the result of a malfunctioning lysosomal degradation

process of sphingolipids, molecules found in membranes. Glycogenoses are disorders in

metabolism of glycogen; worth mentioning, Pompe’s disease, a glycogen storage disease, was

the first described lysosomal storage disorder [13]. Glycoproteinoses include all disorders with

improper degradation of glycoproteins and also include the mannosidoses. The

mucopolysaccharidoses are errors in glycosaminoglycans metabolism. For several diseases,

there can be an overlap in pathology between glycoproteinoses and mucopolysaccharidoses

with the former appearing as mild cases of the latter.

1.1.1 GM1 Gangliosidosis

GM1 gangliosidosis is a lysosomal storage disorder found in humans [14], cattle [15-17],

cats [18-20], dogs [21, 22] and sheep [23]. There have also been cases documented in emus

[24], and a mouse model has been generated [25]. These species all have similar symptoms

with the primary lesion being a gross deficiency of β-galactosidase. This results in a subsequent

Page 6: MOLECULAR CHARACTERIZATION OF OVINE GM1

3

buildup of GM1 gangliosides. The accumulation leads to severe neurological symptoms and the

eventual death of the individual.

There are three types of human GM1 gangliosidosis that vary by the age of onset. Type I

(infantile) earns is distinction because onset begins between birth and approximately 6 months

of age, and progression is rapid. Death of the affected individual occurs by 2 years of age. Type

II (juvenile) progresses slower, and symptoms develop between 7 months and 3 years of age.

Type III (adult) has a late onset of between 3 and 30 years [26]. GM1 gangliosidosis has been

documented in animal species as well, with most being similar to the Type II form of the disease

[16, 22, 27, 28] and one sheep phenotype that is more representative of the more severe Type I

pathology [29].

GM1 gangliosidosis is often the result of autosomal recessive mutations. Indeed, many

times, the disease is first identified in offspring that are the result of consanguineous matings.

As an example, cats determined to have GM1 gangliosidosis had a history of inbreeding prior to

observation of the neurological dysfunction [30]. In cattle, affected calves were observed after

a second breeding season with evidence of significant inbreeding [15, 17].

GM1 gangliosidosis has been observed in cattle since 1971 [15-17]. Signs of the disease

can be observed within the first month of life but affected calves are not in grave condition

until 6 to 9 months of age. The calves are not lively, exhibit ataxia, and fail to gain weight

resulting in poor body condition. Upon necropsy, a ballooning of the neurons is found. Also,

there is a bulge in cortical grey matter, but all other organs appear to be normal. There is an

accumulation of the GM1 ganglioside thus supporting a diagnosis of GM1 gangliosidosis.

Page 7: MOLECULAR CHARACTERIZATION OF OVINE GM1

4

Because there are no skeletal deformities or visceral changes, it is suggested that this disease is

most similar to the Type II form of the human disease [16].

Instances of GM1-gangliosidosis have also been observed in multiple breeds of cats,

including Siamese and domestic shorthaired. When compared to normal cats, the ganglioside

content in the brain is drastically increased in diseased cats [19, 20, 30, 31]. There is also a

recognizable increase in ganglioside concentration in the spleen and liver [30]. β-galactosidase

activity levels in the brain, liver, and spleen are less than 10% of control cats [19].

Alroy, et al., examined two models of GM1 gangliosidosis in three affected puppies with

lysosomal β-galactosidase activity less than 10% of control levels [21]. The affected puppies

also had HPLC patterns that were consistent with GM1 gangliosidosis. Tissues throughout the

body of affected puppies contained oligosaccharides consistent with a deficiency of β-

galactosidase. The two different breeds examined, English Springer Spaniel and Portuguese

Water Dog, showed similar symptoms indicating that the abnormalities paralleled deficiency of

β-galactosidase causing an increase in storage of GM1 gangliosides and oligosaccharides. There

were phenotypic variations in galactose containing storage products in the liver and kidney

between the two models. These were likely due to differences in the underlying mutation

between the breeds.

1.1.2 Other Sphingolipidoises

GM2 gangliosidosis is a build-up of gangliosides, but the excess storage product is a

different type of ganglioside from the GM1 gangliosidses described previously. Warren Tay, an

ophthalmologist, first observed the disease in 1881 [32]. Neurologist Barnard Sachs further

Page 8: MOLECULAR CHARACTERIZATION OF OVINE GM1

5

examined the diseased patient and noticed a distended cytoplasm in neurons; the disease later

became known as Tay-Sachs disease [33]. In 1962, Lars Svennerholm demonstrated that the

underlying cause was a buildup of GM2 gangliosides [34]. Since that time, two other variants of

GM2 gangliodsidosis have been described in addition to Tay-Sachs disease [35]. Sandhoff

disease and the AB-variant of GM2 gangliosidosis were identified as deficiencies of other

enzymes leading to similar symptoms (i.e., a buildup of GM2 gangliosides).

GM2 gangliosidosis is caused by a deficiency one or more of the alpha- and beta-

subunits of hexosaminidase, HEXA and HEXB respectively, and a GM2 activator, GM2A [10, 35].

Mutations to HEXA cause the Tay-Sachs form of GM2 gangliosidosis while alterations of HEXB

lead to Sandhoff disease. Alterations of GM2A cause a deficiency of the GM2 activator and

what is referred to as the AB Variant of the disease [35].

Other forms of sphingolipidoses include Gaucher’s disease, Type II, Niemann-Pick

disease, Type A, and Krabbe’s disease. Gaucher’s disease, Type II is a buildup of

glucosylceramide and glucosylpsychosine due to a lack of β-glucocerebrosidase [36]. Niemann-

Pick disease, Type A is caused by a deficiency of acid sphingomyelinase with the observation of

excess sphingomyelin and cholesterol in the liver as well as increased GM2 and GM3

gangliosides in the brain [37]. Krabbe’s disease is the result of an accumulation of

galactosylceramide due to a deficit in galactocerebroside β-galactosidase activity [38].

1.1.3 Morquio Disease, Type B

Morquio disease, type B, or Morquio B, is a systemic bone disease also caused by a

deficiency of β-galactosidase; however it is due to a different mutation than those that cause

Page 9: MOLECULAR CHARACTERIZATION OF OVINE GM1

6

GM1 gangliosidosis [39]. The affected patients’ most obvious symptom is spondyloepiphyseal

dysplasia, which includes a shorter stature, protrusion of sternum, odontoid hypoplasia, and

severe inward slanting of the thigh. It is an autosomal recessive disease where the cleavage of

β-linked galactose residue of keratan sulfate is impaired [40] resulting in the accumulation of

either type of keratan sulfate (KS1 or KS2) [41]. Despite the buildup of keratan sulfate, patients

are typically of normal intelligence but may show some neuropathological abnormalities. This

is thought to be due to the brain not being the primary site of storage for these molecules [41].

1.1.4 Galactosialidosis

Galactosialidosis is a lysosomal storage disorder that is caused by a deficiency in a

“protective protein” (PPCA), which has cathepsin A and deamidase properties [40, 42]. It also

forms a complex with β-galactosidase and neuraminidase. The lack of this protective protein

and complex formation leads to rapid degradation of the β-galactosidase and neuraminidase

enzymes [40, 43] and a subsequent accumulation of sialyloligosaccharides, oligosaccaharides

attached to sialic acid residues [40]. Galactosialidosis is considered a secondary β-galactosidase

deficiency because the lack of enzyme activity is not directly caused by a mutation in the gene

encoding the lysosomal enzyme [41].

1.2 Gangliosides

Klenk named phosphorus-free glycosphingolipids containing sialic acids, gangliosides

[44]. He first isolated these compounds from bovine brains in 1942. Glycosphingolipids consist

of a sphingosine backbone and a glycosolated ceramide moiety. The gangliosides are a special

class of glycosphingolipids [45]. Gangliosides are derived from lactosylceramide in the Golgi

Page 10: MOLECULAR CHARACTERIZATION OF OVINE GM1

7

and the biosynthesis is catalyzed by glycotransferases [46]. The carbohydrate chain attached

to the ceramide moiety determines the type of ganglioside. GM1 gangliosides have a terminal

galactose [44].

Gangliosides are found in all animal cell membranes however they are most common in

neuron plasma membranes [47]. There have been at least 12 different types of gangliosides

identified in an adult human’s brain and four of these make up approximately 90% of the total.

Gangliosides have a hydrophobic ceramide moiety that is attached to the membrane and one

or more hydrophilic oligosaccharide chains that extend from the cell membrane into the

extracellular matrix. While the function of gangliosides is not fully known, this hydrophilic end

has been reported as a potential binding site for viruses and bacterial toxins or a co-receptor

for hormones [35]. Other functions include cell adhesion and signal transduction [48].

The degradation of gangliosides has been studied in great detail due to the investigation

of diseases involving their accumulation in the lysosome. Upon the initiation of cellular

recycling, gangliosides are pulled from outside the cell into the lysosome to be degraded. Here,

the hydrophobic end, that contains the sugars of the molecule, is degraded first. The sugars are

removed by hydrolases [35] and can then exit the lysosome and be further degraded or utilized

in salvage processes [46]. Failure to remove this terminal molecule results in an excessive

accumulation of the specific ganglioside and the lysosome swells impairing cell function.

Page 11: MOLECULAR CHARACTERIZATION OF OVINE GM1

8

1.3 GLB1, the structural gene for β-galactosidase

Human GM1 gangliosidosis is caused by mutations in the β-galactosidase (GLB1) gene.

The gene is located on chromosome 3 (HSA3) [49-52] and spans approximately 100.59 kb [53,

54]. Alternative splicing of its 16 exons [54] produces at least two different mRNA molecules

[55]; a 2.5 kb transcript encodes for the “classic” β-galactosidase protein and a minor 2 kb

transcript encodes a β-galactosidase related protein, elastin binding protein (EPB), that is

actively transcribed in fibroblasts [55, 56]. A 34 bp 5’UTR, 2031 bp coding sequence, and 314

bp 3’UTR make up the processed mRNA with the first methionine codon beginning at the 35th

nucleotide of the transcript. This translates to 677 amino acid residues [53] resulting in an 88

kDa precursor protein that is subsequently processed into a 64 kDa mature enzyme [43, 57].

1.3.1 Function of β-galactosidase

The primary protein coded for by GLB1 is β-galactosidase, a family 35 glycosyl hydrolase

[58]. After it is processed into its mature form, β-galactosidase associates with its protective

protein, PPCA, and α-neuraminidase allowing β-galactosidase to be protected from rapid

proteolysis in the lysosome [59]. Functional GLB1 produces β-galactosidase that cleaves the

terminal galactose of the oligosaccharide moiety of GM1 gangliosides and other galactose

containing molecules (Figure 1) [14, 60]. The alternative splice variant codes for elastin binding

protein (EBP) [55], which assists in the assembly of elastic fibers in the extra cellular matrix [61].

Loss of function of the protein causes the decreased cleavage of terminal galactose

molecules. With this, there is a subsequent build-up of the GM1 ganglioside and other

molecules containing terminal galactose moieties. β-Galactosidase is also involved in

Page 12: MOLECULAR CHARACTERIZATION OF OVINE GM1

9

degradation of keratan sulfates and glycoprotein-derived oligosaccharides. Although these

mechanisms have not been as thoroughly studied as the degradation of GM1 ganglioside, they

are still important functions, and without the removal of keratan sulfates, Morquio B disease is

a potential outcome. In some cases, the genetic lesions that lead to GM1 gangliosidosis also

involve EBP. A decrease in elastin deposition occurs in GM1 gangliosidosis patients [61].

1.4 Mapping

As a scientific community, we are still discovering the function of many genes and the

biochemical pathways they influence. The biological mechanisms behind some simple, single

gene phenotypes as well as the interactions between more complex gene systems are still

unknown. By careful experimental design, we are able to target the traits of interest and

expand upon the knowledge of biological mechanisms. The advances in marker types and

mapping techniques have helped bridge the gap between phenotype and genotype.

The observation of co-inheritance between phenotypes was first used to determine

relative location of the genes to one another within the genome [62]. Later, proteins and

enzymes in blood were used as genetic markers to further enhance the ability to map by

linkage genes controlling traits. Restriction fragment length polymorphisms (RFLPs) and

microsatellites were widely used in genetic studies and for building genetic maps in humans

and animals. [63]. Microsatellites, which are short tandem repetitive sequences that vary in

number between individuals, soon became the marker of choice for constructing maps because

of their ease of use and decreased number of families needed to make the map [64]. Currently,

single nucleotide polymorphisms (SNP) are the preferred marker for many mapping

Page 13: MOLECULAR CHARACTERIZATION OF OVINE GM1

10

experiments, both large and smaller scale. As the name implies, SNP are single base pair

changes in the genome at a known location where there are generally two possible bases. The

rapid advancement of SNP technology platforms has allowed for the analysis of thousands of

markers with relatively even coverage across the genome, aiding in the ability to more precisely

map traits of interest.

Linkage disequilibrium (LD), the non-random assortment of alleles, can be utilized in

mapping of simple recessive traits. When there is a non-random distribution of alleles at a

marker in a case group and a control group, we can say that a marker is in high LD with the

locus in question. For example, in the case of a simple recessive disease trait, if the affected

individuals are all homozygous for a certain allele at a marker and the control individuals are

homozygous for the opposite allele at the same marker, we can say that this marker is in high

LD with the disease locus.

By using this concept, we can move away from following the inheritance of large

chromosomal sections through a pedigree. This allows unrelated individuals to be used in a

mapping population by instead looking for areas of historical recombination events that took

place prior to the generations of the individuals in the mapping population, but that still share

regions of a chromosome. The increased number of markers used takes advantage of these

recombination events and narrows the areas of homozygosity allowing for more determinate

mapping.

In 1987, Lander and Botstein [65] presented the idea of mapping recessive disease loci

using homozygosity of markers. This approach originally used restriction fragment length

Page 14: MOLECULAR CHARACTERIZATION OF OVINE GM1

11

polymorphism (RFLP) makers scattered throughout the genome to distinguish different regions

of homozygous by descent genotypes in individuals of consanguineous matings. By doing so,

the probability of a disease locus being within a defined/specific region can be calculated.

Homozygosity mapping has been a useful method to increase the power of disease

mapping studies. This approach allows for refinement of the region on the chromosome that

needs to be examined for a disease locus. The idea of homozygosity of markers can be

translated from RFLP to SNP markers in that areas of the chromosome that are homozgygous

for all markers in all affected individuals is still the indicator that the disease locus is located

within this region.

To statistically test this concept of deviation from Hardy-Weinberg Equilibrium, a

genome wide association (GWA) approach is used. The use of genome wide association

techniques was reviewed by Hirschhorn and Daly [66]. The concept underlying case/control

GWA studies is that each SNP is tested for an association between its genotype and the

phenotype, where a case is defined as an individual with the phenotype of interest and a

control is a normal individual. A good control is of similar genotype at all other loci, other than

the one of interest. A GWA analysis compares the allele frequency present in the case

population to that in the control population.

Currently, this SNP-based approach to mapping is the foundation of most genetic

disease studies in both humans and animals. Charlier, et al. [67] used SNP based association to

map five recessive defects in cattle and was able to fine map and identify causative mutations

in three of these diseases. Mapping of disease loci this way can allow a more direct method to

Page 15: MOLECULAR CHARACTERIZATION OF OVINE GM1

12

mutation discovery and therefore diagnostic assay development. The speed of discovery with

SNPs and GWA analysis is far faster than other forms of mapping and requires fewer individuals

than previous forms as well. This technique takes advantage of the lack of family structure by

utilizing linkage disequilibrium to refine areas of significant associations of genotype at markers

to phenotype.

1.5 GM1 gangliosidosis in sheep

Ovine GM1 gangliosidosis was first described following the production of affected lambs

after breeding rams were purchased from the same source for two years in a row [68]. Due to

the level of inbreeding, normal affection status of the parents, and the presence of both male

and female affected lambs, it was suggested the disease was inherited in an autosomal

recessive manner [23]. Prieur, et al. later demonstrated that the disease has an autosomal

recessive inheritance pattern based on a quantitative analysis of planned matings [69].

Although there was an abnormal distribution of males and females for an autosomal recessive

inheritance pattern, small sample size was recognized as a potential cause.

Pruier, Murnane, and Ahern-Rindell have described the pathology of the ovine disease

in depth [23, 27, 68, 70-73]. The cytoplasm of neuronal cells has a foamy appearance and has

characteristic vacuoles present. The level of β-galactosidase activity in affected lambs is

approximately 5% of homozygous normal animals. Obligate heterozygous animals have

approximately half of the normal β-galactosidase activity of normal animals due to a gene

dosage effect (i.e., only the normal allele of the heterozygote is capable of producing the active

enzyme).

Page 16: MOLECULAR CHARACTERIZATION OF OVINE GM1

13

The decreased level of β-galactosidase in affected lambs causes a vast increase in GM1

gangliosides in the brain and central nervous system. This buildup causes an enlargement of

the neurons and some cells have displaced nuclei. There is excess storage in other tissues as

well, but the severity is not as high. Retina, ganglia of various organs, heart Purkinje fibers,

liver, kidney, histiocytes of the ileum, mesenteric and hilar lymph nodes all show lesions

associated with ganglioside accumulation [73].

Affected sheep have a deficiency of β-galactosidase as well as α-neuraminidase [23].

Humans with deficiencies of both of these enzymes are diagnosed as having galactosialidosis

[40]. However, based on the lack of increase in β-galactosidase activity when fibroblasts from

affected sheep are incubated with leupeptin, the ovine disease has been classified as

gangliosidosis [23]. Human galactosialidosis fibroblasts show an elevation in β-galactosidase

when treated leupeptin, therefore showing that the compromised β-galactosidase activity in

sheep is not due a similar etiology [74].

Hartley and Kater reported a lamb that was affected with a similar deficiency in New

Zealand [75]. In 1991, Murnane, et al. examined the similarities between the lamb reported in

New Zealand and the lambs previously reported in their work [76]. The central nervous tissues

of the New Zealand lamb had an almost identical lectin-binding pattern as their lambs.

Therefore, they concluded that the New Zealand lamb was most likely also affected with GM1

gangliosidosis.

Murnane, et al. also reported that affected lambs already show signs of GM1

gangliosidosis at four months gestation [77]. A recipient ewe that was carrying triplets

Page 17: MOLECULAR CHARACTERIZATION OF OVINE GM1

14

designated for study died unexpectedly approximately one month prior to lambing. Beta-

galactosidase activity was assessed for all three fetuses. As a result, two of the three were

classified as heterozygotes and the third as affected based on the low circulating levels of β-

galactosidase. Upon further investigation, the affected fetus was already showing other signs

of GM1 gangliosidosis pathology. This was an important finding because it suggests that

prenatal therapy may have some potential for treating potentially affected fetuses.

Skelly, et al. [29] also reported a type of ovine GM1 gangliosidosis that is similar to those

reported by Ahern-Rindell, Murnane, and Prieur. Lambs of the same sire showed symptoms of

ataxia in the hind limbs, opisthotonus, were unable to stand and ultimately became

unresponsive and blind. Necropsy of these lambs exposed diffuse encephalopathy. Ballooned

neurons were seen in the brain and spinal cord. The lambs had a 90% deficiency of β-

galactosidase activity; however, unlike the previously reported GM1 gangliosidosis lambs they

did not have a deficiency of α-neuraminidase. Based on these data, it was concluded that these

lambs exhibited a novel form of ovine GM1 gangliosidosis that was most similar to the infantile

form of the human disease.

Studying these sheep can aid in understanding the progression of the disease and

hopefully increase knowledge of pathologies associated with deficiencies of β-galactosidase.

However, to do so efficiently, knowledge of genotypic status prior to symptom onset would be

greatly beneficial. Advances in treatment of human patients may be attained by characterizing

the genetic lesion underlying ovine GM1 gangliosidosis and using the information to identify

affected individuals at a young age.

Page 18: MOLECULAR CHARACTERIZATION OF OVINE GM1

15

Chapter 2: Molecular Genetic Characterization of Ovine GM1 Gangliosidosis:

An Animal Model

2.1 Background

Animal models of human diseases can serve a valuable purpose by creating

opportunities to study treatments and therapies of homologous human disorders. Although

laboratory animals such as mice and rats may be convenient from a facilities and management

perspective, larger animals may be preferred due to similarities in anatomy, developmental

timeline, and pathology as compared to humans. Sheep and other non-laboratory animals have

been used as models for retinal degeneration [2], cardiovascular disease [3], congestive heart

failure [3-5], cardiomyopathy [6], muscular dystrophy [7], Parkinson’s disease [8], and

hemophilia [1], among other diseases.

GM1 gangliosidosis is a lysosomal storage disorder. There are three types of human

GM1 gangliosidosis that differ in age of disease onset. Symptoms of infantile (Type I) appear

between birth and approximately 6 months of age. Progression of the disease is rapid with

death of affected individuals occurring by two years of age. Type II has a later onset with

symptoms developing between 7 months and 3 years of age. Type III, the adult form, has a late

onset of between 3 and 30 years old [26]. Most animal models of the disease are most similar

to the Type II form of the disease [16, 22, 27, 28]. GM1 gangliosidosis has been described in

cattle [15-17], cats [18-20], dogs [21, 22] and sheep [23]. A mouse model has been generated

for use in research [25]. These species all have similar symptoms with the most prominent

being a gross deficiency of β-galactosidase and the subsequent buildup of GM1 gangliosides.

Page 19: MOLECULAR CHARACTERIZATION OF OVINE GM1

16

These accumulations in the brain lead to the display of neurological symptoms and eventually

cause the death of the individual.

Sheep with GM1 gangliosidosis begin exhibiting symptoms at approximately four

months of age and have approximately 5% β-galactosidase activity of normal sheep [23, 27, 68,

70-73]. This decrease in β-galactosidase causes an increase of GM1 gangliosides in the brain

and some other tissues [73]. Affected lambs also have a deficiency of α-neuraminidase but do

not have an increase in β-galactosidase activity after treatment with leupeptin. Because of this,

they are diagnosed with GM1 gangliosidosis [23].

The purpose of this study was to characterize the causative DNA mutation underlying

ovine GM1 gangliosidosis and use the resulting information to design a DNA-based diagnostic

that can be used for screening animals prior to the onset of disease. The identification of

affected animals prior to the appearance of clinical symptoms will provide an opportunity to

investigate therapies and treatments of GM1 gangliosidosis.

2.2 Materials and methods

2.2.1 Animals

Samples used for this study were submitted by Dr. Larry Holler of South Dakota State

University. Whole blood samples were collected using EDTA anticoagulant from affected lambs

and putative homozygous normal sheep. Progeny testing was used to determine an animal’s

potential to be homozygous normal (i.e., individuals failing to produce affected offspring after

repeated matings to known heterozygotes). DNA was extracted using the salting out method

Page 20: MOLECULAR CHARACTERIZATION OF OVINE GM1

17

[78]. Following extraction, genomic DNA was quantified by spectrophotometry using a

NanoDrop instrument (Thermo Fisher Scientific, Inc., Wilmington, DE).

2.2.2 SNP Genotyping, Data Analysis, and Mapping

One microgram of each individual’s DNA was submitted to GeneSeek (Neogen

Corporation, Lincoln, NE) for genotyping on the Ovine SNP50 Genotyping BeadChip (Illumina,

Inc., San Diego, CA). Genotype data were analyzed by Genome Wide Association (GWA) in

PLINK [79]. Genotype data were pruned by removing markers with a minor allele frequency

(MAF) of less than 1% (--maf 0.01) and genotyping frequency of less than 90% (--geno 0.1).

Genotype data for individuals with less than 85% genotyped loci were also removed. Standard

case/control association analysis (--assoc) and association analysis with 10,000 permutations (--

mperm) were performed using the remaining markers. Homozygosity analysis (--homozyg) was

used to identify overlapping regions of homozygosity shared by affected animals based on GWA

results. The Virtual Sheep Genome [80] and functional gene annotation were used to select

positional candidate genes for sequencing.

2.2.3 Mutation detection

Total RNA was extracted from cerebral tissue of an affected lamb. Extraction was

performed according to manufacturer instructions using TRIzol® reagent (Invitrogen™, Life

Technologies Corporation, Grand Island, NY). RNA was quantified using a NanoDrop instrument

(Thermo Fisher Scientific, Inc., Wilmington, DE) and quality was assessed by electrophoresis in a

1.2% agarose 1X MOPS gel. Ethidium bromide staining and exposure to UV light was used to

visualize the RNA.

Page 21: MOLECULAR CHARACTERIZATION OF OVINE GM1

18

Complementary DNA (cDNA) was synthesized in a 20 µL reaction by first combining 2 µg

total RNA, 0.5 µM random decamers, and 0.5 mM dNTPs in a total volume of 13 µL; the

combined mixture was then incubated at 65°C for 5 minutes. First strand buffer, DTT at 5 μM,

RNase Out at 2 units/µL, and Superscript III reverse transcriptase at 10 units/μL were included

and the mixture was incubated again for 5 minutes at 25°C, 2 hours at 50°C, and 15 minutes at

10°C. DNase/RNase free water was added to dilute total volume to approximately 100 µL.

A consensus sequence generated using BLAST [81] was used to design primers in Primer

Designer v2.0 (Scientific and Educational Software, Cary, NC). All primers (Table 1) were

synthesized by Integrated DNA Technologies (Coralville, IA). The cDNA was amplified in 20 µL

reactions including 2.5 units HotStarTaq DNA Polymerase (Qiagen, Valencia, CA), primers at

0.5μM, deoxynucleotide triphosphates (dNTPs) at 200μM, and 1X PCR buffer solution (included

with polymerase). The thermocycler was programmed with a standard three-step program. To

verify quality, PCR products were separated via electrophoresis of a 1% agarose 0.5x TBE gel

stained with ethidium bromide.

PCR products were treated with ExoSAP-IT (Affymetrix, Inc., Santa Clara, CA) to prevent

residual primers and unincorporated dNTPs from interfering with sequencing reactions. Four

µL ExoSAP-IT (1:12 dilution) was added to 10 µL of PCR product. The reaction was incubated for

45 minutes at 37°C and an additional 15 minutes at 80°C. Dye-terminator Sanger sequencing

was performed using 2 µL of ExoSAP-IT treated PCR product; 0.25 µL Big Dye® (Applied

Biosystems, Life Technologies Corporation, Grand Island, NY), 0.08 µL Big Dye® dGTP (Applied

Biosystems), 3.62 µL Sanger Sequencing Buffer, and 0.525 µL 10 µM primer are included to

Page 22: MOLECULAR CHARACTERIZATION OF OVINE GM1

19

make an 8 µL reaction. Samples were heated to 96°C for initial denaturing then cycled 96°C for

15 seconds, 53°C for 15 seconds, and 60°C for 3 minutes for 55 cycles. After the final cycle, the

sample was incubated at 60°C for 10 minutes.

Ready-to-load samples were delivered to the W. M. Keck Center for Comparative and

Functional Genomics at the University of Illinois and run on an AB 3730xl DNA Analyzer (Applied

Biosystems). Data were analyzed in CodonCode Aligner software (CodonCode Corporation,

Dedham, MA). Sequence variants within protein coding regions were examined using SIFT [82]

and PolyPhen [83] web-based protein variation predictors.

2.2.4 Completing Genomic Sequence of GLB1

Agar stabs received from CHORI BACPAC Resource Center (Children’s Hospital Oakland

Research Institute, Oakland, CA) were streaked on chloramphenicol 2x LB media agar plates and

grown at 37°C overnight. Colonies were picked (2 per BAC) and cultured in 5mL cultures of 2x

LB media with 1μg/mL chloramphenicol for 16 hours at 37°C and 250 rpm. BAC DNA for

screening was isolated using the Perfectprep BAC96 kit (5 Prime).

PCR screening for the genes up- (CCR4) and down- (TMPPE) stream, as well as GLB1

exons 2, 6, and 14 was performed. Primers were designed in Primer Designer v2.0 and PCR was

performed in 20 µL reactions with a standard 3-step program as described previously. Criteria

for selection involved inclusion of all PCR amplicons and proposed position over region of

interest.

Three-milliliter cultures of agar stabs were grown in 2x LB media overnight at 37°C and

250 rpm with 1μg/mL chloramphenicol. Three milliliter cultures from plucked colonies were

Page 23: MOLECULAR CHARACTERIZATION OF OVINE GM1

20

grown overnight in 2x LB media with 1μg/mL chloramphenicol at 37°C and 250 rpm, and 1 mL

of each culture was used to inoculate fifty milliliter cultures grown at the same conditions for

BAC DNA isolation.

Purified BAC DNA was extracted using the Epicentre BACMax DNA purification kit

(Illumina). Fifty-milliliter cultures were grown to A600 of 3-4 and kit isolation procedures were

followed. DNA was submitted to the Keck Center and the library was constructed with the

TruSeq DNA Sample Prep kit (Illumina) then sequenced using the Illumina® MiSeq instrument

(Illumina). The resulting sequence was assembled by the Keck Center Bioinformatics Team.

Using resulting contigs, sections of repetitive sequence and gaps between contigs were filled

using direct sequencing and assembled in CodonCode Aligner.

2.2.5 Assay Development

A PCR-RFLP diagnostic assay was developed based on differences in restriction enzyme

recognition site created by the mutation. PCR amplification was performed in 20 μL reactions

with each reaction including Qiagen HotStarTaq DNA Polymerase at a rate of 2.5 units/μL.

Primers are included at 0.5μM and dNTPs are included at 200μM. 10x PCR buffer solution

(included with Taq) is included at 1x. 29 total cycles with an annealing temperature of 55°C and

an extension time of 1 minute, 15 seconds are used. Restriction enzyme digest occurs with Aci I

(5 units/30 μL reaction, New England Biolabs, Inc., Ipswich, MA). PCR products are separated

via gel electrophoresis in a 1.6% agarose, 0.5x TBE gel.

Page 24: MOLECULAR CHARACTERIZATION OF OVINE GM1

21

2.3 Results

2.3.1 SNP Genotyping, Data Analysis, and Mapping

Implementation of quality control and polymorphism thresholds for genotype data

resulted in the culling of 5,976 SNPs; thus for all 17 individuals (seven cases and ten controls)

genotyped, 46,437 markers were used for association analysis. Of the ten most significant

associations there was one marker located on each of sheep chromosomes 5, 17 and 23, with

the remaining seven located on chromosome 19 (OAR19) (Table 2; Figure 2). The most

significant association was detected with the marker OAR17_37111029.1, on OAR17. Although

this marker had the highest association, examination of genotypes in the affected lambs

revealed that two of seven were heterozygous. Further investigation of the single marker

associations on OAR5 and OAR23 showed similar results. For the SNP on OAR5, all three

genotypes were present within the group of affected lambs. In contrast, the affected lambs

were all homozygous for the marker located on OAR23, however four of the putative

homozygous controls were heterozygous.

Due to the number of markers with highly significant associations (p<10-6

) located on

OAR19, these markers were also more closely examined. The marker showing the most

significant association on OAR19, OAR19_8302232.1, along with OAR19_9225668.1, was

homozygous in all affected animals, with the three and four of the control sheep being

heterozygous, respectively. Three SNPs, although having the third most significant association,

were heterozygous in one affected lamb and two putative normal homozygotes. The remaining

Page 25: MOLECULAR CHARACTERIZATION OF OVINE GM1

22

of the top ten SNPs were also heterozygous in one affected lamb as well as three of the control

sheep.

Even though many of the significantly associated markers on OAR19 were not consistent

with the putative known genotypes of the individuals, the large number of associated SNPs on

this chromosome provided reason to perform a homozygosity analysis for this chromosome.

Results of the analysis indicated that all affected lambs were homozygous for markers between

7.2 and 9.4 Mb (Figure 3A). Furthermore, comparative genome analysis, using the human

(Build 36.3) and cattle (Btau 3.1) genome assemblies, indicates that the region is orthologous to

human chromosome 3 containing the candidate gene GLB1 (Figure 3B).

2.3.2 GLB1 Mutation Detection

The absence of either a complete mRNA or genomic DNA sequence for sheep GLB1

required the in silico assembly of a consensus ovine sequence prior to mutation detection. The

bovine reference mRNA sequence (GenBank accession NM_001035043.1) was used to perform

a BLAST query of the GenBank, EMBL, and DDBJ expressed sequence tag (EST) database to

identify all potential ovine sequences. Twenty-six sequences were recognized as belonging to

the orthologous sheep GLB1 transcript (Appendix Figure 1). The alignment of the sheep EST

sequences generated a consensus ovine GLB1 sequence of 2,346 bp (Appendix Figure 2).

Translation of the consensus sequence indicated the putative initiation codon was located at

nucleotide position 60 and the predicted termination codon at position 1,998. This leaves an

estimated 59 bp and 348 bp of 5’ and 3’ untranslated regions, respectively. A consensus

polyadenylation signal is predicted between nucleotides 2328 and 2333 of the putative

Page 26: MOLECULAR CHARACTERIZATION OF OVINE GM1

23

transcript. The corresponding translated protein is composed of 646 amino acids (Appendix

Figure 3).

Using the cDNA generated from cerebrum total RNA of an affected lamb, four

overlapping fragments corresponding to 90.5% of the ovine mRNA sequence were successfully

amplified. Sequence analysis revealed a single guanine to thymine base pair substitution within

exon 6 of ovine GLB1. This transversion mutation results in a cysteine to phenylalanine

nonsynonymous amino acid substitution. No other sequence variation was identified. Analyses

of this substitution using SIFT and PolyPhen predict that the function of the resulting protein

would be compromised. Furthermore, comparison of partial protein sequences across several

species illustrates conservation of the cysteine residue at this position (Figure 4).

2.3.3 Completing Genomic Sequence of GLB1

Sheep BAC end sequences generated by Dalrymple, et al. [80] were used to assist in the

identification of BACs potentially containing the entire sheep GLB1 gene. A BLAST query of BAC

end sequences selected from the Virtual Sheep Genome confirmed similarity to bovine

chromosome 22 surrounding GLB1. PCR screening of selected BACs showed that all BACs

contained the desired region. The BAC clone CH243_119J20 was selected for sequencing based

on the estimated location of GLB1 within the cloned genomic fragment; alignment of the BAC

end sequence BLAST search results suggested GLB1 was located closest to the middle of the

cloned DNA. Sequencing of clone 119J20 on the MiSeq instrument resulted in 8,201,678 reads.

After removal of E. coli reads, approximately 5 million reads remained. Seven contigs were

Page 27: MOLECULAR CHARACTERIZATION OF OVINE GM1

24

assembled from the remaining data with GLB1 being contained in two. After direct sequencing,

these two were joined and used to predict positions of exons (Appendix Figure 4; Table 3).

2.3.4 Diagnostic Assay Development

The guanine to thymine transversion induces the loss of an AciI restriction enzyme

recognition sequence, CCGC (wild-type) versus CCTC (affected). Oligonucleotide primers were

designed to amplify a 314 bp fragment and, when treated with the restriction endonuclease,

the wild type allele leaves two fragments of 201 and 113 base pairs (Figure 5). Sheep of known

status from the flock at South Dakota State University were genotyped in order to validate the

assay.

2.4 Discussion

2.4.1 SNP Genotyping, Data Analysis, and Mapping

The use of high density SNP platforms has improved the ability of scientists to evaluate

recessive genetic diseases. Previously, a large number of related individuals spanning multiple

generations and with known pedigrees were required to map diseases. Using the OvineSNP50

Bead Chip and GWA techniques, the ovine GM1 gangliosidosis disease locus was mapped with

only seven affected animals with little to no known pedigree information required in the

analysis. GWA analysis maps the disease locus to a region on OAR19. Following homozygosity

analysis, it was observed that all affected animals were homozygous for markers between 7.2

and 9.4 Mb with all unaffected sheep being heterozygous or homozygous for the opposite

allele.

Page 28: MOLECULAR CHARACTERIZATION OF OVINE GM1

25

Genome resources for some species are more advanced than others. Although

significant improvements are made continually, the sheep genome is still in its infancy.

Typically, SNP data is analyzed and suitable candidate genes within the region are selected for

further analysis based on physiological symptoms, relevance to gene function, and location in

relationship to map position. Because the sheep genome lacked both sequence information

and annotation in this region, a comparative mapping approach using the Virtual Sheep

Genome [80] and relationship to both the human and bovine reference genomes was examined

for further information. We were able to select GLB1 as a positional candidate gene.

The diagnosis of GM1 gangliosidosis with the similarity of symptoms between the

species and the gross accumulation of GM1 gangliosides in affected sheep indicated a mutation

in GLB1 as seen in other species was likely [28, 41, 84, 85]. is cause of extra attention [23].

While the most likely candidate for such pathology is a disruption of GLB1, the deficiency of α-

neuraminidase that accompanies the lack of β-galactosidase and buildup of GM1 gangliosides in

diseased sheep gives reason to map the disease locus.

2.4.2 Sequencing

In human brain tissue, GLB1 expression is highly abundant, suggesting that brain tissue

from an affected lamb would be ideal for RNA extraction [86]. By amplifying and sequencing

the brain cDNA, we were determined the coding sequence of sheep GLB1. The cDNA sequence

of affected sheep possessed a guanine to thymine base pair substitution with the altered base

being the second base of a codon. Typically, a change in the second base in a codon will modify

the amino acid residue.

Page 29: MOLECULAR CHARACTERIZATION OF OVINE GM1

26

The codon, originally a cysteine codon, becomes a phenylalanine residue, and although

the both are of neutral charge, the differences in polarity and functional groups insinuate that

the exchange will be damaging. Cysteine residues contain a sulfhydryl group and form disulfide

bonds with other cysteine residues. This influences the folding of the polypeptide strand and

thus the structure and stability of the molecule. In the human β-galactosidase protein, Cys-230

forms a disulfide bond with Cys-195 (predicted -229 and -194 in sheep sequence) [87].

Therefore, the substitution of ovine Cys-229 would likely cause an improperly folded protein

due to lack of a disulfide bond.

The triosephosphate isomerase (TIM) barrel domain that is characteristic of glycosyl

hydorlases spans the first 359 amino acid residues of human β-galactosidase [87]. The altered

residue as well as the catalytic residues of human β-galactosidase Glu-188 and -268, are located

in the TIM barrel [87, 88]. Because is the catalytic domain of the protein, it is expected that a

substitution of amino acid of the magnitude as seen in the affected lambs would likely be the

causal change. Alignment of predicted ovine GLB1 to other species shows that the Cys-residue

is highly conserved (Figure 4). The results from SIFT and PolyPhen agree with the notion that

the altered amino acid is not tolerated and results in a nonfunctional protein.

Differences in the number of residues between human and ovine amino acid sequences

are noted. The first discrepancy is the result of an additional codon in the human sequence

between the third and fourth ovine residues. This results in a shift of the alignment to account

for the high conservation downstream leaving a gap in the ovine sequence. The other deviation

between the two is the additional 30 residues present in the human sequence after the location

Page 30: MOLECULAR CHARACTERIZATION OF OVINE GM1

27

of the predicted ovine stop codon. Neither of these discrepancies is part of highly conserved

domains across species and therefore is not of high concern.

2.4.3 Assay Development

Treatments and therapies for genetic diseases are scarce in most species. Many

livestock producers simply cull carrier animals due to the potential for loss. However, human

genetic diseases can be further researched via animal models that have similar phenotypes

caused by similar genetic lesions. The sheep can be an effective model for human disease due

to its relative mature body weight and similar size of internal organs. Affected lambs can be

used to research treatments and therapies for human GM1 gangliosidosis patients and carrier

animals can be used to continue production of said affected sheep. As a result, the assay

designed is useful for identifying heterozygous sheep for breeding decisions and affected

animals prior to death for symptom observation.

The PCR-RFLP assay designed for genotyping sheep is a simple diagnostic via DNA. In

total, 1664 individuals have been genotyped using the developed assay. The assay was in

agreement with phenotype, and all lambs that were genotyped homozygous affected

eventually showed symptoms of disease pathology. Conversely, all lambs shown to be

homozygous for the normal allele or heterozygous did not exhibit GM1 gangliosidosis

symptoms.

2.5 Conclusions

Lysosomal storage disorders are a broad category of diseases with similar biochemical

backgrounds. These disorders have proven to be difficult to treat and often result in death of

Page 31: MOLECULAR CHARACTERIZATION OF OVINE GM1

28

the affected individual, especially if onset is early in life. Using animal models like the sheep

used in this study, progress can be made not only in research of GM1 gangliosidosis, but in

other lysosomal storage disorders too.

The phenotype of affected lambs diagnosed as GM1 gangliosidosis gives indication that

GLB1 is non-functional in said sheep. The genetic data represents an association between the

phenotype and markers on OAR19 between 7.2 and 9.4 Mb. Comparative maps indicate that

ovine GLB1 lies in that area, and sequencing data proves that a mutation causing deleterious

effects is present.

In conclusion, the purposes of this study were met by finding the causative mutation of

ovine GM1 gangliosidosis, a G to T base pair substitution in exon 6 of ovine GLB1. The mutation

was then used to design and PCR-RFLP assay in order to identify lambs by genotype before the

symptoms of the disease may be shown. These lambs are to be identified and used to develop

therapies for use in human medicine.

Page 32: MOLECULAR CHARACTERIZATION OF OVINE GM1

Figures and Tables

Figure 1. Structure of GM1, GM2, and GM3 ganglioside.

galactose of the oligosaccharide moiety from GM1

Figure 1. Structure of GM1, GM2, and GM3 ganglioside. β-Galactosidase cleaves the terminal

de moiety from GM1 gangliosides [60].

29

Galactosidase cleaves the terminal

Page 33: MOLECULAR CHARACTERIZATION OF OVINE GM1

30

Figure 2. Manhattan plot of standard case/control GWA analysis with 10,000 permutations. The –log10(p-value) is plotted on the

y-axis against the position of each SNP within the genome on the x-axis. The purple horizontal line represents a significance

threshold of p < 0.01.

Page 34: MOLECULAR CHARACTERIZATION OF OVINE GM1

Figure 3. Homozygosity analysis of the GM1 Gangliosidosis

lambs are homozygous for all SNPs between 7.2 and 9.4 Mb (grey box). This coincides with the area of significant association

the GWA analysis. B) The alignment of the human (top) and bovine (bottom) genomes to the ovine genome (7.4 to 8 Mb) shows

that GLB1 in each species (red asterisks) corresponds to the region of interest on OAR19 (7.4 to 8 Mb, black box).

Homozygosity analysis of the GM1 Gangliosidosis-associated region on OAR19 in affected lambs

lambs are homozygous for all SNPs between 7.2 and 9.4 Mb (grey box). This coincides with the area of significant association

e GWA analysis. B) The alignment of the human (top) and bovine (bottom) genomes to the ovine genome (7.4 to 8 Mb) shows

in each species (red asterisks) corresponds to the region of interest on OAR19 (7.4 to 8 Mb, black box).

31

associated region on OAR19 in affected lambs. A) The seven affected

lambs are homozygous for all SNPs between 7.2 and 9.4 Mb (grey box). This coincides with the area of significant association seen in

e GWA analysis. B) The alignment of the human (top) and bovine (bottom) genomes to the ovine genome (7.4 to 8 Mb) shows

in each species (red asterisks) corresponds to the region of interest on OAR19 (7.4 to 8 Mb, black box).

Page 35: MOLECULAR CHARACTERIZATION OF OVINE GM1

32

* - single, fully conserved residue

: - conservation of strong groups

. - conservation of weak groups

- no consensus

Figure 4. Alignment of GLB1 amino acid sequence around predicted mutation to other species. The Cys residue (shown in box) is

highly conserved at this position.

Mouse YLRFLVHRFRYHLGNDVILFTTDGASEKMLKCGTLQDLYATVDFGTGNNI Rat YLRFLEHRFRYHLGNDIILFTTDGAAEKLLKCGTLQDLYATVDFGTTGNI Affected lamb YLRFLQKRFQDHLGEDVLLFTTDGVNEEFLQFGALQGLYATVDFSTGSNL Ovine YLRFLQKRFQDHLGEDVLLFTTDGVNEEFLQCGALQGLYATVDFSTGSXL Bovine YLRFLQKRFHDHLGEDVLLFTTDGVNERLLQCGALQGLYATVDFSPGTNL Dog YLRFLQKLFHHHLGNDVLLFTTDGANEKFLQCGALQGLYATVDFGPGANI Human YLRFLQKRFRHHLGDDVVLFTTDGAHKTFLKCGALQGLYTTVDFGTGSNI Zebrafish YMRHLSQLFRFYLGEEAVLFTTDGAGLGYLKCGSLQGLYATVDFGPGANV *:*.* : *: :**:: :******. *: *:**.**:****.. :

Page 36: MOLECULAR CHARACTERIZATION OF OVINE GM1

33

Figure 5. Electrophoresis of PCR-RFLP diagnostic. In a 1.6% agarose gel, from left to right, two

carrier individuals, an affected, a homozygous normal, an affected, a homozygous normal, and

a negative control, are separated next to a 100bp ladder. The larger 314 bp fragment can be

seen as well as the two smaller 201 and 113 bp fragments, after treatment with Aci I restriction

endonuclease.

Page 37: MOLECULAR CHARACTERIZATION OF OVINE GM1

34

Table 1. Primers used for PCR amplification and direct sequencing.

Primer Name Primer Sequence

oGLB1_RNA2_F CAGAAGCGTTTCCAGGACCA

oGLB1_RNA2_R AGCCGTTGATCCACACCTGA

oGLB1cDNA1F GTTTGCACAATGCCACCCAG

oGLB1cDNA1R GCAGGAACTCCTCATTGACC

oGLB1cDNA2F CAGAAGCGTTTCCAGGACCA

oGLB1cDNA2R TCAGGGAGCGTTGTTCGGTA

oGLB1cDNA3F TGTACCGAACAACGCTCCCT

oGLB1cDNA3R AGCTCCAGCACCACGATGAT

oGLB1cDNA4F TGGATCAACGGCTTTAACCT

oGLB1cDNA4R CTTCAAATGCTTCCCTTCCA

oGLB1_EX6_F CAACAGTTTGCCTTAGAACG

oGLB1_EX6_R TGCTTAGAGCAATCGACTGA

TMPPE_F GGATGGTGAACACGCTGGAG

TMPPE_R TCAGGAGATAGGCTGCCACG

CCR4_F ACTGAGCGCAACCACACCTA

CCR4_R ACCGTGGACTGCGTGTAAGA

bGLB1_EX2_F GCCCTGTCTCAGCAGTGGTT

bGLB1_EX2_R AGCCCAGTGCCCTCCTACTT

bGLB1_EX6_F TGAGGATCAAGTGTAGGAGA

bGLB1_EX6_R AAACAGAGCCTGTGTCCTAA

bGLB1_EX14_F AGTCTGGCAACCCTCCTATG

bGLB1_EX14_R CAGGGCTGCAAGGAAAGAGT

2TO7F TGAATCCAAGCCACTCACTC

2TO7R CCAGCCAGCTGTAAGAACCA

2to7R2nd CATGTCACGTAACCTCTGGA

Page 38: MOLECULAR CHARACTERIZATION OF OVINE GM1

35

Table 2. Markers exhibiting highest statistical association with affection status.

Marker Chromosome Position P

OAR17_37111029.1 17 37111029 0.0005999

OAR19_8302232.1 19 8302232 0.003

OAR19_4624345.1 19 4624345 0.008799

s58656.1 19 10218656 0.008799

OAR19_12511657.1 19 12511657 0.008799

OAR19_9225668.1 19 9225668 0.0205

s18696.1 23 24251647 0.0205

OAR5_86386899.1 5 86386899 0.0433

s28559.1 19 11401883 0.05929

OAR19_11692436.1 19 11692436 0.05929

Page 39: MOLECULAR CHARACTERIZATION OF OVINE GM1

36

Table 3. Predicted position of exons.

Predicted

Exon

Genomic

coordinates

mRNA

coordinates Length

Exon 1 13648-13778 1-131 131

Exon 2 36654-36823 132-301 170

Exon 3 38463-38613 302-452 151

Exon 4 39153-39213 453-513 61

Exon 5 40396-40490 514-608 95

Exon 6 48042-48222 609-789 181

Exon 7 53385-53443 790-848 59

Exon 8 55154-55275 849-970 122

Exon 9 55386-55426 971-1011 41

Exon 10 57613-57725 1012-1124 113

Exon 11 80916-80990 1125-1199 75

Exon 12 83235-83324 1200-1289 90

Exon 13 85975-86088 1290-1403 114

Exon 14 89049-89180 1404-1535 132

Exon 15 91056-91310 1536-1790 255

Exon 16 111952-112500 1791-2339 549

Page 40: MOLECULAR CHARACTERIZATION OF OVINE GM1

37

References

1. Casal M, Haskins M: Large animal models and gene therapy. European journal of human

genetics 2005, 14(3):266-272.

2. Chader GJ: Animal models in research on retinal degenerations: past progress and

future hope. Vision research 2002, 42(4):393-399.

3. Hasenfuss G: Animal models of human cardiovascular disease, heart failure and

hypertrophy. Cardiovascular research 1998, 39(1):60-76.

4. Dixon JA, Spinale FG: Large Animal Models of Heart Failure. Circulation: Heart Failure

2009, 2(3):262-271.

5. Power J, Tonkin A: Large animal models of heart failure. Australian and New Zealand

journal of medicine 1999, 29(3):395-402.

6. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM:

Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies.

Journal of the American College of Cardiology 1997, 29(4):709-715.

7. Collins C, Morgan J: Duchenne's muscular dystrophy: animal models used to investigate

pathogenesis and develop therapeutic strategies. International journal of experimental

pathology 2003, 84(4):165-172.

8. Gerlach M, Riederer P: Animal models of Parkinson's disease: an empirical comparison

with the phenomenology of the disease in man. Journal of neural transmission 1996,

103(8):987-1041.

9. Hers H: Inborn lysosomal diseases. Gastroenterology 1965, 48:625.

10. Neufeld EF: Lysosomal storage diseases. Annual review of biochemistry 1991, 60:257-

280.

11. Patel S, Pentchev P: Genetic defects of lysosomal function in animals. Annual review of

nutrition 1989, 9(1):395-416.

12. Vellodi A: Lysosomal storage disorders. British journal of haematology 2005, 128(4):413-

431.

13. Hers H: α-Glucosidase deficiency in generalized glycogen-storage disease (Pompe's

disease). Biochemical Journal 1963, 86(1):11.

14. Okada S, O'Brien JS: Generalized gangliosidosis: beta-galactosidase deficiency. Science

1968, 160(3831):1002-1004.

15. Donnelly W, Hannan J, Sheahan B, O'Connor P: Cerebrospinal lipidosis in Friesian calves.

The Veterinary record 1972, 91(9):225.

16. Donnelly W, Sheahan B: Animal model of human disease. GMi-gangliosidosis type II.

Animal model: Bovine GMi-gangliosidosis, cerebrospinal lipidosis of Friesian cattle. The

American journal of pathology 1975, 81(1):255.

17. Donnelly W, Sheahan B, Rogers T: GM1 gangliosidosis in Friesian calves. The Journal of

pathology 1973, 111(3):173-179.

18. Baker HJ, Walkley SU, Rattazzi MC, Singer HS, Watson HL, Wood PA: Feline

gangliosidoses as models of human lysosomal storage diseases. Progress in clinical and

biological research 1982, 94:203-212.

19. Barker CG, Blakemore WF, Dell A, Palmer AC, Tiller PR, Winchester BG: GM1

gangliosidosis (type 1) in a cat. The Biochemical journal 1986, 235(1):151-158.

Page 41: MOLECULAR CHARACTERIZATION OF OVINE GM1

38

20. Blakemore W: GM1 gangliosidosis in a cat. Journal of comparative pathology 1972,

82(2):179-184.

21. Alroy J, Orgad U, DeGasperi R, Richard R, Warren C, Knowles K, Thalhammer J, Raghavan

S: Canine GM1-gangliosidosis. A clinical, morphologic, histochemical, and biochemical

comparison of two different models. The American journal of pathology 1992,

140(3):675.

22. Müller G, Alldinger S, Moritz A, Zurbriggen A, Kirchhof N, Sewell A, Baumgärtner W:

GM1-gangliosidosis in Alaskan huskies: clinical and pathologic findings. Veterinary

Pathology Online 2001, 38(3):281.

23. Ahern-Rindell AJ, Prieur DJ, Murnane RD, Raghavan SS, Daniel PF, McCluer RH, Walkley

SU, Parish SM: Inherited lysosomal storage disease associated with deficiencies of beta-

galactosidase and alpha-neuraminidase in sheep. American journal of medical genetics

1988, 31(1):39-56.

24. Bermudez A, Johnson G, Vanier M, Schröder M, Suzuki K, Stogsdill P, Johnson G, O'Brien

D, Moore C, Fry W: Gangliosidosis in emus (Dromaius novaehollandiae). Avian diseases

1995, 39(2):292-303.

25. Matsuda J, Suzuki O, Oshima A, Ogura A, Noguchi Y, Yamamoto Y, Asano T, Takimoto K,

Sukegawa K, Suzuki Y: β-Galactosidase-deficient mouse as an animal model for GM1-

gangliosidosis. Glycoconjugate journal 1997, 14(6):729-736.

26. Brunetti-Pierri N, Scaglia F: GM1 gangliosidosis: review of clinical, molecular, and

therapeutic aspects. Molecular genetics and metabolism 2008, 94(4):391-396.

27. Prieur DJ, Ahern-Rindell AJ, Murnane RD: Ovine GM-1 gangliosidosis. The American

journal of pathology 1991, 139(6):1511-1513.

28. Yamato O, Endoh D, Kobayashi A, Masuoka Y, Yonemura M, Hatakeyama A, Satoh H,

Tajima M, Yamasaki M, Maede Y: A novel mutation in the gene for canine acid β-

galactosidase that causes GM1-gangliosidosis in Shiba dogs. Journal of inherited

metabolic disease 2002, 25(6):525-526.

29. Skelly BJ, Jeffrey M, Franklin RJ, Winchester BG: A new form of ovine GM1-

gangliosidosis. Acta neuropathologica 1995, 89(4):374-379.

30. Handa S, Yamakawa T: Biochemical Studies In Cat And Human Gangliosidosis1, 2. Journal

of Neurochemistry 1971, 18(7):1275-1280.

31. Baker Jr HJ, Lindsey JR, McKhann GM, Farrell DF: Neuronal GM1 gangliosidosis in a

Siamese cat with β-galactosidase deficiency. Science 1971, 174(4011):838-839.

32. Tay W: Symmetrical changes in the region of the yellow spot in each eye of an infant.

Archives of Neurology 1969, 20(1):104.

33. Sachs B: On Arrested Cerebral Development, With Special Reference To Its Cortical

Pathology. 1. The Journal of Nervous and Mental Disease 1887, 14(9-10):541.

34. Svennerholm L: The chemical structure of normal human brain and Tay-Sachs

gangliosides. Biochemical and biophysical research communications 1962, 9(5):436-441.

35. Gravel RA, Clarke J, Kaback M, Mahuran D, Sandhoff K, Suzuki K: The GM2

gangliosidoses. The metabolic and molecular bases of inherited disease 1995, 2:2839-

2879.

Page 42: MOLECULAR CHARACTERIZATION OF OVINE GM1

39

36. Brady RO, Kanfer JN, Shapiro D: Metabolism of glucocerebrosides. II. Evidence of an

enzymatic deficiency in Gaucher's disease. Biochemical and biophysical research

communications 1965, 18:221.

37. Brady RO, Kanfer JN, Mock MB, Fredrickson DS: The metabolism of sphingomyelin. II.

Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proceedings of the

National Academy of Sciences of the United States of America 1966, 55(2):366.

38. Suzuki K, Suzuki Y: Globoid cell leucodystrophy (Krabbe's disease): deficiency of

galactocerebroside β-galactosidase. Proceedings of the National Academy of Sciences

1970, 66(2):302-309.

39. Suzuki Y: Beta-galactosidase deficiency: an approach to chaperone therapy. Journal of

inherited metabolic disease 2006, 29(2-3):471-476.

40. Okamura-Oho Y, Zhang S, Callahan JW: The biochemistry and clinical features of

galactosialidosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1994,

1225(3):244-254.

41. Callahan JW: Molecular basis of GM1 gangliosidosis and Morquio disease, type B.

Structure–function studies of lysosomal β-galactosidase and the non-lysosomal β-

galactosidase-like protein. Biochimica et Biophysica Acta (BBA)-Molecular Basis of

Disease 1999, 1455(2):85-103.

42. Spoel A, Bonten E, Azzo A: Protein Synthesis, Post-Translation Modification, And

Degradation-Processing of lysosomal b-galactosidase. The C-terminal precursor

fragment is an essential domain of the mature enzyme. Journal of Biological Chemistry

2000, 275(14):10035-10040.

43. Hoogeveen AT, Reuser AJ, Kroos M, Galjaard H: GM1-gangliosidosis. Defective

recognition site on beta-galactosidase precursor. The Journal of biological chemistry

1986, 261(13):5702-5704.

44. Svennerholm L: The gangliosides. Journal of lipid research 1964, 5(2):145-155.

45. Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K: Physiology and pathophysiology of

sphingolipid metabolism and signaling. Biochimica et biophysica acta 2000, 1485(2-

3):63.

46. Sandhoff K, Kolter T: Biosynthesis and degradation of mammalian glycosphingolipids.

Philosophical Transactions of the Royal Society of London Series B: Biological Sciences

2003, 358(1433):847-861.

47. Sonnino S, Mauri L, Chigorno V, Prinetti A: Gangliosides as components of lipid

membrane domains. Glycobiology 2007, 17(1):1R-13R.

48. Regina Todeschini A, Hakomori S: Functional role of glycosphingolipids and gangliosides

in control of cell adhesion, motility, and growth, through glycosynaptic microdomains.

Biochimica et Biophysica Acta (BBA)-General Subjects 2008, 1780(3):421-433.

49. Bruns G, Leary A, Regina V, Gerald P: Lysosomal beta-D-galactosidase in man-hamster

somatic cell hybrids. Cytogenetics and cell genetics 1978, 22(1-6):177.

50. Shows T, Scrafford-Wolff L, Brown J, Meisler M: Assignment of a β-galactosidase gene (β

GAL A) to chromosome 3 in man. Cytogenetic and Genome Research 1978, 22(1-6):219-

222.

Page 43: MOLECULAR CHARACTERIZATION OF OVINE GM1

40

51. Shows TB, Scrafford-Wolff LR, Brown JA, Meisler MH: G M1-gangliosidosis: Chromosome

3 assignment of theβ-galactosidase-A gene (βGAL A). Somatic cell and molecular

genetics 1979, 5(2):147-158.

52. Sips H, Wit-Verbeek H, Wit J, Westerveld A, Galjaard H: The chromosomal localization of

human β-galactosidase revisited: a locus for β-galactosidase on human chromosome 3

and for its protective protein on human chromosome 22. Human genetics 1985,

69(4):340-344.

53. Oshima A, Tsuji A, Nagao Y, Sakuraba H, Suzuki Y: Cloning, sequencing, and expression of

cDNA for human [beta]-galactosidase. Biochemical and biophysical research

communications 1988, 157(1):238-244.

54. Santamaria R, Chabas A, Coll MJ, Miranda CS, Vilageliu L, Grinberg D: Twenty-one novel

mutations in the GLB1 gene identified in a large group of GM1-gangliosidosis and

Morquio B patients: possible common origin for the prevalent p.R59H mutation among

gypsies. Human mutation 2006, 27(10):1060.

55. Morreau H, Galjart NJ, Gillemans N, Willemsen R, van der Horst GT, d'Azzo A: Alternative

splicing of beta-galactosidase mRNA generates the classic lysosomal enzyme and a beta-

galactosidase-related protein. The Journal of biological chemistry 1989, 264(34):20655-

20663.

56. Privitera S, Prody CA, Callahan JW, Hinek A: The 67-kDa enzymatically inactive

alternatively spliced variant of β-galactosidase is identical to the elastin/laminin-binding

protein. Journal of Biological Chemistry 1998, 273(11):6319.

57. D'Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H: Molecular defect in

combined beta-galactosidase and neuraminidase deficiency in man. Proceedings of the

National Academy of Sciences of the United States of America 1982, 79(15):4535-4539.

58. Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence

similarities. Biochemical Journal 1991, 280(Pt 2):309.

59. d’Azzo A, Andria G, Strisciuglio P, Galjaard H: Galactosialidosis. The metabolic and

molecular bases of inherited disease 1995, 3:3811-3826.

60. Voet D, Voet, Judith G., Pratt, Charlotte W. : Principles of Biochemistry, 3rd Edition:

Wiley; 2008.

61. Caciotti A, Donati MA, Boneh A, d'Azzo A, Federico A, Parini R, Antuzzi D, Bardelli T, Nosi

D, Kimonis V: Role of β-galactosidase and elastin binding protein in lysosomal and

nonlysosomal complexes of patients with GM1-gangliosidosis. Human mutation 2005,

25(3):285-292.

62. Sturtevant AH: The linear arrangement of six sex-linked factors in Drosophila, as shown

by their mode of association. Journal of experimental zoology 1913, 14(1):43-59.

63. Lander ES, Botstein D: Mapping Mendelian factors underlying quantitative traits using

RFLP linkage maps. Genetics 1989, 121(1):185-199.

64. Weber JL, May PE: Abundant class of human DNA polymorphisms which can be typed

using the polymerase chain reaction. American journal of human genetics 1989,

44(3):388.

65. Lander ES, Botstein D: Homozygosity mapping: a way to map human recessive traits

with the DNA of inbred children. Science 1987, 236(4808):1567-1570.

Page 44: MOLECULAR CHARACTERIZATION OF OVINE GM1

41

66. Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and

complex traits. Nature Reviews Genetics 2005, 6(2):95-108.

67. Charlier C, Coppieters W, Rollin F, Desmecht D, Agerholm JS, Cambisano N, Carta E,

Dardano S, Dive M, Fasquelle C: Highly effective SNP-based association mapping and

management of recessive defects in livestock. Nature genetics 2008, 40(4):449-454.

68. Murnane R, Ahern-Rindell A, Prieur D: Ovine GM1 gangliosidosis. Small ruminant

research 1991, 6(1):109-118.

69. Prieur D, Ahern-Rindell A, Murnane R, Wright R, Parish S: Inheritance of an Ovine

Lysosomal Storage Disease Associated with Deficiencies of β-Galactosidase and α-

Neuraminidase. Journal of Heredity 1990, 81(4):245-249.

70. Ahern-Rindell AJ, Murnane RD, Prieur DJ: Interspecific genetic complementation analysis

of human and sheep fibroblasts with beta-galactosidase deficiency. Somatic cell and

molecular genetics 1989, 15(6):525-533.

71. Murnane RD, Ahern-Rindell AJ, Prieur DJ: Ultrastructural lesions of ovine GM1

gangliosidosis. Modern pathology : an official journal of the United States and Canadian

Academy of Pathology, Inc 1991, 4(6):755-762.

72. Murnane RD, Prieur DJ, Ahern-Rindell AJ, Holler LD, Parish SM: Clinical and

clinicopathologic characteristics of ovine GM-1 gangliosidosis. Journal of veterinary

internal medicine / American College of Veterinary Internal Medicine 1994, 8(3):221-

223.

73. Murnane RD, Prieur DJ, Ahern-Rindell AJ, Parish SM, Collier LL: The lesions of an ovine

lysosomal storage disease. Initial characterization. The American journal of pathology

1989, 134(2):263-270.

74. Suzuki Y, Sakuraba H, Hayashi K, Suzuki K, Imahori K: β-Galactosidase-neuraminidase

deficiency: restoration of β-galactosidase activity by protease inhibitors. Journal of

biochemistry 1981, 90(1):271-273.

75. Hartley, WJ, Kater, JC: Perinatal disease conditions of sheep in New Zealand. New

Zealand Veterinary Journal 1964, 12(3):49-57.

76. Murnane RD, Hartley WJ, Prieur DJ: Similarity of lectin histochemistry of a lysosomal

storage disease in a New Zealand lamb to that of ovine GM1 gangliosidosis. Veterinary

pathology 1991, 28(4):332-335.

77. Murnane RD, Wright RW, Jr., Ahern-Rindell AJ, Prieur DJ: Prenatal lesions in an ovine

fetus with GM1 gangliosidosis. American journal of medical genetics 1991, 39(1):106-

111.

78. Miller S, Dykes D, Polesky H: A simple salting out procedure for extracting DNA from

human nucleated cells. Nucleic acids research 1988, 16(3):1215.

79. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P,

De Bakker PIW, Daly MJ: PLINK: a tool set for whole-genome association and

population-based linkage analyses. The American Journal of Human Genetics 2007,

81(3):559-575.

80. Dalrymple BP, Kirkness EF, Nefedov M, McWilliam S, Ratnakumar A, Barris W, Zhao S,

Shetty J, Maddox JF, O'Grady M et al: Using comparative genomics to reorder the

human genome sequence into a virtual sheep genome. Genome biology 2007,

8(7):R152.

Page 45: MOLECULAR CHARACTERIZATION OF OVINE GM1

42

81. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool.

Journal of molecular biology 1990, 215(3):403-410.

82. Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function.

Nucleic acids research 2003, 31(13):3812-3814.

83. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS,

Sunyaev SR: A method and server for predicting damaging missense mutations. Nature

methods 2010, 7(4):248-249.

84. Kreutzer R, Leeb T, Müller G, Moritz A, Baumgärtner W: A duplication in the canine β-

galactosidase gene GLB1 causes exon skipping and GM1-gangliosidosis in Alaskan

huskies. Genetics 2005, 170(4):1857-1861.

85. Martin DR, Rigat BA, Foureman P, Varadarajan G, Hwang M, Krum BK, Smith BF,

Callahan JW, Mahuran DJ, Baker HJ: Molecular consequences of the pathogenic

mutation in feline G< sub> M1</sub> gangliosidosis. Molecular genetics and metabolism

2008, 94(2):212-221.

86. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M,

Kampf C, Wester K, Hober S: Towards a knowledge-based human protein atlas. Nature

biotechnology 2010, 28(12):1248-1250.

87. Ohto U, Usui K, Ochi T, Yuki K, Satow Y, Shimizu T: Crystal Structure of Human β-

Galactosidase. Journal of Biological Chemistry 2012, 287(3):1801-1812.

88. McCarter JD, Burgoyne DL, Miao S, Zhang S, Callahan JW, Withers SG: Identification of

Glu-268 as the catalytic nucleophile of human lysosomal β-galactosidase precursor by

mass spectrometry. Journal of Biological Chemistry 1997, 272(1):396-400.

Page 46: MOLECULAR CHARACTERIZATION OF OVINE GM1

43

Appendix A: Appendix Figures

Appendix Figure 1. Consensus sequence generated using BLAST query of EST database. The

start codon, stop codon, and poly adenylation signal have been bolded and italicized. Single

underlines represent forward primers and double underlines represent reverse primers. The

single, bold underline represents sequence that is overlapping in a forward and a reverse

primer.

CGACGCCGAACGGCTGCCCCGGCTGACTGCGGAGCCGGGAGGCCCGAGAGCGGACGGACATGCCGGGGGTCGTGCGC

CTCCTCGCCCTGCTGCTGGCGCCGCTGCTGCTGGGCTCCGCGCGTGGTTTGCACAATGCCACCCAGAGAACATTCCA

GATCGACTACCGCCGTAACCGCTTCCTCAAGGATGGCCAGCCCTTCCGCTACATCTCGGGAAGCATTCACTATTTCC

GCGTGCCTCGCTTCTACTGGAAGGACCGGCTGCTGAAGATGAAGATGGCTGGGCTGAACGCCATCCAGACGTACGTG

GCCTGGAACTTCCATGAGCTGCAGCCTGGACGGTACAATTTCTCCGGGGACCATGATGTGGAACATTTCATTCAGCT

GGCACATGAGCTGGGACTGCTGGTCATCCTGAGGCCTGGACCCTACATCTGTGCAGAGTGGGACATGGGAGGATTAC

CTGCTTGGCTGTTGGAGAAAAAATCTATTGTTCTCCGTTCTTCAGATCCAGATTACCTTGCGGCTGTGGACAAGTGG

CTGGGGGTCCTTCTGCCCAAGATGAGGCCCCTCCTCTATAAGAACGGAGGCCCGATTATAACAGTGCAGGTTGAAAA

TGAATATGGCAGCTACTATTCCTGTGATTACGACTACTTGCGTTTCCTGCAGAAGCGTTTCCAGGACCACCTGGGTG

AGGACGTGCTTCTGTTCACCACGGACGGGGTCAATGAGGAGTTCCTGCAGTGCGGGGCGCTCCAGGGGCTCTACGCC

ACCGTGGACTTCAGCACAGGTTCCAACCTCACAGCTGCTTTCATGCTCCAGAGGAAATTTGAGCCCAGAGGACCCCT

GATCAATTCTGAATTCTACACTGGATGGTTAGATCATTGGGGCCAACGTCATTCAACAGTCAGCTCTAAAGYGGTGG

CTTTCACCCTTCATGATATGCTTGCTCTTGGGGCAAATGTAAACATGTACATGTTTATAGGTGGCAGCAATTTTGCC

TATTGGAATGGAGCAAACACGCCCTACCAACCACAGCCCACCAGCTACGACTATGATGCCCCGCTGAGCGAGGCTGG

GGACCTCACGGAGAAGTATTTTGCTCTGCGGGATATTATTCAGAAGTTTGCAAAAGTACCGGAAGGTCCTATCCCCC

CATCCACACCAAAGTTTGCATATGGAAAAGTTGCTCTGAAAAAGTTAAAGACGGTGGAGGATGCTCTCAACATCCTG

TGTCCCTCTGGACCCATAAAAAGTGTTTATCCCTTGACGTTTGTTGATGTGAAACAGTACTTTGGATTTGTGCTGTA

CCGAACAACGCTCCCTGAAAACTGCAGCCACCCTACACCCCTCTCTTCTCCATCCAGTGGCGTCCATGACCGGGCCT

ACGTCTCTGTGAACGGGGTTGCCCAGGGAGTCCTTGAACGAGAATCTGTGATCACCCTGAACATAACAGGGGAAGCT

GGAGCGACCTTGGACCTCCTGGTGGAGAATATGGGGCGTGTGAACTATGGCTCATATATCAACGATTTCAAGGGTCT

TGTTTCTAACCTGACCCTTGATTCCAAAATCCTCACCAACTGGGAGATCTTCCCGCTGGACATGGAGAATGCAGTAC

TCAGTCACCTGGGGACCGGGGGTGGCAGTGACAGGCGCTACCACAATAAAGCCCGTGCACACAGTCCCCCTACCTAC

GCACTCCCGACCTTTTATGTGGGTAACTTCACTATTCCCAGCGGGATCTCAGACTTGCCTCAGGACACCTTCCTCCA

GTTTCCTGGATGGACCAAGGGTCAGGTGTGGATCAACGGCTTTAACCTCGGCCGCTACTGGCCAGTGCAGGGCCCCC

AGATGACCCTGTTCGTGCCTCAGCACATCCTGGTGACTTCGACCCCAAACATCATCGTGGTGCTGGAGCTGGAGTAT

GCGCCCTGCCAGGACGGTGACCCGGAACTATGCACCGTGGAGTTCGTGGACAAGCCGGTTTTTCGCACAGTCTAGAC

CCACAGACATGCAAACTAGGAGCAAGACTCATGGCCGACTCCCTGGGACAAAGACTGTGACCCTTCAGAGTTCCAGC

CTTGCACATACCTCATCTGCCACTCGGAAGGCCAGCATTCACTTCTGATTGGAAGATGGGCTAGGCGTGTGCTTACC

TAGGTTTCCCTGGCGCCCGGCGGTGCCTGACACACCCCGTCCAGGCTGCGTGGTCATGGGGCGGGGCTGGTAGCCCA

GCAACACAGAGGCATCCACAGGGTTGGAAGGGAAGCATTTGAAGTTTTTCTGATTTTTATTTTGTTAAGAATCATGT

AGCCTTTTTATTAAATAAAATTTGTATTCAAATGAT

Page 47: MOLECULAR CHARACTERIZATION OF OVINE GM1

44

Appendix Figure 2. CLUSTALW alignment of ovine ESTs from BLAST query of EST database.

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb ---------- ---------- ---------- ---------- ----------

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb ---------- ---------- ---------- ---------- ----------

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ---------- ---------- ---------- ---------C GGTCCGGATT

gi_114718270_gb TCCGGGATGC GGTGGCTTTC CCCTTCATGA TATGCTTGCT CTTGGGGCAA

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb ---------- ---------- ---------- ---------- ----------

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb ---------- ---------- ---------- ---------- ----------

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb ---------- -----AGCCG GGGACCATGA TGTGGAACAT TTCATTCAGC

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb CCCGGGATCT GTACATGTTT ATAGGTGGCA GCAATTTTGC CTATTGGAAT

gi_114718270_gb ATGTAAACAT GTACATGTTT ATAGGTGGCA GCAATTTTGC CTATTGGAAT

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb ---------- ---------- ---------- ---------- ----------

Page 48: MOLECULAR CHARACTERIZATION OF OVINE GM1

45

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb ---------- ---------- ---------- ---------- ----------

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb TGGCACATGA GCTGGGACTG CTGGTCATCC TGAGGCCTGG ACCCTACATC

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb GGAGCAAACA CGCCCTACCA ACCACAGCCC ACCAGCTACG ACTATGATGC

gi_114718270_gb GGAGCAAACA CGCCCTACCA ACCACAGCCC ACCAGCTACG ACTATGATGC

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb ---------- ---------- ---------- ---------- ----------

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb ---------- ---------- ---------- ---------- ----------

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb TGTGCAGAGT GGGACATGGG AGGATTACCT GCTTGGCTGT TGGAGAAAAA

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb CCCGCTGAGC GAGGCTGGGG ACCTCACGGA GAAGTATTTT GCTCTGCGGG

gi_114718270_gb CCCGCTGAGC GAGGCTGGGG ACCTCACGGA GAAGTATTTT GCTCTGCGGG

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb ---------- ---------- ---------- ---------- ----------

Page 49: MOLECULAR CHARACTERIZATION OF OVINE GM1

46

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb ---------- ---------- ---------- ---------- ----------

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb ATCTATTGTT CTCCGTTCTT CAGATCCAGA TTACCTTGCG GCTGTGGACA

gi_229652641_gb ---------- ---------- ---------- ------GGCG GCTGTGGACA

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ATATTATTCA GAAGTTTGCA AAAGTACCGG AAGGTCCTAT CCCCCCATCC

gi_114718270_gb ATATTATTCA GAAGTTTGCA AAAGTACCGG AAGGTCCTAT CCCCCCATCC

gi_114744710_gb --AGGACACC TTCCTCCAGT TTCCTGGATG GACCAAGAGG AAGCATGTGT

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb ---------- ---------- ---------- ---------- ------ATCA

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb ---------- ---------- ---------- ---------- ----------

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb AGTGGCTGGG GGTCCTTCTG CCCAAGATGA GGCCCCTCCT CTATAAGAAC

gi_229652641_gb AGTGGCTGGG GGTCCTTCTG CCCAAGATGA GGCCCCTCCT CTATAAGAAC

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ------TGCT CTGAAAAAGT TAAAGACGGT

gi_114718999_gb ACACCAAAGT TTGCATATGG AAAAGTTGCT CTGAAAAAGT TAAAGACGGT

gi_114718270_gb ACACCAAAGT TTGCATATGG AAAAGTTGCT CTGAAAAAGT TAAAGACGGT

gi_114744710_gb CTGGGCTGCT GGGCTCCTGC TTACCTGGGG CAGCAAGACC CCTACAGCCT

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb TTTGAATACA AATTTTATTT AATAAAAAGG CTACATGATT CTTAACAAAA

Page 50: MOLECULAR CHARACTERIZATION OF OVINE GM1

47

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- --CGACGCCG AACGGCTGCC CCGGCT-ACT

gi_88627441_gb_ ---------- ---------- --------CG AACGGCTGCC CCGGCTGACT

gi_88629151_gb_ ---------- ---------- --------CG AACGGCTGCC CCGGCTGACT

gi_88620401_gb_ ---------- ---------- ---------- ---GGCTGCC CCGGCTGACT

gi_88644845_gb_ ---------- ---------- ---------- AACGGCTGCC CCGGCTGACT

gi_114492173_gb ---------- ---------- ---------- CCGGGATGCC CCGGCTGACT

gi_88634142_gb_ ---------- ---------- ---------- ---------- ---GCTGACT

gi_280968126_gb ---------- ---------- ---------- ---------- ----------

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb GGAGGCCCGA TTATAACAGT GCAGGTTGAA AATGAATATG GCAGCTACTA

gi_229652641_gb GGAGGCCCGA TTATAACAGT GCAGGTTGAA AATGAATATG GCAGCTACTA

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---GGATGCT CTCAACATCC TGTGTCCCTC TGGACCCATA AAAAGTGTTT

gi_88654284_gb_ GGAGGATGCT CTCAACATCC TGTGTCCCTC TGGACCCATA AAAAGTGTTT

gi_114718999_gb GGAGGATGCT CTCAACATCC TGTGTCCCTC TGGACCCATA AAAAGTGTTT

gi_114718270_gb GGAGGATGCT CTCAACATCC TGTGTCCCTC TGGACCCATA AAAAGTGTTT

gi_114744710_gb GGAGGAGGGG GGAGCACAGA GGCAAAGCTC GTCTCCTGAG GAGGCAGGGA

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb TAAAAATCAG AAAAACTTCA AATGCTTCCC TTCCAACCCT GTGGATGCCT

gi_31084151_gb_ GCGGA-CC-- --GGGAGGCC CGA-AGCGGA CGGACATGCC GGGGGTCGTG

gi_88627441_gb_ GCGGAGCC-- --GGGAGGCC CGAGAGCGGA CGGACATGCC GGGGGTCGTG

gi_88629151_gb_ GCGGAGCC-- --GGGAGGCC CGAGAGCGGA CGGACATGCC GGGGGTCGTG

gi_88620401_gb_ GCGGAGCC-- --GGGAGGCC CGAGAGCGGA CGGACATGCC GGGGGTCGTG

gi_88644845_gb_ GCGGAGCC-- --GGGAGGCC CGAGAGCGGA CGGACATGCC GGGGGTCGTG

gi_114492173_gb GCGGAGCC-- --GGGAGGCC CGAGAGCGGA CGGACATGCC GGGGGTCGTG

gi_88634142_gb_ GCGGAGCC-- --GGGAGGCC CGAGAGCGGA CGGACATGCC GGGGGTCGTG

gi_280968126_gb ---------- --AGGAGGCC CGAGAGCGGA CGGACATGCC GGGGGTCGTG

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb TTCCTGTG-- --ATTACGAC TACTTGCGTT TCCTGCAGAA GCGTTTCCAG

gi_229652641_gb TTCCTGTG-- --ATTACGAC TACTTGCGTT TCCTGCAGAA GCGTTTCCAG

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ----CTTG-- --ACGTTTGT TGATGTGAAA CAGTACTTTG GATTTGTGCT

gi_88626309_gb_ ATCCCTTG-- --ACGTTTGT TGATGTGAAA CAGTACTTTG GATTTGTGCT

gi_88654284_gb_ ATCCCTTG-- --ACGTTTGT TGATGTGAAA CAGTACTTTG GATTTGTGCT

gi_114718999_gb ATCCCTTG-- --ACGTTTGT TGATGTGAAA CAGTACTTTG GATTTGTGCT

gi_114718270_gb ATCCCTTG-- --ACGTTTGT TGATGTGAAA CAGTACTTTG GATTTGTGCT

gi_114744710_gb GGTGACTG-- --TGTACAGA GGCCTCGGGC AGAGGCGGGT GTGTGCAGAC

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- -----GCGTG ACGTGCGCTA

gi_114474748_gb ---------- ---------- ---------- -----GCGTG ACGTGCGCTA

gi_114450604_gb CTGTGTTGCT GGGCTACCAG CCCCGCCCCA TGACCACGCA GCCTGGACGG

Page 51: MOLECULAR CHARACTERIZATION OF OVINE GM1

48

Appendix Figure 2 (cont.)

gi_31084151_gb_ CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_88627441_gb_ CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_88629151_gb_ CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_88620401_gb_ CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_88644845_gb_ CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_114492173_gb CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_88634142_gb_ CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_280968126_gb CGCCTCCTCG CCCTGCTGCT GGCGCCGC-- TGCTGCTGGG CTCCGCGCGT

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb GACCACCTGG GTGAGGACGT GCTTCTGT-- TCACCACGGA CGGGGTCAAT

gi_229652641_gb GACCACCTGG GTGAGGACGT GCTTCTGT-- TCACCACGGA CGGGGTCAAT

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---------- ---------- ---------- ----------

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ GTACCGAACA ACGCTCCCTG AAAACTGC-- AGCCACCCTA CACCCCTCTC

gi_88626309_gb_ GTACCGAACA ACGCTCCCTG AAAACTGC-- AGCCACCCTA CACCCCTCTC

gi_88654284_gb_ GTACCGAACA ACGCTCCCTG AAAACTGC-- AGCCACCCTA CACCCCTCTC

gi_114718999_gb GTACCGAACA ACGCTCCCTG AAAACTGC-- AGCCACCCTA CACCCCTCTC

gi_114718270_gb GTACCGAACA ACGCTCCCTG AAAACTGC-- AGCCACCCTA CACCCCTCTC

gi_114744710_gb AGGCACCCCC ACCCCCACAT CGCATCGT-- ACCCAGGACA GAATTCGGAA

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb CCACAATAAA GCCCGTGCAC ACAGTCCC-- CCTACCTACG CACTCCCGAC

gi_114474748_gb CCACAATAAA GCCCGTGCAC ACAGTCCC-- CCTACCTACG CACTCCCGAC

gi_114450604_gb GGTGTGTCAG GCACCACCGG GCGCCAGGGA AACCTAGGTA AGCACACGCC

gi_31084151_gb_ GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_88627441_gb_ GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_88629151_gb_ GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_88620401_gb_ GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_88644845_gb_ GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_114492173_gb GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_88634142_gb_ GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_280968126_gb GGTTTGCACA ATGCCACCCA GAGAACATTC CAGATCGACT ACCGCCGTAA

gi_88640218_gb_ ---------- ---------- ---------- ---------- ----------

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb GAGGAGTTCC -TGCAGTGCG GGGCGCTCCA GGGGCTCTAC GCCACCGTGG

gi_229652641_gb GAGGAGTTCC -TGCAGTGCG GGGCGCTCCA GGGGCTCTAC GCCACCGTGG

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ ---------- ---GGCGTCC ATGACCGGGC CTACGTCTCT GTGAACGGGG

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ TTCTCCATCC AGTGGCGTCC ATGACCGGGC CTACGTCTCT GTGAACGGGG

gi_88626309_gb_ TTCTCCATCC AGTGGCGTCC ATGACCGGGC CTACGTCTCT GTGAACGGGG

gi_88654284_gb_ TTCTCCATCC AGTGGCGTCC ATGACCGGGC CTACGTCTCT GTGAACGGGG

gi_114718999_gb TTCTCCATCC AGTGGCGTCC ATGACCGGGC CTACGTCTCT GTGAACGGGG

gi_114718270_gb TTCTCCATCC AGTGGCGTCC ATGACCGGGC CTACGTCTCT GTGAACGGGG

gi_114744710_gb ACTTGGTGAC TGCCGCAGCG TCATCCAGTC C--TGACCTG CGCGGCACCG

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb CTTTTATGTG GGTAACTTCA CTATTC---- ---CCAGCGG GATCTCAGAC

gi_114474748_gb CTTTTATGTG GGTAACTTCA CTATTC---- ---CCAGCGG GATCTCAGAC

gi_114450604_gb TAGCCCATCT TCCAATCAGA AGTGAATGCT GGCCTTCCGA GTGGCAGATG

Page 52: MOLECULAR CHARACTERIZATION OF OVINE GM1

49

Appendix Figure 2 (cont.)

gi_31084151_gb_ CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_88627441_gb_ CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_88629151_gb_ CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_88620401_gb_ CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_88644845_gb_ CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_114492173_gb CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_88634142_gb_ CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_280968126_gb CCGCTTCCTC AAGGATGGCC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_88640218_gb_ ---------- --------CC AGCCCTTCCG CTA-CATCTC GGGAAGCATT

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb ACTTCAGCAC AGGTTCCAAC CTCACAGCTG CTTTCATGCT CCAGAGGAAA

gi_229652641_gb ACTTCAGCAC AGGTTCCAAC CTCACAGCTG CTTTCATGCT CCAGAGGAAA

gi_88636859_gb_ -------GGG AGTCCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_88629496_gb_ TTGCCCAGGG AGTCCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_114496738_gb ---------- ---CCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_88615585_gb_ TTGCCCAGGG AGTCCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_88626309_gb_ TTGCCCAGGG AGTCCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_88654284_gb_ TTGCCCAGGG AGTCCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_114718999_gb TTGCCCAGGG AGTCCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_114718270_gb TTGCCCAGGG AGTCCTTGAA CGAGAATCTG TGATCACCCT GAACATAACA

gi_114744710_gb AAGCCACAGG AGGGACCGAA CACGTCTCCT G--TGAAGCA GGGGTCAGGT

gi_88634842_gb_ ---------- ----CTTCCT CCAGTTTCCT GGATGGACCA AGGGTCAGGT

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb TTGCCTCAGG ACACCTTCCT CCAGTTTCCT GGATGGACCA AGGGTCAGGT

gi_114474748_gb TTGCCTCAGG ACACCTTCCT CCAGTTTCCT GGATGGACCA AGGGTCAGGT

gi_114450604_gb AGGTATGTGC AAGGCTGGAA CTCTGAAGGG TCACAGTCTT TGTCCCAGGG

gi_31084151_gb_ CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_88627441_gb_ CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_88629151_gb_ CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_88620401_gb_ CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_88644845_gb_ CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_114492173_gb CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_88634142_gb_ CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_280968126_gb CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_88640218_gb_ CACTATTTCC GCGTGCCTCG CTTCTACTGG -AAGGACCGG CTGCTGAAGA

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb TTTGAGCCCA GAGGACCCCT GATCAATTCT -GAATTCTA- -CACTGGATG

gi_229652641_gb TTTGAGCCCA GAGGACCCCT GATCAATTCT -GAATTCTA- -CACTGGATG

gi_88636859_gb_ GGGGA--AGC TGGAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_88629496_gb_ GGGGA--AGC TGGAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_114496738_gb GGGGA--AGC TGTAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_88615585_gb_ GGGGA--AGC TGGAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_88626309_gb_ GGGGA--AGC TGGAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_88654284_gb_ GGGGA--AGC TGGAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_114718999_gb GGGGA--AGC TGGAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_114718270_gb GGGGA--AGC TGGAGCGACC TTGGACCTCC -TGGTGGAGA ATATGGGGCG

gi_114744710_gb GTGGATCAAC GGCTTTAACC TCGG--CCGC -TACTGGCCA GTGCAGGGCC

gi_88634842_gb_ GTGGATCAAC GGCTTTAACC TCGG--CCGC -TACTGGCCA GTGCAGGGCC

gi_114747744_gb ---------- --CTTTAACC TCGG--CCGC -TACTGGCCA GTGCAGGGCC

gi_114475416_gb GTGGATCAAC GGCTTTAACC TCGG--CCGC -TACTGGCCA GTGCAGGGCC

gi_114474748_gb GTGGATCAAC GGCTTTAACC TCGG--CCGC -TACTGGCCA GTGCAGGGCC

gi_114450604_gb AGTCGGCCAT GAGTCTTGCT CCTAGTTTGC ATGTCTGTGG GTCTAGACTG

Page 53: MOLECULAR CHARACTERIZATION OF OVINE GM1

50

Appendix Figure 2 (cont.)

gi_31084151_gb_ TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_88627441_gb_ TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_88629151_gb_ TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_88620401_gb_ TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_88644845_gb_ TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_114492173_gb TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_88634142_gb_ TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_280968126_gb TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_88640218_gb_ TGAAGATGGC TGGGCTGA-A CGCCATCCA- GACGTACGTG GCCTGGAACT

gi_229650957_gb ---GGATCAT TGGGGCCA-A CGTCATTCA- ACAGT---CA GCTCTAAAGC

gi_280977021_gb GTTAGATCAT TGGGGCCA-A CGTCATTCA- ACAGT---CA GCTCTAAAGT

gi_229652641_gb GTTAGATCAT TGGGGCCA-A CGTCATTCA- ACAGT---CA GCTCTAAAGT

gi_88636859_gb_ TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_88629496_gb_ TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_114496738_gb TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_88615585_gb_ TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_88626309_gb_ TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_88654284_gb_ TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_114718999_gb TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_114718270_gb TGTGAACTAT G--GCTCATA TATCAACG-- ATTTCAAGGG TCTTGTTTCT

gi_114744710_gb CCCAGATGAC CCTGTTCGTG CCTCAGCAC- ATCCTGGTGA CTTCGACCCC

gi_88634842_gb_ CCCAGATGAC CCTGTTCGTG CCTCAGCAC- ATCCTGGTGA CTTCGACCCC

gi_114747744_gb CCCAGATGAC CCTGTTCGTG CCTCAGCAC- ATCCTGGTGA CTTCGACCCC

gi_114475416_gb CCCAGATGAC CCTGTTCGTG CCTCAGCAC- ATCCTGGTGA CTTCGACCCC

gi_114474748_gb CCCAGATGAC CCTGTTCGTG CCTCAGCAC- ATCCTGGTGA CTTCGACCCC

gi_114450604_gb TGCGAAAAAC CG-GCTTGTC CACGAACTCC ACGGTGCATA GTTCCGGGTC

gi_31084151_gb_ TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCTGGGGA CCATGATGTG

gi_88627441_gb_ TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_88629151_gb_ TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_88620401_gb_ TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_88644845_gb_ TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_114492173_gb TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_88634142_gb_ TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_280968126_gb TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_88640218_gb_ TCCATGAGCT GCAGCCTGGA CGGTACAATT TCTCCGGGGA CCATGATGTG

gi_229650957_gb G--GCGGCTT TCACCCTTCA TGATATGCTT GCTCTTGGGG CAAATGTAAA

gi_280977021_gb G--GTGGCTT TCACCCTTCA TGATATGCTT GCTCTTGGGG CAAATGTAAA

gi_229652641_gb G--GTGGCTT TCACCCTTCA TGATATGCTT GCTCTTGGGG CAAATGTAAA

gi_88636859_gb_ AACCTGACCC TTGATTCCAA AATCCTCACC AACTGGGAGA TCTTCCCGCT

gi_88629496_gb_ AACCTGACCC TTGATTCCAA AATCCTCACC AACTGGGAGA TCTTCCCGCT

gi_114496738_gb AACCTGACCC TTGATTCCAA AATCCTCACC AACTGGGACA TCTTCCCGCT

gi_88615585_gb_ AACCTGACCC TTGATTCCAA AATCCTCACC AACTGGGAGA TCTTCCCGCT

gi_88626309_gb_ AACCTGACCC TTGATTCCAA AATCCTCACC AACTGGGAGA TCTTCCCGCT

gi_88654284_gb_ AACCTGACCC TTGATTCCAA AATCCTCACC AACTGGGAGA TCTTCCCGCT

gi_114718999_gb AACCTGACCC TTGATTCCAA ATCCTCACCC AACTGGGAGA TCTTCCCGCT

gi_114718270_gb AACCTGACCC TTGATTCCAA AATCCTCACC AACTGGGAGA TCTTCCCGCT

gi_114744710_gb AAACATCATC GTGGTGCTGG AG-CTGGAGT ATGCGCCCTG CCAGGACGGT

gi_88634842_gb_ AAACATCATC GTGGTGCTGG AG-CTGGAGT ATGCGCCCTG CCAGGACGGT

gi_114747744_gb AAACATCATC GTGGTGCTGG AG-CTGGAGT ATGCGCCCTG CCAGGACGGT

gi_114475416_gb AAACATCATC GTGGTGCTGG AG-CTGGAGT ATGCGCCCTG CCAGGACGGT

gi_114474748_gb AAACATCATC GTGGTGCTGG AG-CTGGAGT ATGCGCCCTG CCAGGACGGT

gi_114450604_gb A-CCGTCCTG GCAGGGCGCA TA-CTCCAGC TCCAGCACCA CGATGATGTT

Page 54: MOLECULAR CHARACTERIZATION OF OVINE GM1

51

Appendix Figure 2 (cont.)

gi_31084151_gb_ GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_88627441_gb_ GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_88629151_gb_ GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_88620401_gb_ GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_88644845_gb_ GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_114492173_gb GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_88634142_gb_ GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_280968126_gb GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_88640218_gb_ GAACATTTCA TTCAGCTGGC ACATGAGCTG GGACTGCTGG TC-ATCCTGA

gi_229650957_gb CATGTACATG TTTATAGGTG GCAGCAATTT TGCCTATTGG A--ATGGAGC

gi_280977021_gb CATGTACATG TTTATAGGTG GCAGCAATTT TGCCTATTGG A--ATGGAGC

gi_229652641_gb CATGTACATG TTTATAGGTG GCAGCAATTT TGCCTATTGG A--ATGGAGC

gi_88636859_gb_ GGACATGGAG AATGCAGTAC TCAGTCACCT GGGGACCGGG GG--TGGCAG

gi_88629496_gb_ GGACATGGAG AATGCAGTAC TCAGTCACCT GGGGACCGGG GG--TGGCAG

gi_114496738_gb GGACATGGAG AA-------- ---------- ---------- ----------

gi_88615585_gb_ GGACATGGAG AATGCAGTAC TCAGTCACCT GGGGACCGGG GG--TGGCAG

gi_88626309_gb_ GGACATGGAG AATGCAGTAC TCAGTCACCT GGGGACCGGG GG--TGGCAG

gi_88654284_gb_ GGACATGGAG AATGCAGTAC TCAGTCACCT GNGGACCGGG GG--TGGCAG

gi_114718999_gb GGACATGGAG AATGCAGTAC TCAGTCACCT GGGGGACGGG GGGGTGGCAG

gi_114718270_gb GGACATGGAG AATGCAGTAC TCAGTCACCT GGGGACCGGG GG--TGGCAG

gi_114744710_gb GACCCGGAAC TATGCACCGT GGAGTTCGTG GACAAGCCGG TTTTTCGCAC

gi_88634842_gb_ GACCCGGAAC TATGCACCGT GGAGTTCGTG GACAAGCCGG TTTTTCGCAC

gi_114747744_gb GACCCGGAAC TATGCACCGT GGAGTTCGTG GACAAGCCGG TTTTTCGCAC

gi_114475416_gb GACCCGGAAC TATGCACCGT GGAGTTCGTG GACAAGCCGG TTTTTCGCAC

gi_114474748_gb GACCCGGAAC TATGCACCGT GGAGTTCGTG GACAAGCCGG TTTTTCGCAC

gi_114450604_gb TGGGGTCGAA GTCACCAGGA TGTGCTGAGG CACGAACAGA GTCATCTGGG

gi_31084151_gb_ GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACC---

gi_88627441_gb_ GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_88629151_gb_ GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_88620401_gb_ GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_88644845_gb_ GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_114492173_gb GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_88634142_gb_ GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_280968126_gb GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_88640218_gb_ GGCCTGGACC CTACATCTGT GCAGAGTGGG ACATGGG-AG GATTACCTGC

gi_229650957_gb AAACACGCCC TACCAACCAC AGCCCACCAG CTACGACTAT GATGCCCCGC

gi_280977021_gb AAACACGCCC TACCAACCAC AGCCCACCAG CTACGACTAT GATGCCCCGC

gi_229652641_gb AAACACGCCC TACCAACCAC AGCCCACCAG CTACGACTAT GATGCCCCGC

gi_88636859_gb_ TGACAGGCGC TA-CCACAAT AAAGCCCGTG CACACAGTCC CCCTACCTAC

gi_88629496_gb_ TGACAGGCGC TA-CCACAAT AAAGCCCGTG CACACAGTCC CCCTACCTAC

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ TGACAGGCGC TA-CCACAAT AAAGCCCGTG CACACAGTCC CCCTACCTAC

gi_88626309_gb_ TGACAGGCGC TA-CCACAAT AAAGCCCGTG CACACAGTCC CCCTACCTAC

gi_88654284_gb_ TGACAGGCGC TA-CCACAAT AAAGCCCGTG CACACAGTCC CCCTACCTAC

gi_114718999_gb TGACAGGCGC TA-CCACAAT AAAGCCCGTG CACACAGTCC CC-TACCTAC

gi_114718270_gb TGACAGGCGC TA-CCACAAT AAAGCCCGTG CACACAGTCC CCCTACCTAC

gi_114744710_gb AGTCTAGACC CA-CAGACAT GCAAACTAGG AGCA-AGACT CATGGCCGAC

gi_88634842_gb_ AGTCTACACC CC-CAGACAT GCAAACTAGG ---------- ----------

gi_114747744_gb AGTCTAGACC CA-CAGACAT GCAAACTAGG AGCA-AGACT CATGGCCGAC

gi_114475416_gb AGTCTAGACC CA-CAGACAT GCAAACTAGG AGCA-AGACT CATGGCCGAC

gi_114474748_gb AGTCTAGACC CA-CAGACAT GCAAACTAGG AGCA-AGACT CATGGCCGAC

gi_114450604_gb GGCCCTGCAC TGGCCAGTAG CGGCCGAGGT TAAAGCCGTT GATCCACACC

Page 55: MOLECULAR CHARACTERIZATION OF OVINE GM1

52

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_88629151_gb_ TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_88620401_gb_ TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_88644845_gb_ TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_114492173_gb TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_88634142_gb_ TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_280968126_gb TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_88640218_gb_ TTGGCTGTTG GAGAAAAAAT CTATTGTTCT CCGTTCTTCA GATCCAGATT

gi_229650957_gb TGAGCGAGGC TGGGGACCTC ACGGAGAAGT ATTTTGCTCT GCGGGATATT

gi_280977021_gb TGAGCGAGGC TGGGGACCTC ACGGAGAAGT ATTTTGCTCT GCGGGATATT

gi_229652641_gb TGAGCGAGG- ---------- ---------- ---------- ----------

gi_88636859_gb_ GCACTCCCGA CCTTTTATGT GGGTAACTTC ACTATTCCC- AGCGGGATCT

gi_88629496_gb_ GCACTCCCGA CCTTTTATGT GGGTAACTTC ACTATTCCC- AGCGGGATCT

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ GCACTCCCGA CCTTTTATGT GGGTAACTTC ACTATTCCC- AGCGGGATCT

gi_88626309_gb_ GCACTCCCGA CCTTTTATGT GGGTAACTTC ACTATTCCC- AGCGGGATCT

gi_88654284_gb_ GCACTCCCGA CCTTTTATGT GG-------- ---------- ----------

gi_114718999_gb GCACTCCCGA CTTTTTATGT GGGTAACTTC ACTATTCCCC AGCGGGATCT

gi_114718270_gb GCACTCCCGA CCTTTTATGT GGGTAACTTC ACTATTCCC- AGCGGGATCT

gi_114744710_gb TC-CCTGGGA CAAAGACTGT GACCCTT--- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb TC-CCTGGGA CAAAGACTGT GACCCTTCAG AGTTCCAGCC TTGCACATAC

gi_114475416_gb TC-CCTGGGA CAAAGACTGT GACCCTTCAG AGTTCCAGCC TTGCACATAC

gi_114474748_gb TC-CCTGGGA CAAAGACTGT GACCCTTCAG AGTTCCAGCC TTGCACATAC

gi_114450604_gb TGACCCTTGG TCCATCCAGG AAACTGGAGG AAGGTGTCCT GAGGCAAGTC

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ACCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_88629151_gb_ ACCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_88620401_gb_ ACCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_88644845_gb_ ACCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_114492173_gb ACCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_88634142_gb_ ACCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_280968126_gb ATCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_88640218_gb_ ACCTTGCGGC TGTGGACAAG TGGCTGGGGG TCCTTCTGCC CAAGATGAGG

gi_229650957_gb ATTCAGAAGT T-TGCAAAAG TACCGGAAGG TCCTATCCCC CCATCCACAC

gi_280977021_gb ATTCAGAAGT T-TGCAAAAG TACCGGAAGG TCCTATCCCC CCATCCACAC

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ CAGACTTGCC TCAGGACACC TTCCTCCAGT TTCCTGGATG GACCAAGGGT

gi_88629496_gb_ CAGACTTGCC TCAGGACACC TTCCTCCAGT TTCCTGGATG GACCAAGGGT

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ CAGACTTGCC TCAGGACACC TTCCTCCAGT TTCCTGGATG GACCAAGGGT

gi_88626309_gb_ CAGACTTGCC TCAGGACACC TTCCTCCAGT TTCCTGGATG GACCAAGGGT

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb CAGACTTGCC TCAGGACACC TTCCTCCGGT TTCCTGGAT- ----------

gi_114718270_gb CAGACTTGCC TCAGGACACC TTCCTCCAGT TTCCTGGATG GACCAGGG--

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb CTCATCTGCC ACTCGGAAGG CCAGCATTCA CTTCTGATTG GAAGATGGGC

gi_114475416_gb CTCATCTGCC ACTCGGAAGG CCAGCATTCA CTTCTGATTG GAAGATGGGC

gi_114474748_gb CTCATCTGCC ACTCGGAAGG CCAGCATTCA CTTCTGATTG GAAGATGGGC

gi_114450604_gb TGAGATCCCG CTGGGAATAG TGAAGTTACC CACATAAAAG GTCGGGAGTG

Page 56: MOLECULAR CHARACTERIZATION OF OVINE GM1

53

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ CCC--CTCCT CTATAAGAAC GGAGGCCCGA TTATAACAGT GCAGGTTGAA

gi_88629151_gb_ CCC--CTCCT CTATAAGAAC GGAGGCCCGA TTATAACAGT GCAGGTTGAA

gi_88620401_gb_ CCC--CTCCT CTA------- ---------- ---------- ----------

gi_88644845_gb_ CCC--CTCCT CTATAAGAAC GGAGGCCCGA TTATAACAGT GCAGGTTGAA

gi_114492173_gb CCC--CTCCT CTATAAGAAC GGAGGCCCGA TTATAACAGT GCAGGTTGAA

gi_88634142_gb_ CCC--CTCCT CTATAAGAAC GGAGGCCCGA TTATAACAGT GCAGGTTGAA

gi_280968126_gb CCC--CTCCT CTATAAGAAC GGAGGCCCGA TTATAACAGT GCAGGTTGAA

gi_88640218_gb_ CCC--CTCCT CTATAAGAAC GGAGGCCCGA TTATAACAGT GCAGGTTGAA

gi_229650957_gb CAAAGTTTGC ATATGGAAAA GTTGCTCTGA AAAAGTTAAA GACGGTGGAG

gi_280977021_gb CAAAGTTTGC ATATGGAAAA GTTGCTCTGA AAA-GTTAAA GACGGTGGAG

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ CAGGTGTGGA TCAACGGCTT TAACCTCGGC CGCTACTGGC CAGTGCAGGG

gi_88629496_gb_ CAGGTGTGGA TCAACGGCTT TAACCTCGGC CGCTACTGGC CAGTGCAGGG

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ CAGGTGTGGA TCAACGGCTT TAACCTCGGC CGCTACTGGC CAGTGCAGGG

gi_88626309_gb_ CAGGTGTGGA TCAACGGCTT TAACCTCGGC CGCTACTGGC CAGTGCAGGG

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ---------- ---------- ---------- ---------- ----------

gi_114718270_gb TCAGTGTGGA TCAACGGCTT TAC------- ---------- ----------

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb TAGGTGTGTG CTTACCTAGG TTTCCCTGGC GCCCGGCGGT GCCTGACACA

gi_114475416_gb TAGGCGTGTG CTTACCTAGG TTTCCCTGGC GCCCGGCGGT GCCTGACACA

gi_114474748_gb TAGGCGTGTG CTTACCTAGG TTTCCCTGGC GCCCGGCGGT GCCTGACACA

gi_114450604_gb CGTAGGTAGG GGGACTGTGT GCACGGGCTT TATTGTGGTA GCGCCTGTCA

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ AATGAATATG GCAGCTACTA TTCCTGTGAT TACGACTACT TGCGTTTCCT

gi_88629151_gb_ AATGAATATG GCAGCTACTA TTCCTGTGAT TACGACTACT TGCGTTTCCT

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ AATGAATATG GCAGCTACTA TTCCTGTGAT TACGACTACT TGCGTTTCCT

gi_114492173_gb AATGAATATG GCAGCTACTA TTCCTGTGAT TACGACTACT TGCGTTTCCT

gi_88634142_gb_ AATGAATATG GCAGCTACTA TTCCTGTGAT TACGACTACT TGCGTTTCCT

gi_280968126_gb AATGAATATG GCAGCTACTA TTCCTGTGAT TACGACTACT TGCGTTTCCT

gi_88640218_gb_ AATGAATATG GCAGCTACTA TTCCTGTGAT TACGACTACT TGCGTTTCCT

gi_229650957_gb GATGCTCTCA ACATCCTGTG TCCCTCTGGA CCCATAAAAA GTGTTTATCC

gi_280977021_gb GATGCTCTNC ACATCCTGTG TCCCTCTGGA CCCATAAAAA GTGTTTATCC

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ CCCCCAGATG ACCCTGTTCG TGCCTCAGCA CATCCTGGTG ACTTCGACCC

gi_88629496_gb_ CCCCCAGATG ACCCTGTTCG TGCCTCAGCA CATCCTGGTG ACTTCGACCC

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ CCCCC----- ---------- ---------- ---------- ----------

gi_88626309_gb_ CCCCCAGATG ACCCTGTTCG TGCCTCAGCA CATCCTGGTG ACTTCGACCC

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ---------- ---------- ---------- ---------- ----------

gi_114718270_gb ---------- ---------- ---------- ---------- ----------

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb CCCCGTCCAG GCTGCGTGGT CATGGGGCGG GGCTGGTAGC CCAGCAACAC

gi_114475416_gb CCCCGTCCAG GCTGCGTGGT CATGGGGCGG GGCTGGTAGC CCAGCAACAC

gi_114474748_gb CCCCGTCCAG GCTGCGTGGT CATGGGGCGG GGCTGGTAGC CCAGCAACAC

gi_114450604_gb CTGCCACCCC GGTCCCAGGT GACTGAGTAC TGCATTCTCC ATGTCCAGCG

Page 57: MOLECULAR CHARACTERIZATION OF OVINE GM1

54

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ GCAGAAGCGT TTCCAGGACC ACCTGGGTGA GGACGT---- ----------

gi_88629151_gb_ GCAGAAGCGT TTCCAGGACC ACCTGGGTGA GGACGTGCTT CTGNTCACCA

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ GCAGAAGCGT TTCCAGGAC- ---------- ---------- ----------

gi_114492173_gb GCAGAAGCGT T--------- ---------- ---------- ----------

gi_88634142_gb_ GCAGAAGCGT TTCCAGGACC ACCTGGGTGA GGACGTGCTT CTGTTCACCA

gi_280968126_gb GCAGAAGCGT TTCCAGGACC ACCTGGGTGA GGACGTGCTT CTGTTCACCA

gi_88640218_gb_ GCAGAAGCGT TTCCAGGACC ACCTGGGTGA GGACGTGCTT CTGTTCACCA

gi_229650957_gb CTTGACGTTT GTTGATGTGA AACAGTACTT TGGATTTGTG C---------

gi_280977021_gb CTTGACGTTT GGTGATGTGA AACAGTACTT TGGATTTGTG CTGTACCGAA

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ CAAACATCAT CGTGGTGCTG GAGCTGGAGT ATGCGCCCTG CCACGACGGT

gi_88629496_gb_ CAAACATCAT CGTGGTGCTG GAGCTGGAGT ATGCGCCCTG CCAGGACGGT

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ CCAACATCAT CGTGGTGCTG ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ---------- ---------- ---------- ---------- ----------

gi_114718270_gb ---------- ---------- ---------- ---------- ----------

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb AGAGGCATCC ACAGGGTTGG AAGGGAAGCA TTTGAAGTTT TTCTGATTTT

gi_114475416_gb AGAGGCATCC ACAGGGTTGG AAGGGAAGCA TTTGAAGTTT TTCTGATTTT

gi_114474748_gb AGAGGCATCC ACAGGGTTGG AAGGGAAGCA TTTGAAGTTT TTCTGATTTT

gi_114450604_gb GGAAGATCTC CCAGTTGGTG AGGATTTTGG AATCAAGCTC GTGCCG----

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ CGGACGGGGT CAATG----- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ CGGACGGGGG TCATGAGGAG TTCCTGCAGT GCGGGG---- ----------

gi_280968126_gb CGGACGGGGT CAATGAGGAG TTCCTGCAGT GCGGGGCGCT CCAGGGGCTC

gi_88640218_gb_ CGGACGGGGT CAATGAGGAG TTCCTGCAGT GCGGGGCGCT CCAGGGGCTC

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb CAACGCTCCC TGAAA----- ---------- ---------- ----------

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ GACCCGGAAC TATGCACCGT GG-------- ---------- ----------

gi_88629496_gb_ GACCCGGAAC TATGCACCGT GGAGTTCGTG GACAAGCCGG TTTTTCGCAC

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ---------- ---------- ---------- ---------- ----------

gi_114718270_gb ---------- ---------- ---------- ---------- ----------

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb TATTTTGTTA AGAATCATGT AGCCTTTTTA TTAAATAAAA TTTGTATTCA

gi_114475416_gb TATTTTGTTA AGAATCATGT AGCCTTTTTA TTAAATAAAA TTTGTATTCA

gi_114474748_gb TATTTTGTTA AGAATCATGT AGCCTTTNTA TTAAATAAAA TTTGTATTCA

gi_114450604_gb ---------- ---------- ---------- ---------- ----------

Page 58: MOLECULAR CHARACTERIZATION OF OVINE GM1

55

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb TACGCCACCG TGGACTTCAG CACAGGTTCC AACCTCACAG CTGCTTTCAT

gi_88640218_gb_ TACGCCACCG TGGACTTCAG CACAGGTTCC AACCTCACAG CTGCTTTCAT

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb ---------- ---------- ---------- ---------- ----------

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ AGTCTAGACC CACAGACATG CAAACTAGGA GCAAGACTCA TGGCCGACTC

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ---------- ---------- ---------- ---------- ----------

gi_114718270_gb ---------- ---------- ---------- ---------- ----------

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb AATG------ ---------- ---------- ---------- ----------

gi_114475416_gb AAT------- ---------- ---------- ---------- ----------

gi_114474748_gb AAT------- ---------- ---------- ---------- ----------

gi_114450604_gb ---------- ---------- ---------- ---------- ----------

gi_31084151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88627441_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629151_gb_ ---------- ---------- ---------- ---------- ----------

gi_88620401_gb_ ---------- ---------- ---------- ---------- ----------

gi_88644845_gb_ ---------- ---------- ---------- ---------- ----------

gi_114492173_gb ---------- ---------- ---------- ---------- ----------

gi_88634142_gb_ ---------- ---------- ---------- ---------- ----------

gi_280968126_gb GCTCCAGAGG AAATTTGAGC CCAGAGGACC CCTGATCAAT TCTGAATTCT

gi_88640218_gb_ GCTCCAGAGG AAATTTGAGC CCAGAGGACC CCTGATCAAT TCTGAATTCT

gi_229650957_gb ---------- ---------- ---------- ---------- ----------

gi_280977021_gb ---------- ---------- ---------- ---------- ----------

gi_229652641_gb ---------- ---------- ---------- ---------- ----------

gi_88636859_gb_ ---------- ---------- ---------- ---------- ----------

gi_88629496_gb_ CCTGGGACAA AGACTGTGAC CCTTCAGAGT TCCAGCCTTG CACATAC---

gi_114496738_gb ---------- ---------- ---------- ---------- ----------

gi_88615585_gb_ ---------- ---------- ---------- ---------- ----------

gi_88626309_gb_ ---------- ---------- ---------- ---------- ----------

gi_88654284_gb_ ---------- ---------- ---------- ---------- ----------

gi_114718999_gb ---------- ---------- ---------- ---------- ----------

gi_114718270_gb ---------- ---------- ---------- ---------- ----------

gi_114744710_gb ---------- ---------- ---------- ---------- ----------

gi_88634842_gb_ ---------- ---------- ---------- ---------- ----------

gi_114747744_gb ---------- ---------- ---------- ---------- ----------

gi_114475416_gb ---------- ---------- ---------- ---------- ----------

gi_114474748_gb ---------- ---------- ---------- ---------- ----------

gi_114450604_gb ---------- ---------- ---------- ---------- ----------

Page 59: MOLECULAR CHARACTERIZATION OF OVINE GM1

56

Appendix Figure 2 (cont.)

gi_31084151_gb_ ---------- ---------- ---------- -------

gi_88627441_gb_ ---------- ---------- ---------- -------

gi_88629151_gb_ ---------- ---------- ---------- -------

gi_88620401_gb_ ---------- ---------- ---------- -------

gi_88644845_gb_ ---------- ---------- ---------- -------

gi_114492173_gb ---------- ---------- ---------- -------

gi_88634142_gb_ ---------- ---------- ---------- -------

gi_280968126_gb ACACTGGATG GTTA------ ---------- -------

gi_88640218_gb_ ACACTGGATG GTTAGATCAT TGGGGGCAAC GTCATTC

gi_229650957_gb ---------- ---------- ---------- -------

gi_280977021_gb ---------- ---------- ---------- -------

gi_229652641_gb ---------- ---------- ---------- -------

gi_88636859_gb_ ---------- ---------- ---------- -------

gi_88629496_gb_ ---------- ---------- ---------- -------

gi_114496738_gb ---------- ---------- ---------- -------

gi_88615585_gb_ ---------- ---------- ---------- -------

gi_88626309_gb_ ---------- ---------- ---------- -------

gi_88654284_gb_ ---------- ---------- ---------- -------

gi_114718999_gb ---------- ---------- ---------- -------

gi_114718270_gb ---------- ---------- ---------- -------

gi_114744710_gb ---------- ---------- ---------- -------

gi_88634842_gb_ ---------- ---------- ---------- -------

gi_114747744_gb ---------- ---------- ---------- -------

gi_114475416_gb ---------- ---------- ---------- -------

gi_114474748_gb ---------- ---------- ---------- -------

gi_114450604_gb ---------- ---------- ---------- -------

Page 60: MOLECULAR CHARACTERIZATION OF OVINE GM1

57

Appendix Figure 3. Predicted amino acid sequence of ovine GLB1.

MPGVVRLLALLLAPLLLGSARGLHNATQRTFQIDYRRNRFLKDGQPFRYISGSIHYFRVPRFYWKDRLLK

MKMAGLNAIQTYVAWNFHELQPGRYNFSGDHDVEHFIQLAHELGLLVILRPGPYICAEWDMGGLPAWLLE

KKSIVLRSSDPDYLAAVDKWLGVLLPKMRPLLYKNGGPIITVQVENEYGSYYSCDYDYLRFLQKRFQDHL

GEDVLLFTTDGVNEEFLQCGALQGLYATVDFSTGSNLTAAFMLQRKFEPRGPLINSEFYTGWLDHWGQRH

STVSSKXVAFTLHDMLALGANVNMYMFIGGSNFAYWNGANTPYQPQPTSYDYDAPLSEAGDLTEKYFALR

DIIQKFAKVPEGPIPPSTPKFAYGKVALKKLKTVEDALNILCPSGPIKSVYPLTFVDVKQYFGFVLYRTT

LPENCSHPTPLSSPSSGVHDRAYVSVNGVAQGVLERESVITLNITGEAGATLDLLVENMGRVNYGSYIND

FKGLVSNLTLDSKILTNWEIFPLDMENAVLSHLGTGGGSDRRYHNKARAHSPPTYALPTFYVGNFTIPSG

ISDLPQDTFLQFPGWTKGQVWINGFNLGRYWPVQGPQMTLFVPQHILVTSTPNIIVVLELEYAPCQDGDP

ELCTVEFVDKPVFRTV

Page 61: MOLECULAR CHARACTERIZATION OF OVINE GM1

58

Appendix Figure 4. Partial sequence of CHORI 119J20 BAC, predicted to contain GLB1.

TAAAACTGCTCCAGTCTAGTTTGAAAAAAGAATACAGGGGCCTTCCCCTGGTGGCTCAGTGGTAAAGAATCCGCCTG

CCAATGCAGGAGACACGGGTTCGATTCCTGGTCCCAGAAGATCCCACATGCCTCAGAGCAACTAAGCCCCCGTGCCA

CAAATACTGAGCCTGTGCTCTAGAATTCAGGAGCTGCAACTATTGAGCAGCTACAGCCCATGCTCTGTAACGAAAGC

ATGAACGCTGCGACTAGAGAGTAGCCTCTGAGACAAGAAAAGCTGCACGGCTGGAAGACCTAGCACAGCCGAAAATA

AATAAAGTTATTTTCAACTAGAGAGTAGCCTCTGAGACAAGAAAAGCCTGCACGGCTGGAAGACCTAGCACAGCCGA

AAATAAATAGAATTATTTTTAAGAATACAGGCCAGTTATTTTATAAAAAGTCCTCCACTGAGGTTTCTCTGCTGTTT

CTTCATTATTAGATTCAGATTAAGGTCTCTGGACTAGAACAGGGGTTCCCAGGCAACAGACTGATACTGGTCTGTGG

TCTGTTAGGAACCGGGCCACAACAGGAGGTGAGTGAAGCTTCATCTGTATTTGCAGCTGCTCCCCATCGCTCTCCCT

TCACCCCTAGAAGGGACCGTCCAGCTGCAGGAAAACAAGCTCAGGGCTCCCACTGATTCTGCTTTATGGTGAGCTGT

ACAATTATTTCATTGTCTATCACAATGTAATAATAATAGAAATGAAGTGCACAGTAAATGTAATGCACTTGAATCAT

CCCAAAACTGTTCCCCCGACACAGCCTCCCACGCCCCAGTCCACGGAAAAATTGTCTTCCATGAAACTGGTCCCTGG

TGCCAAAAAGATTGGGGACCGCTGGACTAGAATACCGTCCTTCTCAGACGTCACTGGAGGAACCCACTGTCAGCCCC

TTATCACTGATGTTAATTGTGATTACCTTGTTAAGGTTGTATCCATTTTCTCCACTTCATTTTTTTCTTTTGTATTT

AATAAGTGTTTTCGGTATGAAACAGCAGCACAGTTTCTGATAGCAGAAAGCAGAAATAACTTGTGTAAAAACAAATG

TGGATTTTTTTGTTTGTTTTTTTAGAGAGAAGATACACACGTAGGAGAAAATTTTACAGCAGGGAATAATAAAAGAA

TTACAGCTATGCATAACAACACAGTGTAGCCTTAAAAAGAATGATTCCACTTGTTTAAAGTTTAAAAGTATGCTAAA

GTACACAAAATATTATTTAGGAATGCAAGTAATAGCATCTTACCTCATACAAACAAATATGGTTTTTCCAGTAGTCA

TGTACGGATGTGAGACCATAAAGAAGGCTGAAAGTGAAAGTTGCTCAGTAGTGTCCGACTCTGCCATCCCATGCACT

ATACAGTCCATGGAATTCTCCAGGCCGGGATACTGGAGTGGGTAGCCTTTCCCTTCTTCAGGGGATCTTCCCAACCC

AGGGATCGAACCGAGGTCTCCCGCATTGCAGGCGGATTCTCTACCAGCTGAGCCACAAGGGAAGCCCAAGGACACTG

GACTGGGTAGCCTGTCCCTTCTCCAGCAGATCTTCCTGACCTAGCATCGAACCGGGGTCTCCTGCATTACAGGCGGA

TTCTTTACCAACTGAGCTATCAGGGTGCTTTTGAAGACTCTTGAGAGTCCCTTGGATGGCACAGATCAAACCAGTCG

ATCCTAAAGGAAATCAACCCTGACTGTGCATTGGAAGGACTGATGCTGAACCTGAAGCTCCAATCCTTTGGCCACCT

GATGCAAAGAGTCGACTCATTGGAAAAGACCCTGATGCTGAGAAAGATTGAGGGCAGGAGAAGAAGGGGGCAAGAGA

GGATGAGACGGTTAGATAGCATCACCAATTCAATGGACAAGAGTTTAAGCAAACTCTGGGAGAAAGGATAAGGAAGC

CTGGTATGCTGAAGTCCACGGGGTCGCAAAGAGTCAGACGCGACGGAGAGACTGAACAACAACATACAAACATACAA

GATAAAACTGGAATAAAAAAGGAACCAAAAGGATGAAAAAGGAACAGAACTTTTGTATCATGAGATCCTATAAGGGG

GAAGGCCCCTCAGGTGACTTAAACGACAAATTCTCTTTAGTATAATGAATTTATTCATTTTTTCACTACACTGGTCA

GCACCTACCTTAGACCAGGTCCTGCCCTTGGCACAGAATGCAAAGATGAATCAGACATACATCCTTGACTACAAGGA

ACTTCCAGTTCAGTAGAGATAAGACATCTATATATATATATATTTTTTTAATTTTAATATCTTTAATTCTTACATGC

GTTCCCAAACATGAACCCCCCTCCCACCTCCCTCCCCATAACATCTCTCTGGGTCATCCCCATGCACCAGCCCCAAG

CATGCTGCATCCTGAGTCAGACATAGACTGGTGTAGACATCTATATTTTTTTTGCATTTGTCCCATTAACCTATAGT

AAATTGTTGTGTGACAGGCACTGTATTAAAGAAATATCAACGCATACCCTCAAAGTCTTGAGAAGACAGATAAGCAA

ACCCTTAATTACCCACCATTAGAGCTGGAAAGAGTGTTATGTGGACCCCAAAGAGGGCGGGGTAACTACCTTAGTGA

CTTCCGGCTGCTATCACAGGCACAATGGATGGCTCATAGACTGAAATTTATTTCTCATGGTCTGGAGGCTGAGAACC

CCAAGATCAAGGTGTTGGCAGGTTTGGTATCAGGTGAGAACCTGCTCTCTAATTCATGGAAGGGGCAAGGGAACTTT

CTGGTGTCTCTCCCTCTTTTAAAAAAAATTAATCAATTTTTATTTGAAAGATAATTGCTTTACAATATTGTGTTGGT

TTCTGCCATACAGCAATATGAATCAGCCATGGGTACCCATACATGCCAGGGTCCCTGAAATCCAAGCAGCTCTGCCA

CCTCCACACCTGGGGCAGACCTAAGTCCTCAAGGAGTCTCTCTTTTTTTTAATTTGGCTGCATTTGCTGGATGTTAG

TTGCCTGACCAGGGATTGAACCCTGGGCCACTGTAGTGAAAGCACCTGGTCCTAACTACTGGATTCTCTCTCTCTTT

TAATAAATGTTTGGCCGTACCTCACGGCATGTGGGATCTTAGTTCCCCAACCTGGGACTGAACCCGAGGTCTCTGGA

TTGAAAGGCAGCCCATCAGAGAAGTCCCTGGGGATCTCCTTTTCAAGGGCACTAATCCCAATCCATGAAGGCCCCGT

CCTTATGAGCTAATCACCCCGAAGACATCAAAGACCTCATTTCCAAATACCATCACTTTGGGGATTAGGTTTAAACA

TATAAATTTGGGGAGGGGCACAAACCTTCAGTCTGTAGCACTAACCTAGTCTGAAGGTGAGTCTGGGAAAGTTTCTT

GCAAGAGGTCTTTCTCTAAGTCTTGAAGGACCTGAACAAAAGGAATAGAAGACTGCTGGAGGCAAGAAGGGAAAAAG

GAAGAAGATTCTTGGCGAAAGAAATAACAGTTACAAAGGAGAAGAGAGGTGATGGCATAAAGACCCCATATGTGATC

CTATAAGAAAGATGAATGCGTGGGAATTCCTTGGTGGTCCGGTGGTTAAGACTTTGCGCTTCTACGGCTGGGGACCC

CAGGTTCAGTCCCTGGTCGGGGAACTAAGATCCTACAAGCCTCGCAGTGTGACCAAAAATAATTAATTCATTCATAA

TTAAAAGAAGATGAGGGTCTGAGTTAAGGCACAGAACATAAAGAGCCATAACACAGAGAAAGATAAATGTCATAAAT

CAGATGTATGTAGGGCGACGTGGAAAATGTTGGGAGGAAAAGAACCCTTCCGGCTAGTGCAAGCACTAAGTACTTCA

TTCTGAAAGAGGCATTAAATCTGGGATTTGAATTGGGAATGAATTGTGACCTGTGGTCCTAAAAGCAAAATCTAAGA

Page 62: MOLECULAR CHARACTERIZATION OF OVINE GM1

59

Appendix Figure 4 (cont.)

GGATATGCCCAGAACCCACCGACAGAGAAAGCTTAAGAAATACACGCAGGCAATAATAGGCTGCAGAGTAGTTTCCT

CGTATTCAACAAATAATGGTCTCATGCTGGGTGGGCTAGAAAACAGAGACTGAGGCGAATTAAGTGCTCAGANNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCTAAGTCGCTTCAGTCA

TGTCCGATTCTTCATGACCCTATGAACCATAGCCCGCCAGGCTCCTCTGTCCATGGGATTCTCCAGGCAAGAATACG

GGAATGGACTGCCATGCCCTCCTCTAGGGGATCTTCCTGACCCAGGGATGGAACCTGCATTTGTTACATCTCCTGCA

GTAGCAGGCCAGTTCTTTACCACTAGAAGCACCTGGGGAGCCCCTGAGATGCAACGCAAAGATGCAGAGTAACGTGT

TCCCACACTGGCTACAACTTCAGAACAGCTTCAAGACATGGGGGCCTTGGCAGGTGCGCCCACTAGACCATATGGAA

TGTCTCTGGACAAGCTATACAGAGAAACCACTCCTTGAAACAGTGGATCTGAGCGAAGAAGGGCAAGGAGGACATTT

ATTTACTGGCTCATTCCCTGCTCTGATCCCCACTGCACTGTGGTTCTCCACGAGAGAGTGAACTTGCCTGCCCCTGT

GGGTTGCATCACCCAGCCTCTGGCAGCCACAGAGGAAGTGTGGTGCTCTGTTCCAATGAGCGCACAGGTATCTGGAG

GAGCCAGAAACTCCAAGTGGCTGGTTTGGGGCGATAGATGTGCAGCCAGGCTAGCTGGATAGAGCAGGCAGCTGAGG

GCTCTGGAGACAGGTAACTAGGGGATCTGATGGGTCACATCAATGTGTTTGATATAGCAGTCAGAGAGATGGTAATC

AAATTACCATGGATACTCTTTGGCCCAGAAGTTGCAAACTTTCGTGTCTGCTGGGGCCTGCAGGCCACGGAAAAGGT

GCAGCAGACCAGAAGGAGATGTTGCAAACAGAAAGAATCTACCTGCCTAAAGAATGTCCCAATGCTATATATGATCT

ACTGTTACCCCAAGGGACCTTGGGCCTTTTGTGGCTAGACTTTCTGATCATTTTTTCTTTCTTTCTTTGGTCGAACT

ATGCTGCATGTGGGAGCTTAGTGTCATGACCAGGGATCAAACCCTCGCCCACCACAGTGGAAGTATGCAGTCCTAAC

CACTGGACTGCTGAGAAAGTCTCGAAAGAGAGAGTGTGTGTGTTGAAAACAAAATCATTCTGCCTCCCATCCCCTTC

CCCCATTAAGAAGGGCCTCACTTGGGGTATTTCTGCCTTTGGATCTTTTGGTTTTAGACTCCTGAAAGGGAGTTTGA

GGACATGCGGACCAAGGCATCCTAACCTCACGAGAGTCGTGAAACGTGGGCCAGTCCTGGGGTACAGCTGCCAACTT

TTATTGAGATTGTGAGGAAACAGCAAGCTGATGATTTCACAATTTCATCTTTTTATTGCAAATAGATGGGGAAACAA

TGGAAACAGTGAAAGACTTTATTTTTGGGGCTCCAAAACCATTGTAGATGGTGCCAGCAGCCATGAAATTAAAAGAC

GCTTGCCCCTTGGAAGAAAAGCTATGACAAACCTAGACAGCATATTAAAAAGCAGAGACAGTCTTTTGCCGACAAAG

GTCCGTCTAGTCAAACCTGTGTTTTTTCCAGTAGTCATGGATGCAGGTGAGAGTTGGACCATAAAGAAAGCCACCAA

AGAAGTGATGCTTCTGAACTGTGGTGTTGGAGAAGACTCTTGAGAGTCCCTTGGACTGCAAGGAAATCAAACCAGTC

CATCCTAAAGGAAATCAGTCCTGAATATTCATTGGAAGGACTGATGCTGAAGCTGAAACTCCAGTACTTTGGCCACC

TGACGCAAAGAACTGACTCACTGGAAAAGATCCTGATGCTGGGAAAGACTGAAGCAGGAGGAGAAGGGGACGGCAGA

GGATGAGATGGCTGGATGGCATCACCAACTCGATATACATGAGTTTGAGTAAGCTCCGGGAGTTGGTGATGGACAGG

GAAGCCTGGTGTGCTGCAGTCCATAGGGTCGCAAAGAGTTGGACACAACTGAGAGACTGAACTGAACTGAACTGATC

GTTTCACATTCATACCCATTAGTTGGTTGCACAATTTAACCCCAGGATACAGGTCTTGTGACTTTCTTCATCAGAAA

ATTTTAAAGACTTGTGAGAAGCATAAGGGATTGCTACACAGCAGAACTGTCTGAATCTGTAGGCAAGAGGCTTTATT

TTATAAATAAGCTCTTTATTTTGATATAAGAATTTCTATATGCCCTTTGCCCAATTCATCGATTGTTAACATTCTGC

CTCATTTGCTCCATAGTTTGCTCTCATCCTATACATGTAATAATATGTATAGTATGTATAATTATATATATACATGT

AATAAATACATATTTATTTTAATGTATAATTATATATATGATACATACACATGAGGCTTCCCAGCTAGCACAGTGGT

CAAGAATCTGCCTGCCAATGCAGGAGACATAAGAAATGTGGGTTTCACCCTGGGTTGGGAAGATCCCCTGGAGAAGG

AAATGGCAACCCACTCCAGCAATCTGGACTGGAAAATTCCACGGACAGAGCCTGGTGGGGTATGGTCCATGGGGTCA

CAGAGTCAGACACAGCTGAGCATTGCACAGCACAGCAGCACATACTGACAAGAACTATAAATAGAGCAGGCACAGAA

GCATCATGGCCTTGTGAAAATAACCCGGACTCTAATAAACCATAATGAAAATGCATGAAAAAGAACATGTATATACA

TGTATGTATATAAATAAACTGGAATCACTTTGCTATACTCTAGAAACTACTAATAACATAACATTGTAAATCAACTA

TACCTCAATACAAAAATGAAGATAAAAACTTGGGGTTTAAAGTCAGGCAATGAGACTGGAGGTCCCGTCACTTCCTG

GCTCTGCGGCTACTGGCAGGTACCTCCTCTGTGACTCAGTTCCCTCCTCCGTGAAATGTGGATAATAACACAGACTG

ACTCACTGCTGGTAAAGCCTTTAGCACAACCACGGCTCTTTTCACTTCCTGTTCAACTATAACACAGAGTCTGGCAC

TAAAATCTCAGAAACACACTGCTATCTATACTCTCTGGGCAAGCTTCTATTGTAAAGGGTCAGATGCGATCCATTTT

TAGGTTTTGTGGCTCATAAAGGAAAGCTATGACAAGCCAAGCCAGTGAATTAAAACGCAGAGGCATCACTTTGCCAA

CAAAGGTCCGTACAAAGCTGTTTTTTTCTAGTAGTCATGTATGGATGTGAGAGTTGGACCATCAAGAAATCTGAACG

CCGAAAAAGACTCTTGAGAGTCCCTTGGACGGTAGGGAGATCAAGCCAGTCAGTCCTGAAGAAAATTAACCCTGAAT

ATTCATTGGAAGGATAGATGCTGAAGCTGAAACTCCAGTACTTTGGGCACCTGATGCAAAAGTTGATTCACTGGAAA

AGACTCTGATCCTAGGAAAGACTGAAGGCAAAAGGAGATGAGGGAGGCAGAGGATGAGATGGCTGGATAGCATCACT

GACTCAATGGACATGAATTTGAGCAGATTCCTGTAGAAAGTGGAGGACAGAGGAGTCTAGCGTGCTGCAGTTTATGG

GGTTGCAAACAGTCGGACACAACTTAGGGACTGAACAACAGCAACAGCAAAGTCTCTGTTTCAGCTGCTCAACTGCC

CTTGTGATCCCAAAGCAGTCACATGCAGGACGTAGTGGGTCAGAAGGGGTGGTAGTCTAATACAGCTTTATTCATGG

ATGCTAACATTTGAATCTCATATCTTTTTTTTCTGGCCATGCCTCAAGGCCTGNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Page 63: MOLECULAR CHARACTERIZATION OF OVINE GM1

60

Appendix Figure 4 (cont.)

NNNNNNNNNNNNTTTTTTTTTTTTTTTTTAGGTTTTTTTATTTTTATTTTTGGTTGTGCTGGGTCTTCATTGCTGGG

GGGGGCTTTCTCTAGCTGCAGAGAGTGGGGGCTACTCTGTAGCTGCGGTGCATGGGCTTCCCATTACGGTGGCTTCT

CTGTTGTGGAGCACAGGTGTTAGGCACACGAGCTTCAAGTACTTGCAGGTCCTACAACACAGGCTCAAGTGCTGTGC

ACAGGCTTAATTGCTCTGCAGCACGTGCGATCTTCCACAAAAGGGATTGAACCCGTCTCCTCTATTATCAGGTGGAT

TCATTATCACTGAGCCACCAGGGAAACCCCCAAAATAACTTTTAAACTAATTTTAAAAACAACTACAGGGAATTCNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAAAAAAAAAAAAAAAGGTACAGGAAGTGACACAAAACAGATGAAT

GACTAAGTGGTGAGTACTCCTGTAACCACCCTCTAGTTCCAAAACAAAATTTGGGGGGCCCTTCCCATTTCAGGCCC

TCACTCTCATGAGTAATTACTATTCTTTATTATTACTACTTTATTTATTTATTTGGCGGTGTCGGGTCTTAGTTGTG

GCCTGCAAGCTCTTAGTTGCAGCATTTGCTTGCTGCGGGAGCTAGTTCCCTGACCAGGGATCGAACCCTGGCCCCCG

GCATTGGAAGCTCAGAGTCTTAGCCACTGGACCACCAGAGAAGACCCGTAACCACTAATCTTGTCTGATAACCATCA

CTCTCATTGTTAAAAACCAACCTAAGTTTGAAAAAACTCTGAAAATTTAAAAAAAAAAAAAATAGTGCTAAAGAAAA

AAAATTGGATACGTGCTAAAGTGGTAAGGAAGATTTTCTTCAATATTTTTGTCATAACAGTCAATTCTACTGCTACA

GGTGGAGAGGGATGGTTCCCAATTCTAACTACAGCAAAGAGAGCTGGGGATTTATAGCCAGCAGAGTTAGGGGCTTG

TGGGTGGAAAATTGTAAGAGGAGGTCTCAAGGGATTCTTGCTAAGGGTAGGTCAAAGAGNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNTTTTTTTTTTTTTTTTGCTAATTTGCTAAGACTGGACAGTTCGGGTCAGGCAAGGACAGG

TCAGGCACAGAAGGCCAAGATCCAGGTCTAGAAGAGTCTCGAAGAGTCTCTAGTGAGAGAAGCCTAATTAAAGTTTA

GTCAAGGAGTCTATCAATAAACTGTAATTCAGGGTGTGGGGGGGAGGTGCTCGCAGTTTGGCTTGTGGGACCTTAGT

TCCCCTGCTGCTACTGCTGCTGCTAAGTCGCTTCCATCGTGTCCAACTCTGTACGACCCCAGAGACAGCAGCCCACC

AGGCTCCCCCGTCCCTGGGATTCTCCAGGCAAGAACACTGCAGTGGGTTACCATTTCCTTCTCCAATGCATAAAAGT

GAAAATGAAGTTGCTTGGTCCTGTCCAACTCTTAGCGACCCCATGGACTGCAGCCCACCAGGCTCCTTCGTCCATGG

GATTTTCCACGCAAGAGTACTGGAATGGGGTGCCATTGCCTTCTCCATCAAATCCTGGGACCACTAGGGAATTCGCT

AACCCTATACTGTTATTGTTAACCTCAAGTCTCAAGTTAACAATATGGGCTTCCTTAGTGGCTCAGTGTTTAAGAAT

CTGCCTGCAATGTAGGAGATTCGGGTTCCATCCCTGGATAGGGAAGATTCCCTGGAGAGGGAAATGGCAACCCAGTC

CAGTTTCCTTGCCTGGGAAATCCCATGGACAGAGAAGCCTGGTGGGCTACAGTCCCTGCTGCCACAAAGACTTGGAC

ACGACTTAGCGACTAAACCATTAGCAAGTCAATACATTTAACATGAGTGATTTTTGTAGTGTGGGGGCCAGTGTGAG

GAAAGCAGGAGAGACTCCATCTTGAAGCCTGCCATCTGTCTTAAAGACAGGATGTAAACTGGGCCTGAACCCTGCCC

AAGAATGAGAAAACCATTGCTAATAAAAACCAGGTCTCCTGGAGACTTCCCTCCATACAGATGGCAAACGGAGACTG

TAGTTGAGGTCAGGCTGCCCCTGTTAGATTAACCATGGAGATATCCCCCCTTGATATATAAGCATTGCNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGGGGATGGT

TATGAAACCCGGCCACTGGGAAACATCAAGGTCCTTGTTGGGAACTGATTCCCTTGGACCTGCTGGCAGTAATAAAC

GGTACTCCACACTGTCTTGTGTCCTCTGAGGTGTGTTTTGTGATTCCGGATTCCACAACAGTAGAATGTTAATCGTA

ACTCAATAAAGCTGGAAAATATATATACATATATATATTTGAAAGTGATTTCCCTAAAGGCGCCTTCCTCTGAGATT

CAGTTTTCATTAGAGTTGATTAAAGTGCAGTGATGTCAAAGGTGAATTTGCAGAGAGTTTTGGCAACCAGGTAGGAA

AAGACAACGTTAGGTTCAGATCTAGGGGTAGCCAGCGGTCCTGGACTGGTTAACTCACAGTAGGGTCTCCCTTTCCC

CAAGTGTAGAAAAGAGATCATACTAGATATTGTACGTCCACTTGACAGTTCTGCTTGCATCACAGGGATGTTGAGTG

GCTTAAGTGCCAAACTGAAAGACGGGACCTTTTGGTACTCTTATCTCTTATCTCTCAAAATCCGGCATGAAATAAAA

ATTCCACAGACCCGGGTGCCTTGAGGGTTGGCCGGCATTCCTGAAGATTTCGCCACAGTTGAACCACATCTCTTAAT

GTATCAGTAACCTGGAACCTGCCTCTTGAGAAATCTGTATGCAGGTCAGGAAGCAACAGTTAGAACTGGACATGGAC

CAACAGACTGGATCCAAATAGGAAAAGGAGTACGCCAAGGCTGTATATTGTCACCCTGCTTATTTAACTTCTATGCA

GAGTACATCATGAGAAACACTGGACTGGAAGAAACACAAGCTGGAATCAAGATTGCCGGGAGAAATATCAATAACAT

CAGATATGCAGAGGACACCACCCTTATGGCAGAAAGTGAAGAGGAACTAAAAAGCCTCTTGATGAAAGTGAAAGAGC

AGAGTGAAAAAGTTGGCTTAAAGCTCAACATTCAGAAAACGAAGATCATGGCATCCAGTCCCGTTACTTCATGGGAA

ATAGAGGGGAAACAGTGGAAACTGTCAGACTTTATTTTTTTGGTCTCCAAAATCACTGCAGATGGTGACAGAAGCCA

TGAATTTTTTTTTTTTTTTTGCAGCCATGAAATTAAAAGACGCTTACTCCTTGGAAGAAAAGTTATGACCAACCTAG

ATAGCATATTCAAAAGCAGAGACATTACTTTGCTGACTAAGGTCCGTCTAGTCAAGGATATAGTTTTTCCTGTGGTC

ATGTATGGATGTGAGAGGTGGACTGTGAAGAAGGCTGAGCGCCGAAGAATTGATGCTTTTGAACTGTGAGAGTCCCT

TGGACTGCAAGGAGATCCAGCCAGTCCATTCTGAATGAGATCAGCCCTGCGATTTCTTTGGAAGGAATGATGCTAAA

GCTGAAACTCCAGTACTTTGGCCACTTCATGCGAAGAGCTGAAAAAAGACTCTGATGCTGGGAGGGATTGGGGGTAG

GAGGAGAAGGGGACGACCGAGGATGAGATGGCTGGATGGCATCACTGACTCGATGGACGTGAATCTGAGTGAACTCC

Page 64: MOLECULAR CHARACTERIZATION OF OVINE GM1

61

Appendix Figure 4 (cont.)

GGGAGCTGGTGACGGACAGGGAGGCCTGGCGTGCTGCGATTCATGGGGTCGCGAAGAGTCGGACACAACTGAGCAAC

TGAACTGAACTGAACCGAACCTGGAATAATGGTTCTCAAGCTTTGCGTGCTGTCAGAATGACCTGGAGGGTTGTAAA

AATAGATTTTCTGGACCCTATCCCTACTCGGAAATGAATTGTCTGAGGAGACACATCTGCTGACAAAGCAAGAGATT

TTATTGGGAAAGGGCACCCGGGTGGAGAGCAGTAGGGTAAGGAAACCCTGTAACCTTATTCTGAGCAATATGATTAA

TGACATTCCAATTATCTGGTGCTACTAGGTAGAAATAAGATTTTCTAATATACTTGTGTTTGCATTTTACTATTTAT

AGATTCGTGATTATCTTTCTTCTTTGCTGTTATGCCTTCCTTTGCTATCATGAATATCACAAAAATACCTACAACAG

CTTCATTTGATTTTTTCCCCCTGTGATAGGTATTCACAATTTCTCTTCTGAATAGTTTTTAGATTTGAATCTAAATA

GTTTACTCATGTCAGTGAAATTATGCTTTAAGGGGGAAGACAGTGTTGCTGAAACCCCAGATAAAGGGACTTAGTTT

CAAAAGTGTCCAAAGACTCTTGTGAGAAGGACATTTTTACTCTTAAAGGTCCGTCTAGTCAAGGCTATGGTTTTTCC

AGTAGTCATGTATGGATGTGAGAGTTAGACTGTGAAGAAAGCTGAGCATTGAAGAACTGATGATTTTGAACTGTGGT

GTTGGAGAAGACTCTTGAGGGTCCCTTGGACTGCAAGGGTTTCTTGGGCGAGGACTCGTTATTTCCAATTCCAACAC

GTACCAGATAGAAGATTGGATCAGGGACCACACTTTGGCGGACTCCTGGTTGTTTTCCAGACTGCCCCTATGAAGGG

CTGAGGATCCATCTAGTCCACTTAGGTTTAACTGCTCCGTTTCTGTCGTGTCCGGGAAGCCGGGGAGCAAGGAGACC

CTTGTTAAAGTCCAAACCCGAGGTGCGTTATCAAGCTGCTGACAGCGAGTACTCCTGAGGCTTTGCAAAAGGTTCCT

CCCTCAGGCGGAGGCCGGCGGAGGTCAGATAACACTGCCCTGCGGTCCCGCGGCCGCGTGTGGCCCCAGGCTCTCGG

CTCCGCCGGCTCCGGGCTCCGCGGCTGCGGCGGCGGGGCGGGGCGCGGGGCGGGGGCGGCGCGGGGCGGAGCCAGGC

CCCGGGTCCTCGGTCAAGCGACGCCGAACGGCTGCCCCGGCTGACTGCGGAGCCGGGAGGCCCGAGAGCGGACGGAC

ATGCCGGGGGTCGTGCGCCTCCTCGCCCTGCTGCTGGCGCCGCTGCTGCTGGGCTCCGCGCGTGGTTTGCACGTAAG

TCCACAGGACCCCGCGCACAAATGATGAAGCGGGGGAGCGCAGGCGGGGAACCGGGCTGGGGCTGCGGCCCCCTGCG

GCCCCCTGGGCGGGGGTCCTGGGACCCCGAGGCCCGCCCGGGCCCGCCCGGCTACGCGGGAAGCTCAGGCAGTGGGC

CGGCCCTCCCGCCGGGGCCGGGCCGGGCGGGGCGCGCGTCCTTGCCGGGCGCTCTGTCGCTGGTGAGTTCCGCTCCC

GCCGCCTCTGTCGCCGAGAGCCACTTCCTTATCGGTGCAACCAGGGGCCGAGATGAGGTGCTTTCCAGCTCGGCGGG

TTTCCGGGAGTGGGATCGGAGTCGCGCGCGCTCCTGGAGGCCGCCGGAGCCTCGGGCTTGGCGCGCCTCTCCTGCCT

GCGCTGTGCGGAGCGCTCCGGAAGGAGAATAGCGGAGTCACGAGAGGCCGCAGCAATGGGAACACTGGGTTAATTAC

CTTCGGGGTGTGCTCTTTGAGGACGTCTCTTGCCCGTCTCGCTACTTCCCCCCGCCTGCTTTTAAGGCTTGGATTTT

TCAAAGCCTCAGCGTTTGACGGTGGGCCAGGGGCAGGCTGCAGGTGGCCGCCAGCGTTGCTGGAGGGAGGTCTGGGC

CGGCGGGCTGTGTGCTGGGGCGGGGACGCGGGGGCCGGGGAGGTGGGGGGAGTCGTGCACGACTTGCGGGAGGACAG

CCTCAGTCTGCCCGGCAGAGCTAAGGGAGCGGCCGAGGGAACTCGGGGTCTTGGAAAGGTGGGGGTGAGGAAGATCT

GAGCTGGGAGATGAGAATGGGGACTTGAAACGGGCGCCTTTCTCTCTGCACTTTCTGGGACCTAATTTTGGTTCCTC

CAGAGTTCCGATGGGCTGAGTCTGGGGTTTGTTTTATAAGTAGAAGCTGGTGAACTTGACAAGGCCTACATTTATCT

AAAAGCAAGGTTGAGAGTTTTACTTGGAAAACAACTGCTGAAAATATTTTCGTTTGGGGTCTTATTAGGAAAAGGTC

ACCTCAAGTGAATATTTGCTAACCTTTGTCTATCCAGGTCTGTAGTTCCCTTGCAGTTTTTTGTCTGGGAGCCAGCC

AGCTGTAAGAACCAATCAGGAGACTGGCTCCCCCCCCGGAATCTTTATGTCAGTTGCCTCGGTTCTCCTTCTTGGCC

TACAGCTGAAAAAAAAATACCAGCAGACTAGCTTTCCATGGCTCCCTGGTTTACACGTTAGAACAGCGGTTCTCAAA

CTGTAACTGTCCTAGAAGTTAGAACATTTAAAACTATATGTTAATAAACTATATATATATATATATTTTAAACAAGT

TGTTCTCTCCAGTTTTTAGGGCACAAAGTGACATTGTACATTTTTGCAAATCTCTTTCATGTTTTTTTTTTTTTGGA

GATTAGACTTTGTTTTTTTCAAACTTTAAATTTTTTATTTTGTATTGAGGTATAGCTGATTAACAATGTTGTGGTAG

TTCCAGGTGAACAGCGAAGGGACTCAGCCATATGTATACTTGTATCCATTCATGTCTGTCTTAATAGATGGCTGTTG

AATGCTCGTAACTAATTCTGCATTCAGTTCTGCCATTTCACATGTCACGTAACCTCTGGAAACTTCACTGTACATTC

ATGAGAGAATGATTATGGCTTAGTACTGTTTTTGAAAACAGTCAGTAGACACCGCCCCCCGCCTCGCTTCCCCCGCA

ACCCCAACAGCCAAAGGGTCTCCCTGGACCACACTTTGAGAACCGCTGATTTAGAATAATGTTTTTCTTATTATAAA

AGTTCATATACATGTTGTGGAAATACTTGAAAGATGCAGAGAACTGTAAGAAAAGTGAAACTGCCCATCTTGTTACA

ATCAGGTGTGTTTGTAGTTCACTGGTAAAGTGTAGCAGCTGACTAGTTTTGACTGGTTTGAGTGAGTGGCTTGGATT

CAAGGCTGGTTGGGCAGATGTAAGTGGTCTTCAGGTTTTGACAGGGGACTAGAAAGCTCTCATATCCCACAAAGCTG

ACGCCGGTTCCTGGTTGCAGGAGGAGCTGACCTGGAAACCTGTCCTTGGCCACTGTCCTATCTAAGGAACTCACCTT

CCAGAGCTCACCCACACAGAGCTGGAGGGGTATCCTCTTAGGAGCTGAGGCAATGACGATCTTCAGGCAGCTGTCCC

TGGGGGCAAAGGCCGCCCTGGCTGCCGGGACTGTCTTCGTGTCCATGATTGTCTCCCGGTCCTACCTGGCGGAGAGC

TTGGAGTTCAGGGCCTGGCGATGCCTGTTCCGCCTGCAGCTCGCCCTGTTTGCCAACTCGCTCATGCTCCTCGGCTC

CATCTTCATCTGGCGTAGCACCGTCAGCAATCTCAAGCATTCCCCGGCTGCAGAGTCAGCCTGTTTCCAGCTCTGGA

AGATGATCGTCGTGGCCTTCCTGGCCCTGGCGCATTCCAGCTTCTTCACCATGATCTTTCTAGTGGCCGAGGAGCCC

TATCTCTTTTCCCTGGTTGCCTACACCTGCCTCGGGGCGTATGTCATCATGCTCTGCTTCCTCTGTGTCCTCAGCGG

CATGGAGCAGGCCTACCAGCTCCTGGCCTGGCGTGCCGGCAGAGCAGTGGGCAGCCTTGATAAGACCAGGAAGCTGG

CCCTCCGGCCGGCACTGGCAGTGGTGGTAACCACTGTGCTCAGCGTGGTGGGGCTGCTGAACGCCGCCCAGCCCCCA

GCGGTGATCACTGTGGAAGTACCCGTGCATCGGCTGCACCCCTCCATGAACAGCCTCAAGGTTGTGCTCCTCTCGGA

CATCCACCTGGGCCCCACGGTGGGCCGGACCAAGGTGGACATGTTCGTGAGGATGGTGAACGCGCTGGAGCCGGACG

Page 65: MOLECULAR CHARACTERIZATION OF OVINE GM1

62

Appendix Figure 4 (cont.)

TCACGGTGATCGTGGGCGACCTGTGCGATTCCGAAGCCTCTGTCCTGCGCACAGCTGTGGCTCCTCTGGGCCAGCTG

CGTTCACGCCTGGGCACCTACTTCGTCACAGGCAATCACGAGTACTACACGTCAGATGTCAACAACTGGTTTGCGCT

GCTGATGTCCCTGAACGTCCAGCCCCTCCACAATGAGAACGTGAGGATTTCTGCTCCCGGGGCCCGCCGTGAGGATG

ACGGCTGGATCTGCCTGGCTGGGGTGGATGACATCGCAGCGAACATGCTGCACTACACTGGCCACGGCATGGACCTG

GAGAAGGCCCTGGAGGGCTGCAGCCCAGACCACCCCACCGTCCTGCTAGCTCACCAGCCCCTGGCTGCCAAGAGAGC

CCTCCAGGCCCGGCCAGATATTAACCTGATCCTTTCTGGGCACACGCATGCTGGGCAGATCTTCCCCTTGAACGTGG

CAGCCTATCTCCTGAACCCCTTCTTTGCTGGTCTCTACCAGGTGGCCGAGACTACATTTGTATATGTGAGCCCAGGC

ACGGCCTATTATGGGATACCCATGCGTCTGGGCAGCAGGGCAGAAATTACCCAGCTCATCCTGCAGCCGGCCCCCTG

ACCCCACCCCTGTCTGCCCCCCGGGCGCCTGCCTCCTCGTTGCCCTTGCCCTCTGTCCCCATCTCTCTGCAGAGTAG

GCTGTCCATCTACCCTCTCCAGCCTCCCCCGCCAACCCACACTTGTCACAAGACTGGCTGGCACTGTGATCTGTGCT

GGGGCTGCTTGGCAAGTCCAGGGAGGTTAACTCTGCAGATGACCACCTGCTTTTTCATATGCATGTGAGGCCACTAA

AGTAACATGTAAGGACGGGCATCTGTTTTCCAAATAATGTGGAGTAAGCCCTCCTCCTCTGCAGAACTCACAAGGAT

GCCCTGAAAACAGGCGTTGCTGAATAGGGATGCCTCTGGCAAGTGGAATAGGGAAGGGACTCTCGGTGTTCTAAAAA

TCTTTTGGACTTAAGCAAAACTGCTTGTTTCCAGAAATCAGTGATCCTGAACTTTCTGGGAAAGGGGCAGTGGGGCT

AGGTAATCTGGGAGAACAGGCAAGATGGAGGCCCCTCTGGCTGCTGGAGAAGAGGGTTTACTGTTCCCCCTTGATTC

TGTTAGAGTCACCTTTACTGAGAGCATCAGCCAAACTGTCTGGAATACAGGGTTCCTCCTGTTCCTCTGGGCCTTGA

TTGATGCTGTCTAACTGGCTGCTGGACCTTTGGGCTTGGGGGTGGAGTGGAAGGATGTGAGCACTGCGAGATGAAGG

TCATGGTGCTGCTGCCTAGAATTCAGAGGGTGTTTGCCAACCTTGACTCCATTTGTATTACGACACTTGGATGGAGT

GATTAGGGACGGGCAACTTGCCCTTGCTGAGAGAGGAGGACACTAAGGCAAAGGGAAGTTAGGGCACTGGCAACATT

GTCCTAACTTCCCTTTGCCTTAGTGTCCTCCTCTCTCAGCGGGGCTGAGAGCCAGGTTTCCGCCTCCCAACAGAAGG

GTTCTTCCCACTGCCTGTATCTTTACAGGTGAGAACAGGGTTCAAACACAAGTAACAGTGTAACGAGAAGGGCCTGG

AGCCTGATGTCCTTTCCAAGTGCTCTCCTTGAGGCTGATTTCAGTTCATCATAACTACACGGGCCCTGAAAGGGGGT

TAGACAGTTTCAATGTAGGGCAACTATTACAGGGGAGGGGCAGCCAGGAACCTGAAGACCACACCCTCCACCCCAGG

TTGGGGTTAGAAAGGGAGGTTCGCGCCCTCCCAGTGGGGAGGTTGACGCTTGCATCGGGAGTGGCAGGGGCCTTTCC

TCCCTGGGGGTCCTGGCTTTGGGATGCTGGGCTCTCCTTCCTGTCCAGCTGACCCCATCAGAGTTACCCTTGCGCTC

TGGTGATGGAACCAGATGGCCATCTCTGCACTGGATCCACAGAAAAAGAGGCAGGGGTCAATATGTCTGGAGCAGCC

CTGACCCCACCGGCTGGCCTCTGTGCCAGAGGCAGGGGACCCTGTGACCCTGGGCTAGCAATAAATCCTGATAGAAA

AGCCTCACTGGGAATCTTTCTGTGACCTCTGACCGGGTTGGGGTGGGGCTCCTCACCTTCCTGCTCACTTGTCAGGC

AGCATTGGGCAAACTTGAAGTCACTGAGCCTCAGTTTCCCTCACCCTGCAATGGGGATAATTACTGTATGTACCTCA

AGATTGTTTTGAGGGGAGGGTGTAAAACGTGGTGCAAAAAACAAAAACAAAAAAACACGTGGTGCAACAGTTGCCAA

GGCTCAGTCACAAGGAAGCACTTGATGTTGCCGATTTTAAAATATCCCATGGGGTGTGCAGTAATACTGTTGGTACC

GGGTGCCCAGAGAATCTATGGAGCAGCCACTCCTAGGGAATGGGAGTGGACGTCATGCCCAGTGATTTGTCAGAGCA

GCAACTGCTGGCATTGCTTTCCTCTGCCTGTTGTTTGTCTCCCTGTTCAGAGGGAGGCAGGGCCTGGCCAGGGCATT

TCTCCATTTTCCCAGGCAAGTATCATTTGCTTCTGTTCTTGGTCAGTGGAACCTTGGGGGATCCTGGAGACCACCTC

CCTTGTTTCCAGGCAGCCAAAGTGTTGACAGCCGGCCTTCCAGGCAAGTTTAAAATGCATCTTTGCGTGGAGATTTC

AGTGGTTTCCTTACTATTTACCCCCTTGTGTTTAATCGTTCTTACAGCCAGGAGTATGTTTGGAGAAAAAATTTATC

TACAACCAAGGAAGGGACCCTGGTGAGCCTTTCTTTGAACACATTTTGCAGATGGTGGGGTCGTGGGAGAGGGAAGT

GCTTTGCCCCGGGCAGCGCCCAGCTCAGCTCAAGTTCTCTGACTCCCTTCTCCGTGGCACCACCCAAGCTCCACGCC

TCCCCCTGTCTCAGAAAGGCCGCTCTTCCAAACCCTCTCAGTCCCTCGTGCCTGGCCCAGTTGGGGTCCCTGGCTCT

CTGACTCCCTGGTTTGGGTCCCCCCAGTCTATGTGAGCTCTGCCGTTTGTCTTCCACCTTGTGGGGCAACAGGCCGT

GTGCGTCTCTGCTGCTCCAACAAGTATTATTTCACTGGTTTCCTAACTGCGGATCTTTCTTTCCAGTGCCTGAGCCG

GATGGAATTTACTTCCCTCAGTCCTGGTTTCCTCTTGCAGCTTTGTCTCTTCTCTTCCCCTTGACTGCCAGTACTTT

CTGGTCCTGTGCCCTGTCGTCCTTATTCTGAGGTCCTTGGTTGACCGATTCCTGTCTTAACAGAAACAGGACAGGTC

CATCTTCTGTGCCCAAGGATTAGTCAGCAACACCTTCTCACGCTTGGTTTGTGTTCCTTGATTTTATGGGGGAAGCT

TTCCGAGCAGAAATTTTCCGTTTCTGTTCAGATATGATCTGTGGAGGGGTAGATCTGTGTGGTTTGCTCTCCATGGC

CCCGGGCGCCTATGTTCCCCCGTTCTTTGCTCATTACCTTCTCCGATTTATTTATTGCCAGGGGAGGTGGTGAGAAA

CATTTACTTGAAGCTTGAAAAGGCTTTCAATTTCATTCTAGTTTTTTTTTTTAATATATCTGTTAAATGCAAGTTAA

ACAAAAAACTTTCTAAAAATTAACAGTAGCATGTGTAGTATGGTACCATTGTTAGAAAATCTTAGTACATTTATCCT

TCTGCGGTTTATTCCAAACATCCATCCATCCTTCCTTCCTTTTCCCCTCTTATTTTGTTTATTCTTTTTAAAGTCTT

TTACTGGGAAAATTTGAAAGTATTCATAAAGTAGAGAAAACAGCAACTGAGTTTCTATGTGCCCATCACCCAGCTTC

AACACTTGTGACTATTCCACTGTTCTTTCTCATCTACCCCAGCCCCACACTTTTTGTTTTTGCCCGGAGTATATTAA

GACAAATCTTAGAAAATATGATTTTGCCCTAAAATACTTCAGTACGAATCAGTTTTTAAAAAGCATATCCATAATGC

TGTTATATCTGATGAAATTCACAGTAATTCTTTAAAATTGTCTAAGTCTTGGGGCTAGAAGCTATAATAGGTCTTCT

ACCTCTTAATAAGAGTGTTTTTCCCACTATCTGAGGATTAAGTAGCTATATCTATTATAGGTAAGTATAGGATTCAA

ATGCAGTTAACTGGATAAGGATTAGTTTTCAGGTTTTTTCTGACTATTTCAATTGTCTTTTGTGTGTGTGATTTGAA

Page 66: MOLECULAR CHARACTERIZATION OF OVINE GM1

63

Appendix Figure 4 (cont.)

AAAACACGTAAGATAAAATTAATCATCTTAGTGATTTTTTAAGTGTTCAGTTCAGTGGTATTAAGTATATTCACATC

AATGTACAACAGCTCTTCAGAGCTTTTTCATCTGCAGATATAAAACTCTGTACCCATTAAACAGTAATGCCCCTGCC

CACCCCCAGCTCCAGGTAACTCCCACTTCACATTCTGTCTCTATGAGTTTGACTACTCTGGGTACCTCCTGTAAGCA

GAATGATACATTATTTGTCCTTTGTTTCACTTGGCATAATGTCCTCAGGTGCGTCCATATTGTAGCATGTGACAAGA

CTTCCTACCTAAGGCTGAGTAATATTGCACTGTACGTGTCTCCCACATTTGGTTTACTTGTTCATCCATCAGTGGAC

ACCTGGATTCCTCTCACCCCTTGCCTGTTGTGAATAGTGCTGCTTGAACACGGGTGTGCAGATATCTCTTTGAGACA

CTGCTCTCTCTTCTTTTGGATATATACCCAGAAATGGAATTGCTGGGTCATGTAGTAGTCCAGTTTTTCACGTTTTG

AAGAAGTTCTATACCGCTTTCCATAGCAGCTGGCCCACTTTACAGTCCCACCAGCAGTACGGTGTTCCAGGTTCTCT

GCAGCCTCACTGAAATTTATCATCTCTGTTTCTGGTAGTACTGTGAGATGCAGACTTACTGTGGGTGTTGATTTGCA

TCCCTCTGATGACTCGTAATATTGAGCATGTTTTCGTATGCTTGTTGGCTATTTGTATAGCATCTTTAGAGAAATGT

CTATGCGGGTCTTTTGCTCACTTTAAGTCAGAGTATTTGATTTTTTTTGTTTGTTTGTTTTTGAGTTGTAGGTCTTT

ATATATTCTGGATATAAACTGCTTATCACATATATGATTTGCAAGTATTATCTCCCATAGACTCACTTTTAACTGTA

TTGATTGTATCCCTTGATGGGAAAAAGTTTTTAAGTTTCATATCCTATTTGTCTATTCTGATTTTGTTGCCTGTGCT

TTTGGTTTCATACTCAAGCAGTCACTGCCAATCCCAATATCATAAAGTTTTTCCCCATGTTTTTTTTTTTTTTNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATATCCCGTTTCCCCAAAACTTTGTTTAAGAGATTGTCCTTTCCC

CAGGGTGATCTTGGCTCCCTTGTTGATGACCAGGTGAACATATACGTGACAGTTTATTTCAGGCCCCTCGGTTTATT

CCAGTTGTCTCTTTGTCTGTCTTTATATCAGTAACTCATTGTTTTTATTACTATGGTTTTGTAATATCTTTTGAAAT

CAGCAAGTATGAGTCTTCTAATGTTCTTCTTTTCTAAAATTGTTTTAGCAATTTGGGGCTCCTTGAAATTCCATATG

AATTTGAGGATGAATTTTTCCATTTCTGCAAAAAAATCCTGTTGATGTTTTGATAGAGATTATGCTGACTCTGTAGA

TCACATTGGGTAATACGGACATCTTAACAACACTAAGTCTCCTGATCCATTAACATGGGATGTCTTTCCATTTATTT

GAGTCTGTTTAAAATCTCAGGGATTCAGGATTGGGAGCTCGTATACACCCGTGGCGGATTCATGTCAATGTATGGCA

AAACCAATACAGTATTGTAAAGTAAAATAAAGTAAAAATAAAATAAAATAAAATAAAATCTCAATAGTGTTTTGCTT

CATTAGGTTTATTCCCAAGCATTTTATTCTTTTTGGTCCCATTTTGATTGGAATTGCTTAATTTCCTTTTTGGATTG

TTCTTGTCAATGTATAGAAATGCAGCTGATTTTTGTATGTTGATTTTATTCCCTGCAACTTTGGTGAATTCATTTAT

TCGTTCTAATAATTGTTTGTGTATGGGGGCTGGGGAAGACTCTTTAGGGTGTTCTACATGTAAGATCACGTCATCTG

TGAACAGAGATAATTTTACTTTTTCCTTTCCAACTGAATGTCTTTTTTCCTTTTTCTTGCCTTGTTGCTCTGGCTGG

CACTTCCGTTAGTATCTTGACTGGAGGTGGTGAGAATGGGCATCCTGATCACGAAAGAAGAACTTGCAGTCTTTCAT

ATTGAGTAGGACGTTAGCTGTTGATGTTCATATGTGGCCTTTATCGTGTTGCGGTAATTTTCTTCTATTCTTAGTTT

AACAGAGAAGGCAATGGCACCCCACTCTAGGACTCTTGCCTGGAAAATCCCATGGATGGAGAAGCCTGGTGGGCTGC

AGTCCGTGGGGTCGCAAAGAGTCGGACACGACTGAGAGACTTCACTTTCACTTTTCACTTTCACGCTTTGGAGAAGG

AAATAGCAACCCAGTGTTCTTGCCTGGAGAATCCCAGGGATGGGGGAGCCTGGTGGGCTGCCCTCTATGGGGTCACA

TAGAGTCGGACACGACTGAAGCGACTTAGCAGCAGCAGCAGCAGCATAGTTTAAGTGTTTTATCATAAAAAGGTATA

GAATCTTACTAAATAGATTTCTGCCTCAATTGAAGCAATCATGTTTTTGTTCTTCAACCTGTTAATGTGGTGCAGCC

CATTGATTTTTATATGTTGAATCACTCTTGTGTTCTGAGTCCCATTTGGTCATGAGGTACTGATATAAAGAGTTGCT

AAGGGAAACCCCTCGCAGTCTAGTAATTAGGACTCGGTGCTTTCACTTCTGAGGGTGCCAGTTCAACCTCTTATCAG

GCAACTGAGATCCCACAAGCCAAGTGGTACAGCCAAAGAGAAAGAAAAAGAGTTGTTGAATTTAGTTTGCTGATATT

TGTTGAGGATTTTTGCATCAGTATTAACCAGGGATATGGATTTTGGCCTGTAGTTTTCTTGTTCTGTTATGTCCTGT

CTAGCATTGATATCAGGATTATGTTGTTCTCATAGGATGAACTTAAAAGTGTTCCCGCCTCTTTAATTTTTTGAATA

GTTTCAGGAGGATCAGCATTAATTATTCTTTAAATGTTTGGTAGAATTCCCTAGCTCAGTTGGTAAAGAATCCGCCT

GCAATGCAGGAGATCCCAGTTCAATTCCTGGGTCAGGATGACCCGCTGGAGAAGGGACAGGCTACCCATTCTAGTAT

CCTTCCGTTTCTCTTGTGGCTCAGCTGGTAAAGAATCTGCCTGCAATGCGAGAGACCTGGGTTCGCTTCCTGGGTTG

GGAAGATGCCCCTGGAGAAGGGAAAGGCTACCCCACTCCAGTATTCTGGTCTGGAGAATTCCATGGACTATATAGTT

CATGGGGTCACAAAGAGTCGGACACAATTGAGAGCATCAGGCTCTTGGTTTTTCTTTGAGATTTTCAATACTGATTC

AGTCTCTTTACTAGTTATTGGTCTGTTCAGATTTTTTATTTCTTCATGATTCAGTCTGTGTAGGTTTTATGTTTCTT

GGTAGGTTGTATGTTACACAATTTGTAGCCATACAGCTGTTCATAATAGTCTCATAATCCTTTTTATTTCTGTAGCA

TCCATTGTAGCATTTTTTCTTTAATTTCTAATTTTGAGTTTTATCTCTTTTTTCTTAATCCAGCTAAAGATTTGTCC

ATTTTGTTGATCTGTTTAAAAGATGAACTCTTACTTTCATTGATTTTTTTTTTCCTATTCTCTATTTCACTTGAAAA

ATGAAAGTGTTGCTCAATCGTGTCTGACTCTTTGCAACCATAATGGACTGTAGCCTGCCAGGCTCCCTTGTCCATGA

AATTCTCCAGGCAAGAATACTGCAGTGGGTTGCCATTGCCTTCTCCAGGGGATCTTCGTCACCCAGGGATCAAACCT

GGGTCTTCTCCTTTGCAGGCAGATTCTTTACTGCCTGAGCCACTTATCCCTGCGTTAATTTGCATTATTTCCTCCCT

TCTGTTAGCTTTAGGTTTAGTTTTTTCCTTTGATTCCTTGAGGAATTGTGTCACTTTATAGTTCTTTTGTTTGAATC

AGGATCTAAAAAAAAGGTCTCTATATTATATATGATATATTTCATAAGTCTCTCTAAGTCTTTAAGATGTCTTCTTA

TTTTGTGTCAGTTGTTTGTTCAAGTTATCTGGATTTATATCTTGGTATTTCCTACACTTTGGATTTGTGGCGGTGTT

Page 67: MOLECULAR CHARACTERIZATION OF OVINE GM1

64

Appendix Figure 4 (cont.)

TGACATGTACTACCCTTCATATTCTCTGTAAACTGATAGAGGTGGACATCTGTTAAAGTTAGAGCTAGAAGCTGGAC

AGATTCGTGTTCAACTTTTGCCCTGTTTGGTAGGAAGACTCCACTGTTTTCGGTGAGGCTGAGGTTGATCAGGTGTT

GTCAGCTTGGCCCCACCACTAGAAAGTTGCACATCTTTTCATCTAAGGTTTCAGGAGTCGTTGATGATTGTTGCCTG

AAGTCATTAGTCTAGTAGGGATTGTAAAATGGTGACTTTTTTAAGTTTGATACATTTAATACAGAATTTAGTAGGCC

AGAATACCAGGTAGACTTTCTAGGAATAATTACGTGGCTTTAATGTATTCAAGAGACAATGGAAGCTTCTTTTACCT

CAGTTTTGTATTTTGAAGGCATTTTTGTGGCACTTAGAAATATAATCCTGGGAATTCCCTGGCAGTCCAGTGGTTAA

GACTCTGAGCTCTTTCTCCTAAGAGCCCAGGTTCAATCCCTGATTGGGGAACTAAGATCCCACAAGCCACACAGTGT

GACCAAAAAGAGGTATAATTTGGCCATCAGCCCCCAAAACGAGGATTTTTAATCACATCATTTCTTCTCTATTTACT

AGCTATGGTTTTTCTACAAAGAATTCTCTGCATCAGTTTTTTGGTTATTCTGAAAAAGTCTGTAGCAAAGGCGAGAG

AGACCTGGATTCTTCCCCTTCGGTCTTCTGTTTTCAGGATAATGAGCTGATACCCCAGCAAACTTCAAGGATGACCA

AAAAGCTTTTCTTTTGTGTGAGAGGGAGTATTCTGAATTTGGCTATTTTTACATGTCTGATGTGTTTCAATCCAGTG

AAATGTTAAATCTTTTGCTGCTCAGAATAATCCATCTTCAGCCAGTAGGAGCCCTTTCAATTTGGCTTCTATGTAAT

TTTGTTGTTGATAATAGTTATTGATTGTTTTAGGCCTATTTTGTATATATTCTACCCAGACTTGGATTAAGTAATTT

CTTGGGGAGCTCTGGTTTCTTTTAATGGGAAATATTTAGAGACTGTAATTTAAGGGACTAGATGAGCTAAGTGCTAC

TGGCTATTGTCATTTCTAAGCCGTTTCTGTGGCTATTGCTGGGAAATAAATATTTTTTTTAGAAAAAGGAAAACTTT

AGTTTATATTATTTTTAGAGCAGTTTTATGTTCGTAGCAAAATTGAGTGGAAGGTATAGAGATTTTCTGATTATAGG

ATTTTTAATTAACCTTTGATTTTATATTTGCTTCTATTTTATATTGAAAATTTTGGTTCCTAACAATGCAATATAAT

TCCATATGTATCCTACTGTGTATTTTATGAATTCAAAATAGTCATGAAATATTAATAGGATGAAATCTACTGGTTGC

GGGTTTGTTTGTTTTAATGCAGCTCAGGATATATTTTTATCCTTAGTTAAAATACTATTTCAAATGGACATGATTCT

TTCCTCTATGGAAAGTTAGGTCTGTTTTTAACTTTTAAAAATTATTTTATATTGACCTAAGTCCCACTGGGGAAGGA

ATTTTTATCATGTGTACTTGGGTGGCATCATAGTGCCCTTCCGCAAGGGAATTCTCCCTTCCATCAGTCAGTTCCCG

CCTCAGAGCTGGGGCCTGGATGGAGCTGTGATTTCCCGTGGTGGTGGCTGACCTCAGCCGTTTGTTCATGAGTGACT

GATTTTTTTGTCTCTTGTGAGACTCATCAAGCTGGAGCCCCACTGGCTGCCCAACTGTCCCCCCCTCTCGGAACGCT

GTGGTTTCTGAGCCCTTGCCTGAGGTTGCCACCACGGTCATAGTGATGGTGATTATGTCCACCAGCCCCTGGCGGCT

AGGTGGCCCCTCTTTGGGTAAGTCAGCGCTTTATCACCCTCGAAGACACAGAGTGTCTTCTGCCCTGCCCTGCCCAC

AGAGCACAGCCCTCAGGGGACCTGAGGTCTCCAGGGCCTCCTCACTGCGGCCTTCCTTACGGAAGGGTGCCCTATCT

GGCCAGGCTTGGGGAGTGTAGGCAGATGGTGGGGTGTCTGGTCACCGGCTTTACCTTCTCATCTCTTAGAGCCGTCT

CACACGTTCCTTAGGATTGCAACGCAGTGCGGGCACCTCACTTCATTTCCTGTAGGTCAGCATCAAGTCCAAGTTCC

CAGGCACCGGGTTCCAGCAGCACAGGGGCCGGGTTGAATGCCTTTCCCAAGATGAAAGCTCACGAATCTTGGGAGAG

TGAGCCACGTCCATACGCTCCCGTCTCTCCTCCTCGTGTTGTGTCCCCTCGAGATCCTCTCGCCATGTTCCCCCCCA

ACCCCATGAAGTCCTGGCCTTATCTTTCTGGCAGGAGATGTACGTCTCTTTCAACATTGCCACGGAAGCCTCTAGCA

TTCACAGCATGCCCAGCGTGGACGCGTGATTTGAGCCTGTCAGCCAGTCTTTCTTCAAAGCTGCCAAACGGTTAATA

AAAGCCAGCCAAGCCCACAGTCCTTACAGTTAGCAGCACCCTGTCCTTCAGCCCCGTCCCACAGGGAGAGCTAAGGC

AGATGCCAGCTCCTGTCTGCCTGTGTCTCCTCCCAGCCCTGTACAGGTGGGGCCTCGGTGCGTGTGTTTGCATTGCC

AGAGGCTGTCGCCCCCTCCACTTAGCACTACTTTAGGGTTCTCACTGCTGTCTTGACATAGAGGAAATGAGAAATCC

AGGTATAGACTCAGCATCATGAGGATCTGCTGTTTAGGCCACTTCTGGAACAAGTTGTCTTCATTTGGGTTCCTCTA

GAAGTGAAACCACCAGGGAAGTCCTAGAAGTAAGACAGGCTTCTTTGGTGGCTCAGACAGTAAAGAATCTGCCTGCA

TTGCAGGAGACCCAGGTTTGATCCCTGGGTCAAGAAAGTTCCCTAGAGAAGCGAATGACAACTCACTCCAGTATTCT

TGCTGGAGAATACCACGGACAGAGGAGCCTGGCGGGCTACAGTCCAGTTCAGTTCAGTTCAGTCACTCAGTTGTGTC

CAACTCTTTGCAACCCCATGGACTGCAGCATGCCAGGCTTCCCTGTCCATCACCAACTCCTGGAGCTTGCTCAGACT

CATGTCCATCCAACCATCTCATCCTCTGTCTTCCCCTTCTCCTCCTGCCTTCAGTCTTTCCCAGCATCAGGGTCTTT

TCCAATGAGTCAGTTCTTCGCATCAGGTGGCCAAAGTTTTGGAGCTTTAGTTTCAGCATCAGTCCTTCCAGTGAATA

TTCAGGACTGATTTCCTTTAGGATGGACTGGTTTGATTTCCTTGCAGTCCAAGGGACTCTCAAGAGTCTTCTCCAAC

ACCACAGTTCACAAACATCAATTCTTTGGCACTCAGCTTTCTTTATAGTCCAACTCTCACATCCATACATGACTGCT

GGAAAACCATAGCTTTGACTAGATGGACCTTTTTTAGCAAAGTAATGTCTCTGTGTTTTAATATGCTGTCTAGGTTG

GTCATAGCTTTTCTTCCAAGGAGCAAGGATCTTTTTCATTTCAAGGCTGCAGTCACCATCTGCAGTGATTTTGGAGC

CCCAAAATATAAAGTCTCTCACAGAAAATTGGATTAAAGATTTATTGAGCACGCCCCGCTCATCAGAACAAGACCCA

GTTTCCCCCACAGTTAGTCTCTTCCACAAGGAAGCTTCCATAAGCCTCTTATCCTTATCAGAGGGCAGACAGGATAA

AAACCACAATCACAGAAAACTAACCAAACTGATCACATGGACCACAGCCTTGTCTAACTCAATGAAACTATGAGCCA

TGCCCTGTAGGGCCACCCAAGACGGACGGGTCATGGTGGGGAGTTCTGACAAAACATGGTCCACTGGAGAAGGGAAT

GGCAAACCCCTTCAGTATTCTTGCCTTGAGAACCCCATTTATAGTAGGAAAAGGCAAAAAGGTATGACACCGAAAGA

TACACTCCCCAGGTCTGCAGGTGCCCAGCATGCTACTGGAGAAGTGTGGAGAAATAACTCCAGAAACAATGAAGGGA

CGGAGCCAGAGGGAAAACAGTGCCCAGTTGTGGATGTGACTGGTGATGGAAGTAAAGTCCGATGCTGTGAAGAACAA

TATTGTATAGGAACCTGGAATGTTAGGTCAATGAACTTGGAATGTTAGGTACATGAATTTCTCTTGAGGCAGGTAAG

GTGGTCTGGTATCTCTTTTAAGAATTTTCCACAGTTTGTTGTGATCCACACAGTCAAAGGCTTTGGCATAGTCAATA

Page 68: MOLECULAR CHARACTERIZATION OF OVINE GM1

65

Appendix Figure 4 (cont.)

AAGGAGAAGTAGATGTCTTTCTTCAACTCTCGCTCTTTCAGTGATCCAGTAGATGTTGGCAATTTGATCTCTGGTTC

CTCAGTTATGTCCGACTCTGTGACCTCATGGACTGCAGCACACCAGGCTTCCCTGTCCTTCACTGTCTCCTGGAGTT

TGCTCAGATGGAGATAGTTTGCTCCATTGAGTCATTGTGCCATTCAACAATCTCATCCTGTCTCTCCATTCTCCTGT

TGTCAGTCTTGCCCAGCACCAGGGTCTTTTCCAACGAGTCAGCTCTTGTATCAGGTGTCCAAAGTATTGGAGCTTCA

GCTTCAGCATCAGTCCTTCCAAAGAAATCGCAGGGCTGATCTCATTCAGAATGGACTGGCTGGATCTCCTTGCAGTC

AAGAGACTCTCAAGGGTCTTCTCCAACACCACAGTTCAACAGCATCAGTTCATTGGCGCTCAGCCTTCTTTATGGTT

CAACTCTCACATCCATCCATGACTACTGGAAAAACCATAGCTTTGACCAGAGGGACCTTTATCAGCAAAGGGATGTC

TCTGCTTTCTAATACGCTGTCTAGGTTTGTCATAGCTTTTCTTCCAAGGAGCAGGCGTCTTTCAATTCCATGGCTGC

AGTCGCTGTCCGCACTGACTTTGGGGTGGGAAGTCACAAAGACTCAGGAATGAGTTTGAGATGAAACCCTATCAGCA

TACAGTACGATGAGCTCCCCAGGGAGTATCCACAGGAGCTGATGTAGATGTGTGTGTTTTCAATTTAAAGTATTTAT

TTATGTGACTGTGCCAACTCTTAGTTGTGGCACTTGGCATCTTTATTTGTGGCCCGTGGGATCTAGTTCCCTGACCA

GGGATTGAACTCGCACTCCATGCTTTGGGAGCAGAGTCTTAACCACTGGACTGCCAGGGAAGTCCCCTGAGTTCACA

TTTTAAGCCTAATTTTTTCCCAGTTTTATTGAGAAATAGTTGGCATACATCCCTAGATAAGTTTAAGGAAAACAACA

TGATTGACTGATTTACATATTGTGAAATGATTGCCACAGTAGGTGGTAATATCCCTCTTCTCGTACAGATACAATAA

AAAGGAAAGAAAGAAGAAAGAAAAAATTTTTCTTATGATGAGAACTCTTAGAATTTACTTTCTTAACAATGTTCCTA

TAGATCCTGCAGCATTCTTAGCTGGAGTCATCATGTTGTACATGACATCTCTGGTACTTATTTACCTTGTAAATGGA

AATTTGTGTCTTTTGACCACCTTTCTCCAATTCTTCCTGCCCCGACTTTTTAATTTGTGTCAACATTTCACTTGGAA

AAGTTCTCACACTTACAGAGAGTTGAAAACATTTCATATCCTCACCATTCAGATTCTCCCATTAGCATGTTACTGTC

AGTTATCCCTCCATTCATCACTGCATCCATCAACTCTGTCTTATTCTGGGGATGCATTTGGGAGTCGGTTGCAGACA

TCGGTATACTTCCTCTGAAATATATCAGCATATAAATCATTACCTAGAGGTCAATAATTGTTTAGAGCCCTTTTCCC

CTTTAAGGTAAACTTTACATGGGCCTTCCCTGGTGGCTCAGATGATAAAGAATCTGCCTGCAATGCAGGAGACCTGG

GTTCGATCCCTGGGTCAGAAAAATCCCCTGGAGAAGGGTATGGCTATCCACTGCAGTATTCTTGCCTGGAGAATTCC

ATGGACGGAGGACTCTGGCAGGAATCCTACAGTTCGTGGGATTACAAAGAGTCAGTCAGTGAGTGACTTTCACTACT

ACAGACTTTACATACAGTGAAATGCATGAGAGATTTTTAAATTTAACAGTGTTTGGGTTTTTTTTTTTAAGATTTGT

TTATTTTTGGCTGTGCTTGGTCTTTTTTGCTCTGTGCAGGCTCTCTCTAGTTGCGGCGAGTGGGGACTGGTCTCTAG

TTGCGGCAAGTGGGGGCTGTTCTCTAGTTGCCATGCATGGGCTTCTCAGTGTGGGTGGGGGCTTCTCTTGTGGAAGC

ACAGGCTTCAGTAGTTGCGATGCACTGGCTTGGTTGCCATGAGGCATGTGGGATCTTCTCGTAGCAGGGATTGAACC

CGCGTCCCCTACATTGGCAACAGGATTCTTAACCACTAGACCACCAGGGAAGCCCACCACTTGATGAGTTTTGACAA

ACGCATACACCTGGTAATCCCAAACCCTGATTCAGCTCTGGCATGTTACCATTGCCCCAGAAAATTCCCCAACGTTC

CTTCCCAAGCATTGCTATTTTCAAAAATATTTTATTTTGTTTTAATACCATCAACATTTCAGAGTAACTCTTATCAC

TAGACTTTAAAATGTCCCACATGTTGGATTTGGCTTCTTACTTCCTTGTGTTAGAATTAGATTCAGTTCAGTTGAGA

TTAAAGTTCAACAATGAGCACTGCTTTGAGGTGGGGCTGTGTACATCTGCCTGAATCACGACGTGAGAGTCACGTCT

GCTTGTTCCACTTTTATGAGGTTGACATGAACAGAGGGATCACATCTGCCTGCTCCCTCCTTTATAAGATTCCTTCA

ACCTTGATGATGGTTTTAGCATACACTGCTGATTACCCACAAAGGTCCATCTAGTCAAGGCTGTGGTTTTTCCAGTG

GTCATGTATGGATGTGAGAGTTGGACTGTGAAGAAAGCTGAGTGCCGAAGAATTGATGTTTTGAACTGGTGTGGAGA

AGACTCAAGTCCCTTGGACTGCAAGGAGATCAAACCAGTCCATTCTGAGGGAGCTCAGCCCTGACTCTTCATTGGAA

AGATATGATGAAGCTGAAACTCCAATACTTTGGCCACCTGATGTGAAGAGCTGATTCATTTGAAAAGACCCTGATGC

TGGGAAAGATTGAGGGCAGGAGGAGAAGGGGACGACAGAGGATGAGATGGTTGGATGGTATCACCAACTCACTGGCG

ATAAGTATGAGTAAACTCCAGTAGTTGGTGATGGACAGGGAGGCCTGGCATGCCGTGGTCCATGTGGTCACGAAGAG

TTGGACATGACTGAGCGACTGAACCGAACCGATGATTACAGCATAAGTCTATTATTTCACTCAAGGTTAGGAAAGGA

TGTTTTTCAGATTCTGTTATTCTGTTGCCATTTATTAGCTAGAATTCTGTGAAGAATTCTCCATTGTCAACTTCTTG

GTTACCCTGAAATATATTTTTTCTGTGAAAAGGGAAATACCCTGCTTGGCTTTTTCCCTTTGCTTGTCATTTTTGGA

GTAATGAGTTGGTACTCTCGCAGTCTCCAAAAGTGACTGGTGAATTCTTTTTTCCCCTCTGTGAATCATTATGAACT

CATAAGTGTTAATATTCTTGCAGTCCTTTTGTTCCAGATGATAGCTGTTAAGTTTCTCTCTTTTAAAAATAATTTTT

TAAAAAATATTTTTTGATCTCTTGGCTGCTTTGCACGGCATGTGGGATCTTAGTTCCCCGACCAGGCATTGGCAGTG

TGGAGTTTTAACCACTGGACCACCAGGAAAGTCCCTCTCTCTTTTTCAAAGAAAAAGCTCAGTTTTTTCTGCCCAGA

ATCAGGGGGAGCCTCTGGCTTAGGGTCAAACCCATGAGTTCTGTGGGGTCTACTTCCTGCCCACCTGACCCCTCGCT

ACCACCATCAGGGTCCACAACTCTGCTTCTTTGATTGCTATTTCAGGAAAAGAGCAGAGTGCCAAATATTTGCAAAC

CCCACATGTCTGATCCTATCAGTCTTCTGTTCAAGGTGCTCTCTGTGGCTCTCGGCACAAAGTCCAGGCCCTTGGAT

GGGACGTCAGAGCTCATTCGGTCTGGCCTCTCCCGTCTCCTGGTTTCGGCTGTCACTCTGCTTTATCTGTGTGGTCC

ACCACGCCCTGCCCGAGTGCCGCACCCTCTCCATCAGGGCTCCCAGTTTCTGCTGCCTGCCTTGCACCTCTCCTTGG

CTAACTCTTCTTCATCCTGGGGCTCAGCTTAAACCAGGCATTCTCAACGCTGACTATATGTTACATCATGTGGGCAG

TGTTAAGAAATGCCAAGGCCTGGACTCCACCCAAGATCAATTAACATCCGCATGTCTGAGCAATGAGGCTTGACTTT

GCTATTTGTAAAAGCTTGGGCAGGTGATTCTGTTGTGCAGCCAAGGTTGAGAATCACAATTTGAGGCGTTCCTTCAT

CTGGAAAATTCTTTGTCTCCCAGCCCTGGGTTACAAGCTGTTCATTACTGTTGCGTCTTCTGCTCTTGTCCCCCAGC

Page 69: MOLECULAR CHARACTERIZATION OF OVINE GM1

66

Appendix Figure 4 (cont.)

AGTACTTGATATAATTGGATAACTGTGTATGTTTAAGGTATACAATCTGGTGGTTTTAGCCTCATTTAATCATCTAA

GACTCGTTGTGTTGATTCTTGGGTTTCTTCCTCGCTAGACAGAAGCTTCACGTGGGCTGCGGCTGCATCTGTGTGGT

TCCCCTGTTATTAAATTACTTGTGTTTGTAATTTTTATAAGTAGTTATTAGGTTGATGTTTGGGCTGTATTTTGAGG

TTGTTTGAATGCAGAGATGGTGGTGCTGCTCTGTTCTCTGGGATTAAGCCAGATTTCACCTTCTGCCCAGATCACTT

CTCTCTAAGCTCATTTCCTACTTCTCTGAACTACTTCTCTTAGACAAGGAGATTTGTGGGATCTTAGTTCCCCAACC

AGAAATTGAACCTACATCCTCAGCTGTGAACAGACTCCTAATCACTGGACAGCCAGGAAATCCCCAACCAGCAGACT

TTAGACAGCCCTTTCCTCTTCCCAGTTCTTTCCGAAGTCGCTCCCTCCCTTTCTATCGGTCTAAAGAATTTCCCCAA

CCTCTGAGCTGCCTTTGAACTCACAGAACTTGTAGGAAACCTTTATTTGATATTTATTCATATACGTGTTTTGAGAT

GTTTTCAAAATCATCCATTGGGCCACATGGTATAGGAAATCTTATATTTTTGTTAGTTTCTGGTTTTTGAATGGCGA

TTAAAGCATTGCTTACTGAAAGAATAAAGGGATATTGACACTCTGGCATTTGAAAAAATGACTCTTAAATTAGTTTT

TTGTTTATTTTTGGTTAGTAAAGCTTTCCAGTTGTCCCTTAGCAGTCTCTGAATTGTTTAACTTTTAGTCACTTTTT

TTTTTTTTTTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTCCCACAGTCACAGGAC

TTTAACTTTCTAGTTGGATTTCAAGCCAAGTAGGATCTAGGACCCCTGCTCTCATGGTTGTTTCCAGATGCAACACT

CAAAAGTTTCATGGACTGTTATGATGCTATGAAAAAAAGACTTAAAAAAATGGCTAAAGATGCACAAGAAATTTTAC

CAACACTTGTTCAGTCGCTAAGTTGTGTCCGACTCATGGACTGTAGCACGCCAGGCTTCCCTATCCTTCACTGTCTC

CCTGAGTTTGCTCAAACTCATGTCCATTGAGTCGATGATGCCATCCAGCCATCTCATCCTCTGTCGCCCCCTTCTCC

TCCTGCCCTCAGTCTTTCCCAATGTCAGGTCTCCTTTCCAGTGAGTCAGCTCTTCAAATCAAGTGGCCAAAGTATTG

GAGCTTCAGCTTCAGCATCAGTCCTTCCAGTGAATATTCAGGGTTGATTTCCTTTAGGATTGACTGATTTGATCTCC

TTGCTCCCCAAGGGACTCTCAAGAGTCTTCTCCAGCTCCACAGCTCAACAGCATCAGTTCTTTGGTGCTCAGCTTTC

TTTATGGTCCAGCTCTCACATCTGTACATGACTACTAGAAAAACCACAACCATTGTTAACAGTGGAGGACACTAATT

AAATGGTTTCTTGTATCCTTGGGTCGGGAAGGTCCCCTAGAGAAGGAAATGGCAGCCCACTCCAATATTCTTGCCTG

GGAAGATCCCATGGGTAGAGGAGCCTGGTGGGTTGTACAGTCCAGAGCATCGAAAAAGAGTTGGATGTGACTTAGCG

ACTGAACAACAATTTGTAACCCTGGTCCTGTTGCTACATGAGGTCTGTTGCTGCCTTTTTCCGTCCACCAGAGGGCA

GTGCTCTATTTTACCTAAAAGTTGGCCTCCCCTTTGAGGTCTTCACTTTCAACTCCTATCATTTCGCCTTCTGAAGT

GATCCCCAAACAGTGTTTCTTGAAATTTGATTTGATTCTAGAAGTATAACTTACATTGCAACACCACAGAGATATTC

ATCCATATGCAAATCTACATATGCCTATATAACTAAAGTTTTATAAAATAACACTTACCTTTGTAGAGAAGAGACTT

GTGGTTGCCAAGGAGAAGGGGGTTGGGGGAGGGACGGATGGATTGGGAGTTTGGGGTCAGCAGATACAAACTATCAT

ACAGAGAGTGCAGAGACAACAAGGTCCTGCTGTATACCACAGGGAACTATGCTCAATATCCTGTGATAGATCATAAT

GGAAAAGAATATGAAAAAAAGATGTATATATAGGTATATCTGAATCACTTTGCTCTACAGCAAAGATTAGTACAACA

TTGTGAATCAGCTACTTCAATAAAATACAATTTTTTAAATAACGCTTGTCTTTACTATGTGTAACACTGAATTTTTT

TTTTCTTTCTTTTTCCTATTCTCTTTCATTTAAAAAAGTTCTGATCACCCAGATTGAGTTCACGATTCACAAACTGG

GTCGCGGATATTGCCTTCGAGTTCATTTAGTCTGGCATCCTGCATTTTTATGGATGGAGAGACAGAGGGTTAGAAAA

GGATGCTCGGTCACGGCGGGGCTCGGAGCAGCAGCTAGGAAGAGGTTTCAGGGCTTCGGACTTCTGGTCCGTTGCTC

TGAGCACAGAGACGTTCCTGCGGAGGGAAATGCAGGGCTCCGGCAGGGCGCGGCCACAGGGGGCGGGGGGAGGCAGT

GTGTGTGTGCGTGTGTGTGCATGCTCGTGTGTGTTGCCGCCGCAGTACCCTGGGTATGAGAGGAGCCCCCTGTAGCA

GGGGGACTCTTTGGTAACGTGACTTGGGCATCTCACCCGCTGATTGTCACGTTGGCGCCAGCCTCTGGAACTCGGCA

TGTAGGTTCCTCCTCGCCCTATCTCCGCCGTGGTCTGTTTTATAGCCCAGAACCGGGCACGTACACAAACTAGATGG

GTAGGGGGTCCCTCATCACCGTAAACATCTACTTTCTGAGGGTGGAAGTTCTCATGGGGTCCAATCCTTGCTCTGTA

GAATGCCACCCAGAGAACATTCCAGATCGACTACCGCCGTAACCGCTTCCTCAAGGATGGCCAGCCCTTCCGCTACA

TCTCGGGAAGCATTCACTATTTCCGCGTGCCTCGCTTCTACTGGAAGGACCGGCTGCTGAAGATGAAGATGGCTGGG

CTGAACGCCATCCAGACGTAAGTAGGAGGGCACTGGGCGCCCCTCCAAGGCAGAGACACCTGCAGCTGGAGTGGGGG

ACCAGCTGCATCTCTTTGTGCAGAGGTTTCGTTGCTCAGAACGGGAATAATAGTCTGGTGTCCCACTCGAGTAGTCT

TGCCTGGGAAATCCCATAGACAGAGGAGCCTGGCAGGCCACAGTCCATAGTATCGCAGAGAGTCGGACACAACTGAA

ATGACTTAGCATGCACGGTGTCCTGGAGACGTTTGTCTTGGGCTTGGGTGTCGCTTCGTTAGACCGTTAACTACTTC

TTCCAACCTTGAACTTTGTCAGCAGAAATCATAAAATGAATAGCAGCTTAAAAAGGCAAAGGGAAGTAACAATGACT

GAGGGTTTGCTGTGTGCAGGACAAGTGACATGGACGATGCCATTTCTCCCAGTTCACCATTACCGAATGCAGCTGAT

AAAACTGAAATTTGCCGAGGCATGTGCTTTTGGACAGAAATCCAGCTGAGATTTAAAGATAAGGGTGTTTGTAGGCG

GCCATAGCTCCTCTCAGCTCCTAGGGGAACACGCCTTGTTGGGTAGATCCCTGAAACCTAGTTTGTCTTTGTGGTTC

TGCTGGGGTGATTCTATGGCCCAGGGTTACAGAATCACCCCCAATAACTATCTCTCCTCATCTCTTCTGTTTGTTTC

AAAATGACTAATTGAGAAGGAAGTTGGGGTGGCTGGCCACTCTGGTTTTTGCATTGCTGATGTGAATTGCTGATAAC

TTTTCAAAGATAAAGTATGAGAAAATCCAGCAGCAGATTCCTGGGACAGATGGTTAGGGAGAATCCCACTCATTCTT

CTGGTTGTCGGACCACTGGGGCCTGTCTGTAGTTTTAGCCCTAAAATTAAAGTTTTAAAACTAAACTAAGTTCTGGG

AGACCACAATGGCTCCAGGGAACCCTGAAACCCTGAAACCATAAGTTAGGGATCACCAGAGAGACCTTTGTGATGGC

Page 70: MOLECULAR CHARACTERIZATION OF OVINE GM1

67

Appendix Figure 4 (cont.)

AGTGGGTAGCTTCCTGTTTAAATCTGTGTCCCTTGCTGCAGGCAGTCAGGAGAGCTGGTCAGAGTTTTTGTTACTTT

ACCTCGTTCAGGATATTCCTGATAAAATTTCTGGTTAGGAGGACACAGGGCTTGGAGGCTCTTCCATTTTTATTGAA

AAACATTTTTCAAAAAGTAAGTATATCGCTTCTGACCTTAACACAGATACTTGAATTTTTCCTAAGCCTTACACAGG

CATATATAATTTTTACACAGTAGAAGTTTGCGTCAATGTAACTATGTATTTTTTGTGTTTTGGCCACGCCTTGTGGC

TTGCAGGATCTCAGTTCCCCAACCAGATATGGAACCCCAGCCCTGTCAGTGAAAGCCCGGAATCCTAACCACTAGGC

CACCAGGGAACTCCATATATATATATGTTTTTTTTTAAATCAAGCATTAAATAGAAATGGGCATCCTTTGTGGAGCA

GACACTTAAAAGTGTCCCCACAAGTTTGATTATCTGGGTAGCTGCCATGAAAACTCAAAACAAGAGTTTTTTCTCAA

GAGGATGTCTGTGTGTGTCCTGTGGGTTTATAGTTATGCAGAGTGGTTCAGAAATGTGTATGGGACACCTGGAATTT

TGAGCTGTTTTCAGGAAGGGGCTGTGTGCGTCTTGGCAGGTACGTGGCCTGGAACTTCCATGAGCTGCAGCCTGGAC

GGTACAATTTCTCCGGGGACCATGATGTGGAACATTTCATTCAGCTGGCACATGAGCTGGGACTGCTGGTCATCCTG

AGGCCTGGACCCTACATCTGTGCAGAGTGGGACATGGTGAGTGTGGCTAACCTGGCCTTGTCTGCCTGGTGCGTGGA

CAAATGGGGCTCTGGGGGAAAAGGAATGAAAGTGGTGTGGATAAGTCTCATTCCAGATAGCACGGGCCTGTAGCTAA

GAAAGCCCAGGTGTCTTTTACCTTAGGTGGTGGCCAGGCAGAGAGGAGCAGGGAGGGGTGAGAAGGCGTGGGTCCTC

CTCTTGGTGGTCACAGACAGAAGTCAGTTTCATCTGTTAAGAGCAGTTCATGAAGTGGCCTCTGTCTGCCCCACAGG

GTAGATATGAGGTTCAGTGGAGCAATCTATAGAAAAATCTTTGATTCTCAAAACATTGCATTCATGCAGAGTGATCG

TATTTTTTATTATGTTTACAATCTCTAATTACCCTGAAAGTTACAAACCAGAAAGCCTAGCTCAAATACCCATTCTC

CATGACACATTTCTCCTTTACTCTTGCTGCTAGTAGTAGTAATAATTTCTATCTCCCCTAAGACCTTTAAGTGGTTT

CTGTTTTTAAATTTGTTTGCTGTTTCCCCATCCTAGGGAGGATTACCTGCTTGGCTGTTGGAGAAAAAATCTATTGT

TCTCCGTTCTTCAGATCCAGGTGAGTTGTTACAGGTGTTGTAAGAGAATTTAAGAAAGTTCAGATATTTTATATCCA

GAGGGTCAGATACAATATTTCAAAGGCTGGAGTACTCCTGGGTAAATGCTTCTGAAAGTTTAGTAAAAGTGTGGGTG

TCCATCATTCTCCACCAGACACTGAGTGTGTAGGAAAGAAGGATTGAACAGCTCGACGAGATCTTGTCGATCCCCTT

GGTAACTCTTTGAATTAGCACTGGGCCCCATTTGCGGTTGACTGATTGACGTTAATGCTTTCTCTCCCTCCGTTCTC

AGTCTGCGACTTGATGGGGGATGACTCCCAGCTAACCAGAAGGGCAGACGTAGTTTCTGTGGTGGTGTCCCTGGATC

TCTCTTCACCTACTTTCACAGAGTGATCTGTGAGTGATAGGTTTTTCCCTTATCTAGCTATAAACCCTGATCAGTCT

GCAGGTCCTGATTTGCTGTATTTATTTTTTGCGGGCGTATAGTTGACTTACATTGTGGTGTGTACAGCACCGTGAAT

CAGTTATGCGTATTTTTGAGCTTCTTTTTCCATGTAGGTCATTGCAGGGTACTGAGTAGAGTTCTTAGCTGCATTTC

TGTCTTCTGAAGACTTCATTTCTCTTGGGGATGAAGCTGGTCATAAGAGCAGCTAACAGTGATTAAATCTGCTGTAT

AAAAGGCTAGTACATTGTGCTCTGTGTGGCTTTTCTTCTTAGCGTACTACGCGCATGTTTCACACTCTTAGCGTATT

ATCAGTGTTTTCCCACGTACTATCTCATTTAATACTTACAGCAGCTTTGTGAACTGCTTACTTATCCCCATTTGACA

GTGTAAATGTATAGTTGATTAGAACTTAATTTCTTTTAAACTCAGCTGTGACAGAGAAGGACCCGTCACTCAGTCAT

TCAGCAACCTCGGCAGATGTCTCCTGTGCCGCAGGCTTCTGGCCCTAGCGGCAGGGGCCGATACCAGGCACACTGGT

CCTCCGAAGACCCCGCTGAGCAGACAGCTCCAGGCAGGACAGCTTTTACCAGACTTGTGGTGCACGTGACACCCCTG

TGTCAGAAGGTAGTGGTTGAATCAGTCTGTTCGACCTCTGCTGCCAGCCCCAGGATAATAGGGTGCATGGTGCCTCT

TTGTAGAAAAAAGGTGTGTGATGGTGTTAAACCTGGTTGTTTTCCAGATTACCTTGCGGCTGTGGACAAGTGGCTGG

GGGTCCTTCTGCCCAAGATGAGGCCCCTCCTCTATAAGAACGGAGGCCCGATTATAACAGTGCAGGTAATCATGGAG

CCCGGGCTGGTAGGGGGAGGCTTCCATTTATCCACACAGTATATGGGAGTGAAGCAGACGGGAGCCGCGTGTGACTC

TTTCTTTCTTTCTTTTTTAATTTTTAGAACTGAAGTGTAGTTGATTTGCTATGTTGTGTAAGTTTCAGGTGTCCGGC

AACATCATTCGGTTTTATATACGGATATAGATTCTTTTCCATTATAGGTTATTACAAGATGTTGAATATAGTTCCCT

GGGCTCTACAGTAAGGTCCTTGCTGTTTATCCTCCTATGTCTATCTCTAAGAGGCAGTGCCACAGACGGTACTTTGA

TTTAAATTGCATTTGAGGGGGCTTTACCGTTTTTGAATGCCCTCTGTGTGAGACTCCGTGCTGGCTGCCCTATAGAT

GCCATTCAGTTATCCCAGCCACTGTTGCCAAAGAGGTTAAGTGACTTGGCCAAGGTCACGCAGCTGGCAGGTGGCAG

TAAGGATTGCAGTCTGGCCCCTTTCCACTCCCACAGTGCCTTCTGGCTGCAGGGACGCAGCCCGGACCAACCCACTT

TGGCGTCTGTATCGCCTGGGTTCCCATGGGTGTGGAAAGATGATGCGGTGAGCTGGGGCCCTGTGTTTTTCTCTCCC

ACTTCCTGCGCTCGCCTTCCTTCTTCCATGTGTGTTTCTCTTGCAGTGACTGGCAGAAGGAGGAGTGTGTCATATGG

CAAGGGTGTCCCAAGAGAAAGATCAGTTCACGTGACCTGCAGTGATTTTCGATGTTTGTAAAATGACTTAAGTCAAA

CAAAACCGTGTCTGTTGGTCCTTTTGCAAGGGTTCTCTTATTGCAGAGAGTATGTTATGTAAAACTGGCTGTGTCCC

GGACCAGCATGGGATGTGTGCAGCGCTCCCTAGGGGAATGTGGGCCAGCGCTTGGGACCAGCACCGTTCACTGTCTG

CAGGGAAGGTCATTGTGGGGAGGGAGCCTGGCCACTTCTGTGCACTTAAGATACAGGCTGTAAGGGGCTTTGTGGCG

GTCCAGTGGTTAGGACTCTGCACTGTCACTGCTGTGGCCTGGGTTCACCCCCTGGTCAGGGAATTAAGATCCCACAA

GCTGTGTGGGATAGCCCCCCTCCCCAAAAAAAACCTAACAAACAAATATGTAGGTTGCAACAAGAGGGCTGGGCTGA

CCAGGGTGCCTGTTCTGACATTGCGTGGTGGAGAAAGGCCAGGCTGCTATTCCCAGAGGGATGTACTACTGGTAGCA

TTCACTGCCCCCCACCTGTCCTGAGTCTGTACCAGTTAAGCTTCAGTTCAGTTCAGATCAGTCACTCACTTGTGTCC

AGCTCTTTGCAACCCTATGAATTGCAGCATGCCAGGCCTCCTTGTCCATCACCAACTCCTGGAGTTCACTCAAACTC

ATGTCCATCGAGTCGGTGATGCCATCCAGCCATCTCATCCTCTGTTGACCCCTTCTGCTCCTGCCCCTAATCCCTCC

CAGCATCAGGATCTTTTCCAGTGAGTCAACTGTTCTCATCAGGTGGCCAAAGTATTGGAGTTTCAGCGTTAGCATCA

Page 71: MOLECULAR CHARACTERIZATION OF OVINE GM1

68

Appendix Figure 4 (cont.)

GCCCTTCCAATGAATACCCAGGACTGATTTCCTTTAGGATGGACTGGTTGGATCTCCTTGCAGTCCAAGGGACTCTC

AAGAGTCTTCTCCAACACCACAGTTCAAAAGCATCAATTCTTCGGTGCTCAGCTTTCTTCACAGTCCAACTCTCACA

TCCATACATGACCATTGGAAAAACCATAGCCTTGACTAGATAGACCTTTGTTGGCAAAGTAATGTCTCTCCTTTTTA

ATATGCTATCTAGGTTGGTCATAACTTTCCTTCCAAGGAGTAAGTGTCTTTTAATTTCATGGCTGCAATCACCATCT

GCAGATAAGAATACCAGACCACCTAACCTGGGTCTTGAGAAACCTATATGCAGGTCAGGAAGCAACAGTTAGAACTG

GACATGGAACAACAGACTGGATCCAAATAGGAAAAGGAGTACGTCAAGGCTGTATATTGTCACCCTGCTTATTTAAC

TTCTATGCAGAGTACATCATGAGAAACGCTGGGCTGGAAGAAGCACAAGCTGGAATCAAGATTGCCAGGAGAAATAT

CAATAACCTCAGATATGCAGATGACACCACCCTTATGGCAGAAAGTGAAGAGGAACTAAAAAGCCTCTTGATGAAAG

TGAAAGAGGAGAGTGAAAAAGTTGGCTTAGAGCTCAACATTCAGAAAATGAAGCTCATGGCATCCGGTCCTATCACT

TCCTGGCAGATAGATGGGGAGACAGTGGACACAGTGAAGCTTATCGGAGCCCGTTTTCCTATATGATGATTTTCAAG

GCTGAAGCTGGATGTGTCTGCCTAGCTGGATCTTCCTCCTTCCTCTTGATCTCAGGTTTTCCTCAGTTTCCACTGTT

TTTTAGTTTGTTGTTGTTGTTGTTTAGTTGCTTAGTCACGTTTGACTCTTTGTGACCCCATGGACTGTAGCCCACCA

GGTTCCTCTGTCCATGGGATTCCCCAGGCAAGAACACTGGAGTAGGTAGCCATTTCCTCCTCCAGGGGATCTTCCCA

ACCCAGAAATGAACCGTCTCTTGCGTCTCCAGCATTGACAGGCAGATTCTTTACCACTAAGCCACCTAGAAAGCCCT

TTGCTTCTAAGTCACTTAAAAAAAAATTATGTATTTACTTGGTTGTACTGGGTCTTAGTTGCAGCCTGCAGGATCTT

CAGTCGCAGCCTGCTAACTCTTCGTTGGAGCATGTGGGATCTAGTTCCCTGAGCAGGGATCACACCCAGGCCCCCTG

CATTGGGAGCAAGGGGTCTTAGCCACTGGACCCCCAGGGAAGTCCCCCCTAAATCACTTTCAATTTTCACTCACAAG

TTTTCTGTATCTTTTGGTTATGGAAAGCCACTAAAATGTCATTCCTGGAGAAGGGAATGGCAGTCCACTCCAGTATT

CTTGCCTGGAGAATTCCACGGACAGAGGAGCCTGGCGGGCCACAGTCCATGGAGCAGCACAGAGTTGGACACGACTG

AGTGACTAACACTTTCACTTTCACTTTAAAAATGTCATCAAATACGAACTCTGCACAGGAGAGCAAAGTTAACTGAT

TTAGAGGGGTGGACGGTGGGCGTGTTTCCTCCTGTATCCATCCCTGGCGACCTCAGGTGACATGAACTTAACTGTGG

GTCCTGCCAGGGGACTCGGTTCCCTCCTCTTTCTTCTCCCCACATATCTCTGTCTGCTCAAACCCCAGCTAATCCTT

TTGCCCCTTGGTAATCAAGAATGGGGGCCTTCTACCCTACAACCTAATTTGTGGGGCACTCGTCATGAGGGATCCCC

TCTGTTTACACCTGTTGTTTTGGAAGGTCAACAACTGAAGACGTCTTTGTCGCTTTACAGTAAATCCCCTATGTATG

AACGAGTTTCATTCCAAGAGCACGTTCCTAAGTCTAATTTGTTCCTAAGTCCAACAAAGTTAGCCCAAGTACCCAAC

TAACACAATTGGCTATATGGTACTGTACTATAATAAGTTTATAATACTTTCCACACAAATAATACATTAAAAAAAAA

AAAACAAAAAAGAAAACATTTTTAATCTTACAGTACAGTGCAACAACTGGGACACGGGGGTTGGCATGAAGCGAACA

GGCAAGAAGAGCAACTGACTGGAGAAGGGAGACGAGGTGGGAGACGGTAGAGCTGAAGAATCGTCGGCAACGGGGCA

GAGTACAGGCTTTGATTTCATCCATGCCTGATGTTGACGGTAGAGGTTCTGGTTCCTTGCTGGATCAATTCTGTCTG

TTATTGTTCAGTTGCTCAGTCGTGTCTGACTCTCTGTGACCCCATGGACTGCAGCACTCCAGGTTCCCTGTCTTTCA

CCATCTCTCAGAATTTGCTCAAACTCATGTCCATTGTGTTGGTGATGCCACCCAACGATCTCCTCTTCTGTCGCCTC

CTTCTCCTCCTGCCTTCAATCTTTTCCAGTATCAGGATCTTTTCCAGTAAGTCGGCTCTTTGCATCAGGTGGCCAAA

GTGTTGGAGCTTTAGTTTCAGCCTCAGTGCTTCCAATGAATATTCTGGGTTGATTTCCTTTAGGATTGACTGGTTTG

ATCTTCTTGCTGTCCAAGGGACTCTCAAGAGTCTTCTTCAGGACCACAGTTTGAAAGCATCAGTTCTTTGGTGCTCA

GCCTTCTTTATGGTCCAACTCTCACATCTGTACATGACTACTGGAAAAAACCATAACTTTGACTATACAAACCTTTG

TCAGCAAAGGAATATCTCTGCCTTTCAACACTGTCTAGGTTTGTCAAACAATTCTGTCTACCCTCTTGGAAAATGAC

CCAATGATATCTAGGTTGTAGCTCTGTTTTTCTCGTCCTAAAAGACAATGGTAGCCCTGGATTGCATTCTGAACAGC

TCCTGCAGTCTTTGTGAACTGTTCTACGTTTGGGTCCCATGCCTCAAAACCTAACAGACAGTGGCTCCTCAAATAAA

GCAAATCCCCTTGCCATTTCCCTGCATTGTGAATCTTTTCGGTTCTTCCGTTTCTTCATCTTCCACTTGATTCTCTT

CATCCTTTCTCTGGGCACATTCACATCTTTGATAGTTCACAACTTGAAGGTTCGTATGTAGGGGACTTAGGACCTTA

CAGGGTGAGATAATTATCCTGGAGCAAGTATCTGTGAGCTGCAGTAGGGGCCCCCTGCCCGTTGCGGTAAATCAGTG

CCATTGGCACACGGCCATTTATGCATTGTCTAGGGTGCTCGGGCACCACGAGTATGGCCCCAAAGCCCCTGGTGTTT

ACTGTCTGGCCCTTAACTGATGAAGTTAGCAAACTCCTGCTCTAGAAAAATCAGTGTTCCTCGGAATCTCACTTCGA

CTTCTGTGTGTCTTTCAAGCCCTTTTCTGTATGTTTCTCCTCTCACCTGCCCCGCCTCTCCTCTCCCCTCCTTGGCA

ATGATAGAGAGCTTGAATACACGCTTTGTTGCCAGTGTTTTGAGCCCTCACAAGGTGCCAGGTACCGTGTATCGGCT

CAGGGATTCCTCGTGCAGCCCAGTGGGGAAGGCACACTCACCTCTGACAGACAGAGACGGTTTACACGTGGAGCCAC

ATGGATGAGAAGAGGCAGAGCTGAGATTTGCCCGAGGACTCTTGGGCCTTTGATGTCTGTGCCTGCGACCGCAGCGC

TGAGCTGTCTTGCCATTGTGGAGCTTTTCTCTCTTTCTCTAAAAAGCAAACCAAATTATGTGTATGCATGAATTACA

ATCCTGTTTAAAATACCCTCCTATATTTTACTGTAATATAGTGATGTTAATGGATAAACGAGGCTTGAAAAAGTAAG

TGAAGATCAACAATGTCAGCTTGGGCGTGGCCAGAAAAGAACTCGGGGTGCAGAGGCAGTGAGCCCACTTTGTTGCT

AGAGTTGACCTTAAAGTTAGCTCTGAACTTCTTGGCAGCCAGATGATGAAGGAAGACACAGCCATATAAGTACCTGT

TTTTTTTCCTTTTTGGCTGTGTCGTGCAGCCTGTGGGATCTTAGTTCCCCGACCAGGGATTGAACCTGTGCCCCCTG

CATTGGGAGCACAGAGTCTTCAGCATGGGACCACCAGGGATGTCCCTGTAAATAGCTCTTAATTTTTTAATTAAAAG

GAGGAAAAAGAAAATGAGGGGGAATGTACCTTGCCGGTATTTATGAAGCTTTTCTTAAGATTTATTTCACTTATTTT

CAAAGGGGCTGCTGATGAGGATCAGGTCATCAGGGTATCAGGATCAGTCTCCCAAGGAGCGTGTCCTGCTCTGAATG

Page 72: MOLECULAR CHARACTERIZATION OF OVINE GM1

69

Appendix Figure 4 (cont.)

GAAACACCTCCTTTTTCAGGACGGCTTCATGCCCTGTGACGCCCTTGGTACTGGCTGCCACTGCCTGTTTTCTTTCT

TCCTAAGAGCATCCAGAAGACAGGGTATTATTTTGGCTGCGCTGGGTCTCTGTTGCCGTGCTCAGGCTCTCTCTGGC

CGTGGCGCTCGGGCTTCTCTTCTTGCGGAGCGCAGGCTCGAGGGCACGCAGGCTTCAGGAGTTGTGGCCCATAGGCT

TAGCTGCCTCGTGGCATGTGGAATATTTCCAGAACAGGGATTGAACCCAAGTCTCCTGCCTTGGCAGGTAGATTCTT

AACCACTGGACCACCAGGGAAGTCCCAGAACATTTTTATGTTATTTTATTTGCCGTACCTGGGGGCATATAGAACCC

TAGTTCTCCGACTAGGGCTTGAACCTGTGTCCTCTGCATTGGAAGCATGGAGTCTTAATCAGTGGACCACCCGGGAG

GTCCCCGTTTTGCTTTTTGAACCCATACCATGACAGTATAGTCAGAGAGATTCTTGCTGAGAAAACCATCATGCATT

AAGCCATTTGGAAGGTAGCACTTTTAGACAGTGACGGTGGTATTGGGTTCCTCTGCATCACTCCCCTCCCCTCCCCA

CACCCCGACTGTGTCCACAGGCTTCCTGGAGCTGCCAGCAATTCTGCAAACAGCCTGCTCTCTGAGCGGCGCTCTCC

ACCTGTCTCGCCTCCTTGACCAGTGCCTTTCTGTCTAGAGCTGCCTCGGGTAACCCCTCTGGGGAAGCTCCGTTAAC

CTCCTCTCCCAGCTTCCCTCAGGCTGGACACCTGTTTTCCGGGGGCTCACGGTTTCTTTTTCTTTTAACTTTATATT

TTGTATTGGAGTTTCTAACAATTACTAGCAATGTTGTGATAGTTTCAGATGCACAGCAAAGGGACTCAGATATACAT

GGATCCATTCTCCCCTGCCAGCCAGGCTGCCGCATAACACTGAGCAGACTTCCCTGTGCTGCACAGCAGGTCTTTCT

TGTTATCCGTTTTAAATACAGCAGTGCATACGTGCTAATCCCAAACTCCCCAACTATCCCTTCTTGGGTGGGGTGCT

CGGTTTCCTGTGCTCATGTTCAAAGACATCATATTCCTTGTATCACAGAAGGTTGTTTTGTGTTGTGTGCCAGTTGA

AATTTTTATGTTTGGGCAATTTTTAAATTTCTGTAAACTTGTGAGCTGTAACACACACACAGTAACGTGCAGTGAAT

GAAGCACTGTGGAGAGAACAGCCGCAGAATGACCACCCAGGATGGGAAATGGTCTGTGACCAGGACTCTAGAAGCTT

CCTGATCGTGCTCTGCTTTTTCTCACTGTCCTGACTTTCATGACCATCAGCTTCGTGCTTTTTTCCACACTTCTACC

AACCAACTGTCCTCACACCCACACTTACAGTTTGGTTTTAATTGGTTTGGATTTTCTGTTTGCGAAGTTTTATTATG

TGTATTTTTTTAGCGTCATGCTTCCTTCATTAAACTCTATAGCTCTAAGATTTTTTAAAATATTTATTGATTTATTC

ATTTGGCTGCATTGGGTCTTACTTGTGACTCACAGGCTTAGGTGTTTATGCTGAGTTGCTCTTTGGAAAATGAGTTT

TGAGGATCAAGTGTAGGAGATATTTAGGGGGAGGGAACCACTAAGCGTCATCATCTCAGAGAGGCTCGGGGAGTTTC

TCCAAACAACAGTTTGCCTTAGAACGTTGGAGTCTTGATTTCTTTCCCCTCCTCTTTTTTAAACTTGCAGGTTGAAA

ATGAATATGGCAGCTACTATTCCTGTGATTACGACTACTTGCGTTTCCTGCAGAAGCGTTTCCAGGACCACCTGGGT

GAGGACGTGCTTCTGTTCACCACGGACGGGGTCAATGAGGAGTTCCTGCAGTGCGGGGCGCTCCAGGGGCTCTACGC

CACCGTGGACTTCAGCACAGGTTGGTGTCTGCAGAAACCCAGCTCAGCAGGTGGATCTGGGCCTTTTACTCAGTCGA

TTGCTCTAAGCAGCTATTGTTTAAGTGGCATGGGCATATTGAATAGGATTTCCCAAATTTTCCTTCATTTGTAATGG

TAAAATAGAATACCTGATAAAGCACCCCTTGGTGGCACAGATGGTTTGATGTCAGCTGAGTTGGCCCTTAGGACACA

GGCTGTGTTTCCAGCCCTGGCAGAGCTGGCTGCAGCCTGGAGTCCTGTTTTCTTAGGGGCTGCTGCCAGGGGTTCCC

CTAGCTGGAAGAGCTCCACCTTTCAGGCTGTGTCTGGGATGTGCTGTTCTTCTCTGCACCTGCCCCCTTACCGCCTC

CATCCCCCCAAGTCATGGCTGGGTGCTTGGGCCGAATTGAGGCCACTGTGAACTCTGAGGTCAGCTCTGGAGTGCAG

AGAACATGCCTGGCACTTCCGCCTTCTTTCTGTATAACTCATAACACTGGGAACTGTGATGGGCCGGAGGTGGTTTG

GTTGATGCTGCAAAGAATCATCTTTCCTGACGCATTCGTGCTGCATGAGCCACCGAGGTTCTGCACATGAAAGCATG

GTTGGGGTGCTCGGGGTGCAATGACATTAAGAGATCTTCACGTGGGTTGAGAGCGGCTTTTATAAAAGGCATCACGT

TTAAGGGCAGTGTGATCCTGAAAAGGGTCCTGGACTTTTTTTTCTGTGTGTTTTGGTTGTTGTTATTATGAAGGACA

TTATTGAGACAATTGAAATCTTTGAATAAAGCCTTTAGATAATGGTATTCTATTAGATAATGGTATTCCATGTTAAT

TTCCCATTTTTTTTTAATCATTGTATTGTATTTATTTAAAGAATGCTCTTGCTCTTTAGGGGATACATGCTGAAGTA

TTTAGGGGTAAAGGACCATCCTGTCTACAACTTATTCTCAAATGGCTCGGAAAAAAAAATGTGCATATTTATATAGA

GAGGAAAAAACCAATGATGTGGTAAAATGCTAACAGTTGGGGAACCTGGGCGAAGGAGAAAATAAGTTCTTTGTATT

ATTCTCACAGTTTTCCTATAAATTTGGAATGATTTCAAAATAAAACGTTATCCCACTCGCCCAAAAGACCAGCTCTT

CAAGTAGCGTAAAGACCCCGCTGTTGTCCTGTCTGAGGGAGGAGACACACGTCCAGCATTCCCTTCTGTAGAGAAGG

ATGCTGACTGAAGTTGCATTTTTAAAGAAATTCTTCTCCACTACGAACAAAGAGATAACTGGCTCCTGAGTGTTTCT

AGAAACATGGTACATTGCTCAGATCACTTGGTGATGAAGTAAGTCATCTACAAAGAGCTGAACAGGAAGTGGCATGC

TGGTTTCCTCCTGCTTTGGCACATTTCCTAACACAGCAATGAAAAAGCACAGTATTTTTCTGTTGGGTGGAACAAAT

TGAGGATTATCACGAGTTAGTTATAAGTGTTATTTGTATGTGGGGTGATAGCATGGTTGCTACCGCTGTGGGTTCAA

GGACAGACACTCAAGGCCAGTGTGCCTGGGGCAGGGGGGATGGTGGCAGCTTCATTTCCTGGAGTGTGAGAGGGGCA

ATGCCTGGGGTCAGATCCCAGGAGAGGCTCTTGAGAGCAGGTTTCAAGATCTGGAAGCCAAAAAAAAAAAAAACAAA

AACAAAACACCAAGTTACCCAATTAAGAAATGGAGAAGAGATCTAAATAGACATCTTTCCAAAGAGGACATACAAAT

GGTCAAAAGCACATGAAAAGAGGTTCAACAGCACTAATATTAATAATTACAGAAATATACGTCAAAACTACCATGAA

GTATCACCTCACACCAATCAGAGTGGCCATCATCTAAAAATTTATAAGCAGTAGATGCTGAGAAGGTATGGAGCAAA

GGGAATCCTCTTAGACTGTTGGTGGGAATATAAGTCGGTAACAGCCATTATGGAGAACAGTATAGAGGTTCCTTAAA

AACCAAAACTACCATACGATCCAGCAATCCCACTCCTGAGGTTTTAGAGCAAAAGAAAACTAGAATTCCAGAAGATA

CTTGCGCCCCCATCGTGAAGTGCAGCACTGTCTACAATAGCCAGGACACAGAAGCAACCTAAATGTCCATCAGCAGA

GGAGCGGAGAAAGTAGATGTGGTGGAATATTAGCCACACCAGAGTGAGATAAAGCCATATGCAGCAACGCGGATGAA

CCCAGAGACTGTCATACTGAGTGAAGTAAGTCAGATACAGAGAGACAGATGGCGCACGATGTCCCTCATATGTGGAA

Page 73: MOLECULAR CHARACTERIZATION OF OVINE GM1

70

Appendix Figure 4 (cont.)

TCTAAAAAAGGGGGGTATAAATGAACTTACAAAATAGGAATAGGGTCACAGATGTAGAAAACAAACATGGTTATCAG

GGGATAAGGCGGGAGGAGGGATAAATTGGGAGGTTGAGACTGACATATACATACTGCTGCTAAGTCACTTCAGTCGT

GTCCGACTCTGTGCGACCCCATAGACGGCAGCCCACCAGGCTCCCCCGTCCCTGGGATTCTCCAGGCAAGAACACTG

GAGTGGGTTGCCATCGCCTTCTCCGGACATATACGTACTACTGTGTGTTAAATAGATAACGTATAAAACCTGCTGTA

TAGCTCAGGAACTCGACTTAGTTGTCTGTAATGACCTATATGAGAAAAGAACCTTAAAAAAAAAAGTCAGAGAGTAG

ATATATATGTATGTATAACTGATTCACTTTTCTGTGCACCTGAAGCTATCACCACATTGTAAATCAACTATACTCCA

GTAAAAACTTAAAACAAAAGATCTAGAAACCACCTAATGCTTAGTTAATAGTGAGAAATTTACAGCCGTAAAGTAAA

TGAAATTCCACTCTTTCTTGATCATCACTTTCTCTCCTGAGAGCTAGCCTCACAGAGAAGCCCGAGATTTGTCCGAC

GGCAAGGGGTTGTTTGGAGGCTGGGCTGGTGTGCTTGCACTCTGGGACACCTGCAGGAACTGGTGCAGGGTGGGCCA

GGGTGTCCTCGACTCTGGCTGGAGAGACACTGTCTGTGCTCATTACTTCTCTGTGGAGAAACTTTTTCTCTTTTTAG

AGGAGGAGGGGATAACAGAAGATGTGGGAAGCAAGATGAGACATAGACATCCTAATGGAACACTTCAAAAGACAAAA

ATTGAGCACAAGTGGTCTGGAATGGCTTGAGATGTACACATTAAAATGCAGAGTGTACTCTGTGACTCAGGATAAAT

GTATTAGAGCACGATTTGTCCCTTTGATTTGTTAATTTGTTGTTGTTGTTCAGTTGCTCAGTCATGTCTGACTCTCT

GCAACCCCATGGACTGCAGCACACCAGGCCTCCCTGTCCCTCACCATCTCCCGGACCTTACTCAAGTGTATGTCCAT

TGAGTCGGTGATGCCATCCAACCATCTCATCCTCTGTCATCCCCTTCTCCTCTGCCTTCAGTCTTTCCCAGCATCAG

GGTCTTTTCCAGTGAGTCAGTTCTTTGCATCAGTGGCCAAAGTACTGGAGCTTCAGTTTCAGCATTAGTCCTTCCAA

AGAATATTCAGGACTGATCTCCTTCAGAATGGACTGGTTGGGTCTCCTTGCAGTCCAAGGGACTCTCAAGAGTCTTC

TCCAATACCATAGTTCAAAACCATCAATTCTTCAGTGCTCAGTTTTCTTTATGGTCCAACTCTCACATCCATACATG

ACCACTGGGAAAACCATAGCTTTGACTAGATGGACCTTTGGCAGCAAAGTAATGTCTCTGCTTTTCAATATGCTATC

AAAGTTTGTCAACTTTTCTTCCAAGGATCAAGCATCTTTTAATTACATGGTGGCAGTCACTATGTGCAGTGATTTTG

GAGCCCGAAAAATAAAGTCTGCCACTGTTTCCACTGTTTCTCCATCTATTTCCCATGAAGTGGTGGGACCAGATGCC

ATGAGCTTAGTTTTCTGAATGTTGAGCTTTAAGCCAGCTTTTTCACTCTCCTCTTTCACTTTCATCAAGAGGCTTTT

TAGTTTCTCTTCGCTTTCTGCCATAAGGGTGGTGTCATCTGCATATCTGAGGTTATTGATATTTCTCCTGGCAGTCT

TGATTCCAGCTTGTGCTTCATCCAGCCCAGCGTTTGTCATGATGTACTCTGCATAGAAGTTAAATAAGCAAGGTGAC

AATATACAGCTTGACGTACTCCTTTCCCGATTAGGAACCAGTCTGTTGCTCCATGTCTGGTTCTAGTTTGTGGCACT

GTGATGCATATGGTGCTGTGGGGCCTACCGGGAAGTATGTTCAAAGCAGGGTCATCGTGTAGGGAGCAGCTTCGTCA

CCCAGATACCTGAGTGGAGAGAGCTGCACACCAGCCGTGTGTCTAGGCTCTGGGGGCACAGAGGAAGCACAAGGCCT

GTGTCATGATCCCCCAGAGGAGTGCAGTCAGGAGAGGCCCAGACACCGTTCACAAAGGGAACATCATCCTGTGGTCC

CCACAGTCCATCGAATGTATGGTCTGAGTCCTCACCTAAAGCTGGCTTGGAGGTGTGCAGGCCCACGGGGGTATGAG

GGAGGGCAGGGAGCCTGAGGCTCAGGTCCTGCAAAGGAATCTTTTTTTTTTTAATTTTTATTAATTTATTTTCAACT

GTGCGGGGTCTCCGTTGCTGCACACGGGCTTCCTCTGGTTGCAGCGAGCGGGGGCGACTCTTCGTTGTGGTACACGG

GCTTCTCTTGTTGTGGGCTCTAGGTGCATTGGCTCCAGGAGTGGCAGCACCTGGGCTCAGTAGATGTGGCGCATGGA

CCTAGCTGCCCTGCTTCATGTGGGATCTGTCCAGACCTGGGATCGAACCCGTGTGCCCTGCATTAGCAGGAGGATTC

TTACCCAGTGTGCCACCAGGGAAAGTCCCCTTTTTAAAGAAATGAATTTATTATACACTTGGCTGTGCCAGGTCGTA

ACTGCAGCACTCAGGATCTTTCGTTGTAGAGCACAGATTCTCTGCGGTGTGCGTGGGCTTAGCTGCTCTCCTGCACG

TGGGAATCTTAGTTCCCCAACGAGGGATCAAACCCATGTCCCCTGCATTGGCACGTGGAAGTCCCTGCAAGGCAGAC

TTAACGACTGGACTCACTTCCTTTGGGAAGTCTCCAAAGGAATCTCTTCTTGAACTTGTCCCTCCCATGGCTGACCT

CTCTCCTCTTTCTCATTGTTCAGGTTCCAACCTCACAGCTGCTTTCATGCTCCAGAGGAAATTTGAGCCCAGAGGAC

CCCTGGTAAGAGTCAGCGGTGAGGCATGGGGAGACCAGTTGGTTGTACAGACTTCTTTTCTGCTGTTGGGGGAGAGT

GATGAGGTGCTGTGAAGGGTGGGGATGGATCCTTGGTTTCCCTGGGTCTGGAGTCAGAACTGATGGGGCTGTAGAGG

CCGCCTTCTGGACACGTGGAAAACAGCTAAAGCAGTGCCACTGCTCAACACTAAGGCCCTGCACTGGAGGGGCAACC

AAGCCCATGTGCTGCAACTATAGAAGCCTGCTTGCTGCAATGAAGACCCAGTGCAGCCAAATCATGAAAGAAAGAAA

GAAAGAAAAAGAAATAAAACTGATTTTTTTTAATGCAAAAGAAAAAAAAAAAGCAGAGCTTAATGAGGGGGGATGTT

CACCATGGTCCCCATCCTGTCCCCTCCAGAATGGATCCTAGTTCTTCTACCAGGGATCAAACCCACATCCCCTGGAT

TGCAAGGCAGATTCTTAACCATTGGACCACCAGGGAAGTCCCAGGCTCTGCACCCTGGCATGCCTCGTCACCTTTGG

TCCTCGTGGTAACTCTCAGAAGTGGTGTTATGAGAGCTCGCTCTTTTCAGTGAGACTCAGAGACTATGTCACTTGCC

CGTGCTTAAACAGCTGGTGAGTGGCAGGGATCTGAGTTCAGGTCCGTGTTTCTTGAGAGCTCTTTGTGACAGAGCTG

CTCCGCCTTCAGTCTACTCAGAAATCACATAGGAGTCTTGTGAAAATACAGACATTGATTACTGGGTCTGAGGCAGG

GGCACTGAGTTTCTGACAGGCAGCCAGGAGATGTGGGGAAATAGGGTGCTGATGCTCTGGGAGTTGCCGGGCTCTGT

GGCATCTCTGTAGGCGGCTGGGAGGCAGAGACAGCAATAAGGTCCTGGCAGGTATGCTCAGCCCATCACTGAATGTG

TGTCTCTCTCCGCTTCCCTCCTCCCCGCAATTGTTGTTGTTACTTGGCCCCACGTAAGGGATGTTTTCCGCGCAGCA

GGTCAGGCTGCCCCGCCTGTGTACCCACCTTTGAACAAAGCAGCCTTTTTTGAACCTGGCCTCTGCTTCCTGAGTCA

TGCAAAACCCGTGTTCACAGACTGAGTGGAGCTGTTTCCTGCAGCCTGAGACAAGAAGTCCCCAGAACACATCCAGA

TTTCTCTTTTTTGTAGACAAGGGCTTGGCAGGGTCATGCCCAACAGAAACACCAAGCGCTAGAATATTTGGACAATA

TTTCTACAACACATTCAGTCAGTCTGAGACCTAAAGAATGTCTGTATGTCACTTTGCTGTACAGCAGAGATTGGCAC

Page 74: MOLECULAR CHARACTERIZATION OF OVINE GM1

71

Appendix Figure 4 (cont.)

AACATTGTAAAACAAGTATTCTTCAATTAAAGTAAGTCAACCTGAGATCTGAAAATCTGGATTCTCACAAAGGGTGA

ACTTGGAGCTAATTATTTCATAAACATATTTTGTCATCTGATTCTTTTGCCCAACAAACTTCCCTCCCATATTCACA

CTGGGGGTGGGTTAACAAGATTTCGATGCAGGTAGCTTTTCAGGAGCACCTGCCTTGTCCGCACCTGAGACCTCAGT

TTAGGCAATGCCATTATGAAACGTCCTCATTGGTCCCCCAGTTCCCAGCAAAGCAGTGAATGTCAGCTGCCCCCTCT

TCCTGTTCTTCAGTGGGTAACCTAGGGCGGTAGTTACTGGGAAGCCCAGCGTGTGAAGGTTTAAGTCTGTCCTAAGC

TCCATATCCCTTTCTTTTTAGATCAATTCTGAATTCTACACTGGATGGTTAGATCATTGGGGCCAACGTCATTCAAC

AGTCAGCTCTAAAGCGGTGGCTTTCACCCTTCATGATATGCTTGCTCTTGGGGCAAATGTAAACATGTGAGTGTTAA

TTTTTGGAGGGAAGGGTGTCCTCTGTAGCTGTGGGCTCATGGTGAAGCTGTGGGTTCATGATGAGCTCTGGGCTTAT

CTGTTCTCTTGTTTCCTTGTAGGTACATGTTTATAGGTGGCAGCAATTTTGCCTATTGGAATGGTAAGAGTGATTTA

ACATTTGTTTGTAGAATCTAATGGTAGAATGTTTCTGGTGCTTGATTTTGTCCATGCGTATGGCCATCTGTGATTCT

TCTGGTTTGGTTTGTCTTCTCCTAAATTTTCTAATATGTAAGATTGCCTATATAATAATAAAAAATCACTTTAATTT

TTTATTTATTAGGAAGAGAGATGTTGGATTTACTTTCCTATTGAGAATGATTTTTTTTTTAATTGAGTATGCAGGTG

TTATGAAATAATCAGTGTTATATGAATGAGTAGCTTTAGGCTGCTTATGAATTACCCTTCTATACTTGTTTTAGATG

TGCAAAAGTTACTTTTTACAATTTACTTCAACATTTCAATTTAATTTACAAATGTGTAAGAATCATAGAAGTGGAAT

TTTTTTTCCCTATGTAAATTTGAATTTTTCTAGGTTTTCTTAATTTTATTGACGTATAGTTGCTTTATGTTGTATTT

CAGGTATACAGCAAAGTGATTCAGATATATATATAGTTAGATAGATAGACAGATATAGATACAGATACATATATTTC

TTTTTCAGATTCTTTTCCCTAATATGTTACTATAAGATATCGAGTTCTCTGGCTATACAGTAGGTCAAAAAATCATT

TTTCTTTTATCTGGTCACACTTCATGGCATGTGAGATCTTAGTTCCTTGACTGGGGATCAAACACATACCCCGTGCA

CTGGAAGCATGGAGTCTTTTTCTTTTTTTGGAAGCATGGAGTCTTAACCACTGGACTGCCAGAGCATTCCTACAAAA

TCATTTTTCTTTAAAAAAATTTTAAGGGCTGTAAGTTGTGCATTTAGAAACTATTGTTTAAAATCAAGCTAACTGGG

CAAATCATAGTCTCTGGCTATAACTTACTTGTTCATATATTCTGGTGTTTTTTCTCTTTCTTTTTGAAAAAACATTT

TGTTGAGGCATAATTCACATACCCTAAAACTGATGATTTTTAAAATATATGATGTAGTGGTATTTAGTTTAGCACAA

ACTTGTGCAGCCATTAACACCATCTAATTCCAAAACATTTTCATTACCCCCATAAGAAACTTCATACCCAAGAAATG

CCCCCCTGCCCCTTCTCCCAGCTGTTGGCCACCACTCCTTATCTTTATGGATTTGCCTGTTCTGGACATTTAGTACA

AGTAGAACCACACAGTATGTGGCCTTTTGTGTTTAATTTCTTTCATTTAGCATAATCTTCTCAAGGTTCATCCATAT

CACAGTGGGTATCAGTACTTCATTCTTTCTTATAGAGGAATAATATTCTATTATGCGGATATACTACATTCTGTTTC

TCCATTCATCAGTGATGGACATGTGGGTTGTTTTACCTCTTTTGGCCATTATGCATAATGTTGCTATGAACATGATG

TGTAAGGATTTGTTTGAACCTCTGTTTCAGTTCCTTTGACTGTACACCTAGGATTGGAATTGCTGGTTCACCTGGTA

ACTAACTAACTCTATTTTTAGAGGTAGAGGAACTGCCACAGTATTTTCCAAAGCAAATGCACCGTTCCTATACTTCC

TATATGGTCTTTTTTTTTTTGGCCATACCACTTGGCATGTGGGATCTGAGTTCCCTGACCAAGGATTGAACCCTCGC

CCCCTGCAGTGGAAGCACAGAGTCTTGACCACTGGACCACCAGGGAAGTCCCTCCACGGTCTTTTTTTGGGGACAGG

AAAAATTACGATAAAATTCTCCAAGTTTACTTGGTCTGATAACCCCTTAGTGGTTTGCTGCTGATCCTGGGCCCAGA

AACCTGTGGGTCTATCATGGACCTTTTTTTAGCCACAGAGGAGGTCATCAAGATCACAGCTGCAAGGTTAACAGTCA

GACATGTGAGTCGTGCCATAGGCCTGGCCACTGCTGGCTGTGAGATGTCTGGGGGCTGTGCTGGGAGCTTCGGATGC

CCTGCGGATCCATTGCGGGGATATCTGCTGGGGTTGCTGAGAGGGTAAATGGGGAAAGTCCTTTGTAGACACCAAGG

AGCTCAGTGAGGGCCACCTGCAGGAAGACCTTGCATCTGGAGGGCCACCTCTCTGTCACTGACCAGTTGGCTCTAAT

GTGCTTCCTTATTCACCCCCTCCACGAATCCATAAGATCTTGTCACAGGAGAAGGCCTTCTGTAGTAACCAGGGGCA

TGCTTTTGTCTTCCAGGAGCAAACACGCCCTACCAACCACAGCCCACCAGCTACGACTATGATGCCCCGCTGAGCGA

GGCTGGGGACCTCACGGAGAAGTATTTTGCTCTGCGGGATATTATTCAGAAGGTGAGTGCTTTGTACATGCTCCAGG

GGCTGGTCTTGGACCAAGCCTGCCTGGGACTCACGATGCTCTGTAGACATCTCCTGCAGCCTTTGTGTGTAAAAGGA

TGGATGAAGGGAGGCATCAACTAGACTTGCCCTCAAGGCTTGGCCACCACCCCACCCCCCCACCCCCCCACCCCCCC

ACAGTTAAGAGTGAGCCTGTCAGCAAGTGAGGCCACAGCACGCGGTTATGTTGTAAAGATTAGAAAGAACATAGGTA

AAGCCTCGGGAATAGTCCTTACACATATGCTCTCCTGTAAGTGTTAGCCGTTACTATTATTTATACTAAAGGTATAA

ATGTGTACCCGCATAAATAGCTGAAGTGTGCGGGAGAGAAAATCTATGGGCATTGTGAACACAGGGCAAGTGTGAGC

TGTCAGCAGAGCTTCATTTTTCTGCTTTGGAGCAAGTGATTGCTATTTCCTCCTGGTCTGACACCTGAACACTTAGT

CCTGCTAGCATTGTGACCTTTTGAAGCATCTAACGCACCCAGGTGGGGTTTCCTGTCTCTGTGTGGCTTTAAAAAAA

AAAACCCACAGTTTTTCTGCTCAGTCACCTGCGTTTTGAAGTTAAAAAACAAAGGTTTTCTGCCTATAAATGGTATA

AACTTTTTTTTTTGTTTTCAGCATAGTCTCAATTTAAGCCTAAGTGGTAACGTTAATATTATGAAATACTTTAAGCC

TATTAAAAAGTAGAGTCAATACCTAACTACTCAGAGTTTGTTCATTTCATCTGCATTTTCAGATGTGTGGTTGAAAT

GTTGCTCGTGTCATTTTTATTGTGGGTTTAATCTCTAGAATTTAGAGTGATGGCTCCCAAGTTCTGCCTTGTACATT

TGTTCTCTGTTTCAAAGCTCTTTGTTCCTGTCTTTATAGTTTCCTTCCTTTATTTGAAGCTTGGCTTTTTAAACCAG

ACTTTGTTCTTTTCTAACATAAATAGTCAAGTCTGTACCTTTCCTTCAAGTACTGCTATGTGCATCTCGTAAGTCTT

GATGTATAATATATTTATTATTATTTGCTTTTAAACATGCTTGTTTTGACTTCTCTTTGACCCTTCAAATGTTCAGA

AGTGAGGTTTTAAAATATGAAACACAAATATTTTTCTAGTCTGATGGTTTCTCTCATAGTTGCATTCTGGTTAGAGA

ATGTTTTGAGTGTAATACCAATCCCTTGAAATGTACTGAACATCCTCATACAGCCTGGCTTATACCAATATGAACAA

Page 75: MOLECULAR CHARACTERIZATION OF OVINE GM1

72

Appendix Figure 4 (cont.)

ATATTCCATGTATTCTTGAAAAGACCGCATGTTTTATAACTGTTGGCTATAATCTGTATAGGTGTTCATTTGATTAA

GCTTATTAATGGTGCTATTGGTATCCTTTATATCCTTCCTAATTTTTGTGAGTTTATTCTATTAGTTATTGAGAGAG

TTGTGTTTATGTATTTCTCCTTGTACTTCTGTCAGTTTTTGAGGCCATATTATTAGAATACAAATTGAGAATTAAAT

CTTTTGGTATCATATGGAAACTACCTCTGATACTGATTTTTGCCTTAGAATCTGTTATGTCTGATACTAATACACTT

ACCTGCATTCTTTTACCTGGTGTATCTTTGCACAGAAAGATATCCTTCCATAGCCTTTCTTAAAAAACATCCCCGAA

ACTCTGTCCCAAAACAGAAACAAACTCACAGACATAGAGAACAGACTTGCAGCTGCCAAGGGACAGCAGGACGGATT

GGGAGCATGGGGTTAGCAGAGAGAGACTATGACGCCTAGGATGGATAGACAGCAAGGTCCTTCTCTAGAGCACAGGG

GACCAGATGCAATATCTTTGTAATAAGCCATAATGAAAAATAATGTATAAGTGTATAACTGACTTCGTTGTACAGCA

GAAATTAACACAACACTGTAAATCAATAAAAATAAAATAAAAAATAAAAACATACATCCTTTGTAAACAGGATATAG

CTGGATTTTTTAGAAATCTCGTCTGAACATTTTGTCTTTTAACTGGTGCACCTGCTCATCATCATTTCATTATAACT

CTTGATACACATCGATTCATCTCAGCCATCTTGTAGTTATCTGCTTGCCTGCCTTTTCTGTTTCGTCTTCCTCTCTT

ACTTTCTTTGACCTGTTTATTTTTGTTTTCTTATATCACCGCCCCCTCCACACCCGAATTTGGATGTTATCCTCTGT

ATTTTCGTTTCTTTAGGGGTTACCTGTTGAAGTGTGAAGTATGCGCACCCCACCCTCCCCAGAAAAGCACAGCTCGT

GAGTGTAGAGCTCAGTGAATTTATAAAACACAGACTCCTGGAGCCAACACACAACCCCTCAGAAGCTTCCCTCATGT

TTCTTCCAATTACTGACTTTCCACTGACCTTGATCACCACAAGTTAGCTGTGCTTGTTTTTTGACTTTATATAGATG

GGTTCATACAATATGCACTCTTTTATATCTGGCTTTCAAAAAACTTTAACATTCAGTTTTATAATAATTTAAAATTA

ATCTATATCTTTACTTCCTTCCTACAACCAGAACTTTAGTTCACGTTAACTTCAATTACATCCCTCCTGACTTACAT

GCTCTGAATGGCGCGTATTTTAGTAGTGGGCTAGTTGTGGATGTGAATCTTCAAGAGACATTTGTTTTCTCCCCAGT

TTATCTCTGTGCAACAAATTACCCACAAACTTAGTAGCTTAAAACAACAGATGTTAGGAGTTCCCTGCTTACCTGCT

GGTTAGGATTCTGGCTTCCACCGTCATGTCCCGGGTTCAGTCCCTAGCTGGTGAATCCCCCAAGCTTCGTGCCATGG

CCAAACATGTATATATACGACCTCACACCGTTTCTGACAGTGAAGAATATAGGGTGGCTTAGCTGTATGTTCTAGCT

CATGAATTCTCCTGAGGCTGCAGTGAAAGCTGTTAGCCAAGCAGCAGACTCTAAAGACTTGCGTGGGGCTAAAGGAC

CCACTTCTTTCTTTTTTTTTTTTAAATTGAAGTATAGTTGATTTACAATATTATGTTAGTTTCCCCTATACAGCAAA

GTGATTCAGTTATACATATATATACATATTCTTTTCCACCATGGTTTATTAGAGGATACTGGACATAGTTCCCAGGG

CTATGCAGTAGGTCTTGTTATCTATTTTATATATACAGTAGTGTGTCTGTGTAACCCCAAACTCCTAATTTATCCCT

CCCCCGCCCTTTTTCCCCTTTGGTAAACATAAATGTGTTTTCTTTTGAACTGTGTTAATGACTTTATGTTTGGCTGC

ACCGGGCCTTCCTTGCTGCATGAGGGCTTTCTCTGGTTGTGGCGAGCAGGGACTGCTCTTCACTGCGGCGCACAGGC

TTCCCATCGCGGCGGCTTCTCTTGTTGTGGAGCACAGGCTTCAGGAGTTGTGACTCTCGGCTGTAGAGAGTGGGCTC

AGTAGCTGTGGCGCCTGAGCTCCACAAGGCCTGTGGGATCTTCCTGGACCAGGTATCAAACGCGTGTCCTCTGCGTT

GACCAGCAGATGCTTAACCCCTAGACCACCAGGGAAGTCCCCGTAAGTGTGTTTTCTATGTCAGTGAGTCTGCTTCT

GTTTTGTAAACTAGTTCATCTGTACTAATTTTTAGATCACATATAAGTGGTGTTATATGGTATTTCTCTTTTTCTGT

TTCTCGTAGAATGATCATCTGTAGGTCCACCCTACAAAATGGCATAATTTTATTCTTCCTTATGGCTTAGTAATAGT

CCATTGTATATCTGTACCACATCTGCTTTATCCATTCATCTGTCAGCGGACATTTAGGTTGCTTCCATGCCTTGGCT

ACTGTGAATAGAGCTGCTACAAACACTGGGGTGCATGTTTCTTTTTTGAATTACAGTTTTGTCCAGATACAGTCTTA

GGAGTGGCATTGCAGGATCATATGGCAGCTCTATCTTTAGTTTTTGAGGAACCTCCATGGAGACATAGTGGCTGCAA

CAACTTACATTCCCACCAGCTCCCCTTTGAAAGGTCCATCTCACATGGCTAAGGGCAGGTCACTAAAGTTCCTTGCC

ATGTAGGACTCTCCATGAGGTGGCTCACAACGTGGCTTCCCCCACAGATCTGTGAGAGAGCGGGCACCTCCAGATGA

AAGTTGCAATCTTTTAAAAAAAAATTTTTTTTAAAATTTATTTATGCCACATGGGATCTTGTTTCTCTACCAGGAAT

TGAACCCATGCCCTCTGCAGTGGACGCACGGAGTCTTAACCACTGGACTCCCAGGGAATCACTGAATCACTGAATTC

CCTAAGTTGCAGTCTTTTAGTTACCTAAACAAAGAATGACATCCCATCCCTTTTCCACATTCTTTCCTCCAGAAGCC

AGTTGCTAAGTCTGGGCCATCTTCACAAGGCCTAAGTTCCACTTACCGAGGTGAAGAGGACCAGAGAATTTGGGGCG

TATTGTTAAGCGATCGCATCCCCCTACAGTCAGGGCCAGATCTGTTACGGTCAACACTCATTGTAACCAGAGGTAAC

TTTTGGTTATGCTGCTAATCAAACAGGTTCATTTATTTCCTTTAAGGAAACAAAGGAAATTTATAGAGGTTGCTTTT

TTCCTTTTTGACCTAATTTTGTTTAATTATATAAAATTACAAAGTATCAGTATCTTTAAATGTTTCCTCAATGACCG

TTAAGATTTTCAAGAAAGATGTCTTCTGATTTTCTGCCTGGAGCAAGCGGCTGGCTGCCAGCATCCTGCACCCTGGA

GCAGGGCTGGGGTGGCGGTAGTTACTTTTTACTCTGTACATGATCACAGTCTCCCCTTTTAAAATGCTCCACGTGTC

CTTAACTCTGCAGGTTAACCAGGAACCCAAAGACCATGTTTTCTCCTCCCCAGAAAATAAATCTCTAGCCCCAGGTG

GGAGAGGGCATTGCACACAAAGAGCAGTGTTTCTCAAATACCAGCACATCAGAACCATCTAGTAACTTGATGGAAAT

TCCAATTCCAGTGAATCAGAAACTCTGTGGGTAGGGCCACCAATCCAGGATTTTACAGTCAGAGGAACCTCTGACAT

GCGCTAGAGTTTGAGAACCCTTAGCTTGGAGAAGAAGAAATCATGCTCCTTATTTACTTAAGCACCGGTACCTCCCA

GGTTTGGAAGTACCTGGTGCCGCCAGTTTTGAGCCTTTTAGTAATTCTTCAGAACCAAATTGAACTGGTTCTTAGTT

TCCTCCCATTCTCTTTGCCTTTCTTCCTACTGATTTGCTATTCATTTGTCCCATTTTCCAGCTTCCAAAATTTTGTT

GCTGTTGTCTCCTCTCCTGTTCTTCAGTTCTGTGCATTTGCGTCTTAAACAGAAATCTGTTCACTGAGATTTTACTG

GTGTTTTGGGCAAGAATGGCATCAGAAGTTCTGTTTAGTGAGCCTTCTTAACCTAAATGGCCTCATTCTCCGTAATG

CAATCATCACGTGCTATTGTAGATGTGCCGTGTACTCGGCTACATGCTATTATACTATTCAGATCTACTGCCATTTA

Page 76: MOLECULAR CHARACTERIZATION OF OVINE GM1

73

Appendix Figure 4 (cont.)

CTGAAACCGTTTCTCATTGATGGGCATTTGGATTATTTTGAACTTTTATTTTACTTACTTAAAATTTTTTAAATTAA

TGTGGCTTCACCGGGTCTTTGTTGCAGCATGTGGAATTTTTAGTTATGGCATATGGGATCTAGTTCCCCCACCAAGG

GTCGAACCTGGGCCCCCCCCCCCCCCCCCCCCCGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCTATCAACTTCAAAACAAA

AACTCAGGATACCTGTTGATGTTTTAATTAGTTTTGTGTTAAATTTATACATCAACTTAGGGGTGATATTTACTGTA

TTGAGACTTAGCCAAGAAAATGGTTTTCTGTCTATTCAAGTCTTCTCTGATGTCCTTGTTTTAAAGTTTTCTTAAAA

AAATAGTCCCTGTCCATTTCTGAATATGTTTATTCTCAAGTATTCTGTGTTCCTAATTCTAATATTATTATAAATGG

AGTCTTTTATTTCTTCATGAGAAATATTATGATATATATTTGTCTTCAAAATATGACATCTTGAAATTTTTTTAATA

TATAGAATAATGTTGCAGACACTCATGTACCCAATACCTAGATATAACACAGGTTATTATGAAATCTTTGCTTCTAA

TTGTTTAAGAAAATAATACAATGCAGATAAAGCTGGGTCTATCTGCTGTTTCTTGCCCTCCCTGCTCAGATGGAGGA

AGAAGGAATGGTATTTATCCTTACATACATTTTGTGATTTTACCACAAATGCATGCATCCTCATATACTATATTTAA

TTTATTTAGTCTCTTTAAATTGTACATGAATATTCCATTGTACTTTCCTTTTTAAATTATTGACTGATTTCTAGGAT

TTTATTAATGTTATAGTGCCTGTGGACTTATTTCTGTTGCTTCATCTCACAAACCATTTCAGATTTACTTATTTATT

TTTTAACAAATTTATTTAGATATAAATCACATACTGTGAACTTCACCCATTTAAAGTACACAATTCAGTGGATTCTG

AACGTTAATTTTTTTTAACTGTGGTAAAACATAAATCACATTAAATTTGGCGTCTTCATCATTTTTAAGTGGTTAAA

AGTTCAGTGGCATAAATTTCATTCATAACGTTGTGTAACCATGGCCATTATCTATTCACGAAATCTTTTCATTCGCC

CAGACAGAAACGCTGTTATGCAATAAGTCCCCTCTACGGCCTCCTTTCAGCCACTGGGAAGCTCTCGTCTACTTTCT

GCCTCTGTGGATTTGCATACTCTAGGTGTTTCAGAGAAGAGGCACCATACAGTATTTTCCTTTCGTGACTGACTTAT

TTCATTTAGCATGTTTTCAAGATTCAGCAACATTATAGCATGTATCAGAATTTAATTCCCTCTTATGGTGAATAATA

CTTTATGGTATATATACAGTCAGTGCTCCGTATCTGTGGGTTCCACATCTGCAGACTCAACCAACCACAGATTAAGG

GGGGAAAAAAGCAAAACAGAAAGTTCCATAAAGCAAAACTTGAGGTGGTTGCATAGCACCAAGTTTTACATGACACT

GACATTGTATTTACAACTATTTACATAGCATTTATACTGTATTATAGGTAATCTGGAGATGATTTAAAGTACATGGG

AGGGCTTCCCTGGTGGCTCAGTGGTGAGGAATCCACTTGCCAAAGCAGGAGACTCAGGTGTGATCCCTGGTTTGGGA

CGATCCCTCACACCTCGGAGCAACGGAGCTCGTGTGCCACAACCACTGAGGCTGTGCTCTAGAGCCTAGAGTGGCAT

CTGTTGAGCCTGCTTGCCACAGCTGCTGAAGCCCACGTGGCCTGGAGCCTGTGCTCCGCCACAGGAGAAGCCGCTGC

CGTGAGAAGCCCATGCACTGCGACGCACAGCAGCCCCCGCTCACAACCAGAGAACAGCATGCACAGCGCAGCCAAAA

AAGTGTTTGATTATTAAAAAGTACATGGGAGGCTGTGCACGGGACACATGCAGATATACTCAGATTTCTAACATCCT

GGAATTTTGGCATCTGCAGGAGTGCTGGTGGCAGTACCCTGCAGGTACGAAGGGAAACCTTGTGTACCAGTTTATCT

GTTCATTTCATTCATCTCTTGATGGACACTTCGAATTGTGTGACACTCTTGGCTATTTTGAATAACACTGTATTAAA

CATCAGGGCACAAATATCTGTTCAAGTCCTGCTTTCCATTCGTTTGGCTATGTACCTTGCAGTGGTATTGCTGGAGA

GGCTTATTTTTAGAATGCTTTTGGATGAGATGGCTGGATGGCATCATGGACTCGATGGACGTGAGTCTGAGTGAACT

CCGGGAGGTGGTGGTGAACAGGGAGGCCTGGCGTGCTGTGATTCATGGGGTCACAAAGAGTCGGACACGACTGAGTG

ACTGAACTGAACTGAACTTTCTTTCTGAAATAATGAACTTTTCTATGCCTAATAAGAAAAAAAATGCAAATCAAACT

TACAAACAGATATTTACATGTGCTTTTTTGCACGAAACATCGTCTTATCTTTGGCCTCATCACAACCTCACACTCTT

AATCTCCTGTACGTTTAGCTGCTGCTTTCTGCCTCTTCCCCACTCCTGCAGCCCCTCACATTTTCTTGACCTTCCCT

GGCCTTATGATTGCTGGCTGTTAGAGTCACTGTCGCCCTGCATAGCTCTCTCTGCTGCTGTTCAGGCTCCATGCTCC

ATACACCAGCCTGGGCCATTCTGCTGCCACACTCTGGCCCTGGAAACAGGCAGGAGGATTGTGAGCATCAGTGTCAA

CTGGCTGAAACAGGGACTTGTACTTCCAGCCTCAACTAGACCTTTAACTGTCTGCACTTTTCTGTCTCCACCCTCAT

CTCTTCTCCCCGTCCAGTGTGAACCATCACGGCCACACTTTTCCCATAATGTACAGGTGATGCTGTCTCCTCCTTCA

TCAAGAACATTAATGCTGCTGAAAAAGCCAGGTGGCATAGCTATACATTTCAGAGAGGGTATCGGATGAGGCATGAA

AAGCGAACGTATATTTAAATGAGCAAAAACAAATCATTAAAATTTATGGATACCAGAGAATAAGGGGGGAGGAATAA

ACTGGGAGGTTTGGATTAAGGTATACACACTGCTATATATAGACAACTAATAAGAACCTGCTGTATAGCACAATGGC

ACCCCACTCCACTACTCTTGCCTGGAAAATCCCATGGACGGAGGAGCCTGGTGGGCTGCACTCCATGGGGTCACACG

ACTGACGTGACTTCACTTTCACCTTTCACTTTCATGAATTGGAGAAGGAAATGGCAACCCACTCCAGCTTTCTTGCC

TGGAGAATCCCAGGGACGGGGCAGCCTGGAGGGCTGCCGTCTCTGGGGTCGTACAGAGTCGGACATGACTGAAGCGA

CTTAGCAGCAGCAGCAGCAGCTGTATAGCACAGGGAACTCTACTCAATACTCAGCAATGGGAAAAGAATCTGAAAAA

AAAAAAAAGAGTGGATATATGTATATGCATAACTGATCCCACTTCATAGATCACAGCCTATGGGTCATGCCATACAG

GGTCACCCAAGATGGACAGGTCATAGTGAAGAGTTTTGATAAACCATGGTCCACTGGAGGAGGAAATGGCAACCCAC

TCTGGGAGTCTCACCTGGAGAACCCCATGAACAGTATGAAAAGGCAAAAAGATATAACACTGGAAAATGAGTCCCTC

AGGTCAGAAGGTGTCCACTATGCTACTGGGGAAGAGCAGAGGGCAATCACTAATAGCTCCAGAAAGAATGAAGAGAC

TGGGTCAAAGCAAAAACAGTGCTCAGCTGTGGATGTATCTGGTGGTAAAAGTAAAATCCAATGCTGTAAAGAACAAT

ATTGCATAGGAACCTGGAATTTTAGTTTCATGAGTCAAGGTAAAGTGGACATGGTCAAGCAGGAGACGGCAAGATTG

AGCATCGAAATCTTAGGAATCAGTGAACTAAAATGAACGGGAAGGGGCCAGTTTAATTCAGACGACCATTTTGTCTA

CTACTGTGGGCAAGAATCCCTTAGAAGAAATGAAGTAGCCCTCACAGTCAACAAGAGTCCAAAATGCAGTACCTGGA

Page 77: MOLECULAR CHARACTERIZATION OF OVINE GM1

74

Appendix Figure 4 (cont.)

TGCAACCTCAAAAACGACAGAATGATCTCAGTTCATTTCCAAGGCAAACCATTCAACCTCACTGTGATCCAAGTCTA

AGCCCCAACCACTGATGCCAAAGAAGCTGAAGTTGACAGGTTCTATGAAGATGTACAACACCTTCTAGAACTAACAC

TAAAAAAAGATGTCCTTCTCATCATAGGGGATTGGAATGCAAAAGTAGAAAGTCAAAAGATACTTGGAATAACAGGC

AAGTTTGGCATTAGAGTACAAAAAGAAGCAGGGCAAGGGAAAGAGAACATGCTGGTCATATATCAAATACCCTTTTC

CAACAACCCAAGAGATGACTCTACACATGGACATCATCAGATGGTCAATACTGAAATCAGACTGATTATGTTATTTG

TAGCCAAAGATGGAGAAGCTCAGTACAGTCAGCAAAAACAAGATGTGGAGCTGACTGTGGCTCAGATCATGAACTCC

TTATTGCAAAATTTGGGCTTAAGTTGAAGAAAGTAGGGGAAACTATTAGGCCACCCAGATTCGACCTAAATAAAATC

TCTTATGATTATACAGTGGAGGTGACAAATAGACTCAAGGGATTAGATCTAATAGAGTGCTGAAAGAACTATGGATG

GAGGTTCATAACATTGGACAGGAGGCAGTGACTAAAACCATCCCAAAGAAAAAGAATGCAAGAAGGCAAAGTGGTTG

TCTGAGGAGGCTTTACAAATAGCTGAGGAAAGAAGAGAAGTGAAAAGCAAAGGAGAAAGGGAAAGATACACCCAACT

GAATGCAGAGTTCCAGAGAAGAGCAAGAAGAGACAAGAAGGCCTTCTTAAATGAACAATGCAGAGAAACAGAGGAAA

ACAACAGAATGGGAGAGACTAGAGATTTCTTCAAGCAAATTAGAGATATCAAGAGAACATTTCATGTAAGGATGGGT

CCAATAAAGGACAAAAATGATAAGGACCTAACAAAAGCAGAAGAAATTAAGAAGAGCTGGCAAGAATACACAGAAGA

ACTATATAAAAAAGGTCTTAATGACTTGTATAACCACTGTATTGTGGTTACTCTCTTAGGGCCAGATATCCTGGAAT

ATGAGGTCAGGTGAACCTTAGGAAGCATTATTACAAACAAAGCTAGTGGAAGTGATGGAATTCCAGTTGAGGTATTT

CAAATTCTAGAAGATGATGCTGTTAAAGTGCTGCATTCAATGTGTCAGCAATTTTGGAAAACTCAGCAGTGGCCACA

GGACTGGAAAATGTCAATTTTCATTCCAGTCCCAAAGAAGGGCAATGCCTTAGAGTGTTCAAGCTACCACACAATTG

CTAGCAAGGTGATCTCAAAGTCCTTCAAGCTCAGCTTCAGCAGCTCATGAACCGAGAACTCCCAGATGTACGAGCAA

AGAGACAGAGGAACCAGAAATCAAATTGTCAACATTCACTGGATCATGGAGATTGCAAGGGAGTTCCAGAAAAACTC

TACTTCTGTTTCACTGACTACACCAAAGACTTTGACTGTATGGATCACACCAAACTGTGGAAAATTCTGAAAGAGAT

GGGAATACCAGACCACCTTACCAGTCTCCTCAGAAACCTGTATGCAGGTGTCAAGAAGCAACAGTTAGAACCAGACA

TGGAGCAACTGACTGGTTCAAAGTTGGGAAAGGAGTATATCATGGCTGTATATTGTCACTCTGCTTATTTAACTTAT

ATGCAGAGTACATCATGTGAAATGCTGGGCTGGATGAATCACAAGCTGGAATCAAGATTGCCAGGAGAAATACCAAA

ACCTCGGATATGCAGATGGTATCAGTCTAATGGCAGAAAGTAAAGAGGAACTAAAGAGCCTCTTGATGAGAATGAAA

GAAGAGAGTGAAAAAGCTGGCTTGAAACTCAGCGTTCAAAAAACTAAGATCATGGCATCTGGTTCCATCACTTCATG

GCAAATAGAAGTCGAAAAAGTGGAAGCAAGACAGATTTTATTTTCTTAAGCTACAAAATCACTGTGGACGGTGACTG

CAGCCATGAAATTAAAAGACACTTGCTCCTTGGAAGGAAATGTATGACCAACATAGACAGCATATTAAAAAGCAGAG

ACCTCGCTTTGCTGACAAAGATCTGTATCATCAAACCTATGGTTTTTCTAGTAGTCAAGCACGGATACGAGAGTTTA

ACCATAAAGAAAGCTGAGTGCCAAAGAATTGATGCTTTCAAATTGTGGTGCTGGAGAAGACTCTTGAGAGTCCCTTG

GACAGCAAGCAGATCAAACCAGTCAATCCTAAAAGAAGTCAACTCTGAATACTCATTGGTAGGACTGATGCTAAAGC

TGAAGATCTAATACTTTGGCCACCTGATGTTAAGAGCTGACTCACTGGAGAAGACTCTAATGCTGGGAAAGATTTAA

GGCAAAAGGAGAAGAAAGCAGCAGAGAATGAGATGGTTGGATAGCATCACCAACTCAATGGACATAATTTGAGCAAA

CTCTGGGAAATAGTGAAGGACAGAGGAGCCTGGTGTGCTGCAGTCCATGGGGTCACAAAGAGATACAACTTAGTGAC

TGAACAACGTTACTGATTCACTTTACTGTAAACCAGAAACTAACACAACACTAAATCAATTATACTCCAATGAAAAA

AATTTTAATCATTGCAAGTTAAAATTTTTTTAAGATTAAAATAATTGGAAACGTCACAAAACTTAAAAACGTATTTT

GATTCATTCACTGCTTGAAACACCTCTGCCATCCTTCTTTGCTTTTGGCTTCATGCTGTTTTATTGTCTCTTCAAAT

GACAGCAGTGTTTGTGATCTTCTCTAGTGAGATTGGCTCTTGAGTGTGGTTGATAGAAATTTCTTTTTCAGTATTGA

CAGTTTAGAAAAACAGAAAAGCTTCACATTTTGTTACCGATAGTGTTGTATGACTATTTAGTATTGTCATGCAAATT

GGGAAGGTGTCTTTCAAGTTCTTGCATGCATGAGCGATAATATTTGGAAGAAATTACAGACAGGTGCTGTCTGCATA

GCATTTCAAACCCTGTTTCCCTTACACAACCCACATATTTCTGGGGGTGGATGCCTTAGAGCACAGTCATGTTGCAA

GTCAGCAAAATCTGTTAGCAATAGTTTACCTACTCATGGGAGTGACAGTGCAGCTTGTAAATATATTTTCCACCCAA

ATTAAATAAATCCCCACCTCAACTGTCCTTTGGTTGAATCAAGGCCTGTAGCCACTCTAAAGCCCCTTCACCTAACA

GCATGCTTGACAGAGGAAAACTAGTGCAGAAAAAGACGAGTGTTTTAGCCTTTTGTGGTTAAATTGTGTTACTTTGC

AAATTTTACAGAAACCTCTGATCACGCACTGCTAGGACCCTCCCTTGGGGAGGGAGTTACCCTTGGGGGCACTTCTG

GGTGCAGGAGATGAGTTCAGAGGCTGCTAAAGTAACCAAGGAATGAGATGACGGCACAGGCAGCAGGGAGTGGAGAG

ACAGCAATTGATTTGAAAAATATTTGGGAGGTAAAATTGGTGACAAAGGGAAGCGAGAGTGTTAGTGGCTCAGTCAT

GTCTGACTCCTTGCAGACTCATAGACTGTAGCCTACCAGGCTCCTCTACCCTTGGGATTCTCCAGGCAAGAATACTG

GAGTGAGTTGCCATTCCCTTCTCCAGGGGATCTTCCTGACCCAGGGATCAAACCTGGGTCTCCTGCACTGCAGGCAG

ATTCTTTACCATCTGAGCCACTAGGGAAGCCCAAAATTGGTAGGATTTAGCAACTGGCTGAATGCAGGTGTGAGGAA

GAATGAGGAGTCGTTGATTGGTCCGTGTTACAACGTTAGCTGGATAACTGGATGGGTATTGGGGTTAGCAACTAAGA

CAGAGAGCTGCAAGGAAAACACGGTGGGAAGTAGGGTGGGGGAGAAAAGTCAGTTATGCTCAGGATGCCTCTGGGGA

CAACTGGGGGAGGCCTGGCAGGCAACTCACTTAAGAGTGAAAAGTTCCAGGAAGAAGTCGTTAGGACAGACATGGAT

TCCGCAGTCATTGTGGAGGCGGAGGAGAGAGGCTGAGATTGCACATGGGGAGCTGATCAAGAAGGGCAGTGGGCCAA

GCAAAGGACCAGTCCAGAGGATCCCAGGTGTTTAACAGTGGCCACAGTAAGGTGAACTCATGAAGGAGACCGAATCT

TCAGAAATTTACGTGATTCAGTAGCTTATGATAGATTGCAACGTAACGTGTAGTTGTCTTTCCGCTCGTTCTCTGTG

Page 78: MOLECULAR CHARACTERIZATION OF OVINE GM1

75

Appendix Figure 4 (cont.)

TTGATATTTTAGGTATAGGAAGAGAAAAAAGAACAACTTCAAAAGTGGGCTCTTTCTTAGGAGACGTCGTAGATGTT

CAGCTAGCTGGTTTGTTAGATGGTGTTCAGAGTATTTGTTTGCATGGGGGAAAAGAAGTGGGATCATAAATATCCCC

ATATACACCTTTTCCTGCCTCTTTCCTTCACCAAAGACTTACAAAGTTGAATGGGTCTCTTCTTTGGTCCATCTCAA

GACTAAGCTGGGTGGAGATGGACAGTCTCTTTCACTGATGTGGACTCCTTCCCAGAGGGCTCCACCAGCCTGTGCTC

AGTGGTGAAGGCTCCAGGCAGCCCTCCAAGCAGCACAGGACTCTTTTAAGGCATGACAGTGCTCTCGATATTTGCAT

TTTTAAAGCTATTCTCTTTGCTGTGGGTAAAACTCAACCAACTTGGTTAACACTTTGACCTCGAGGATGAACCGTAA

GACTGTAGGGTAAGCGCCCTCCTACTCATTACCAATTCCTGAGAGGGGCAGTGGTGAGTTTATTTTCATATGCTTTT

GAATGAGAGTTTTGTTCCAGTTCTTAATAGGGGTTCTATCAAAGATGAATCCAGCTGACTTTTTGAAGATGGGTTAT

TCTGTAGAAATTAATCAAGTTGTAGTTGATGACCTTGATGAGTGGAGTGAATCCTGGAATTCCATGAGGGTGGCATT

GGGGCTGGGTGGTGACGGGGCATGGGAGAATGGCCAACGTGATTCTCAGTATTTCAGAAGCTTAATGACATTTGAAC

CTTGACCCAGGACCAGTCACACTGGCTGAATGTCCCCTTGGTTTATGGCTAGAATGACATTAGTTCAGTGGGTGAAC

CAGCTGTCTCTTAATGGTGCTGGTGGAAACATAGTGTTTATGTCAGATAACTAAGGATGACAATGTCAATGTTGCTT

AATGAATGTTAGTCTTTAAAAAAAATTTATTGAGGCACAGTTGATTTATAGTGTTGTGTTAATTTCTGCTGTACAAC

AAAGTGACTCAGTTATACATATAGATACATTCTTTTACATATTCATTTCCATTATGGTTTATCAGAGGATACTGATT

ATAGTTCCCAGTGGTACACAGTAGGACTTGTTGTTTATCCATCCTACGTGTAATAGCCTGCATCTGCTAATCCAAAT

AAATAGTCTTTTAAAGCATCACCTAAACTCCTGTGGCATTAGTCCATTCATTTCCTGCATACCTGGCTTTTTCAGTC

TGTCTTCCGAAGTGATTTCTCTGAAACACTGATCTGGTCAGGATTCCTTCCATGACTCCACCCCTATTTTCATCAAG

CCTCATCTTTCAATTCTCCTTTCTATTTAAGCCATTTTTTAAAAATTTAAGTATAATTTACAATGCTGTGTTAGGTT

CTGGTATACAACAAGATGATTCAGTTCTTTTCCACTCTTTTTCAGATTCCTTTCCTATATTACAGGTATTGAATATA

GTTCCCCGTTCTATGCAGGTCTCCCTTTCTTGTACATGACTGTCTAGCCTGAAGATAAAGGCACATAAAATTCCTCA

AGTTCTACAGGAGGTGCTGCTTCTACTCCTTGGCCTCTGCACAGAGTGGCCCCTCGTTTATCCATCTGGAAAATGAG

GACTTGCCTCATTACCTTCTCTGGGGAGTCATCTCTCTGCAGACTTAGTCACACTTTGCTTTCTGCTACTATGTTAC

ACTATGGAAATCTTGAATACACAACTTCTCCTAGTGTGAATATAACTCGTTTATACACACTGTCACTCTAGACTTAA

GGCTGTTATTATGCTTAGTACCAAGCACAGGACCTGACACAAAGTACTTTCTTTTCTTTTTTTTTTCTGTGCCACGT

GGCTTGCCAGACCTTAGTTTCCTGACTAGGAATTGAACCTGGCCCTTCAGTAAAGTGCAGAGTCCTAAACACTGGGC

TCCCAGTGGATTCCCCAATTACTTTCTTAAGAAGAGTTTACTAGATCAATGAACAAAAACGTTAGAGGTCTTGGGGA

GAGAATAGTTGGTCACCGTTGTATCTGTTGGATTCACTAGGAAAAGAGCAGCTTCCCACGTTGAGTTTGTCCCTCTA

AATAAGTAGGATAAGAAGCAATATGATTCTTAATTCTCAATTCTGAAAACTATGATTAAAATACAAATTACTATGGA

GACATAAAGGTTCAGAAGTTAATTTTGCTATGTTTGTCTATTTCTTTTCTGACACATTGGTTACTTGGACAGAAGAT

TAGAATTTTGCTATATGATAATCAGTGAAAACTCACTATAATAATTTTTTTAAGGTTGTGACAGATGTGATCGACAG

ATGGAGGCTTAATATGGAGAATATAGTGAGTTCATCCTAGTGAGTTAAAAAATCGAGATCCAAATAGATAACTGGAG

AAAGACACAAACAAGCATAGACCTCCTGTGAACACTTTGCACACCTCATATTAAGAATCATATAAAATGCTTACATT

TGACCTAATGACCCCGCACTTGACTGGAGGAAGAAATGGCAACCAACTCTAGTATTCTTGCCTGGAGAATCCCATGG

CCAGAGGAGCCTGGCAGGCTACAGTCCATGGGGTCACAAACAGTCGGACATGACTGAAGCGACTTCCCATGCACGCC

CCTTACTTGGAACTTTCTTTTAAAAATTCTGAACATGGAAAATATTATAGACAAGAAGTTGTTCATTGCAATATTAT

TTATAGTATCAAAAACTGGAAATAATTCAGTGCCTAATATTGAAAAGCGATGGTTATATAACTTCCGTTATATCTGT

TTGAATATAATATGCAAGTAAGTAAAATTGTTGTTACTGTTTGGTCCATGCCAAAAGTGCTTTTGGTAAGTGGCAGG

AGTAAATTATAAAATTATCTCATCTTTATGTGTGCATAAATAGAGGGGGTATTGCTGATTATTGTTCAGCAAAAAAG

GAGGCTAGATGGAGCTGTAGATGGGACTTACCTGGTGATCCAGTGGCTAAGACTCGGAGCTCCCAATGCAAGGAGCC

TGGGTTCGATCCCTGGCCAGGGAGCTAGTTCCCACATGCTGCAACTAAAGGTTCTGCAAGCCTCAACAAAGATTCTT

GAGTGCCACCACTAAGACCCAGCGCCGCCAAAAAAGTAAATAAATAAAAATAGTGAAAACAAAAAAGACAGAGCCAG

AGGAACAGCACTAATCTTGGAGTTGAAGTCCCAGCTCCCTCCCTTGCCCCTTTTCAAAATCTTGAGCAAATTCCTCA

GTCTCATCTCTAAAGAGGAAATATGATCGCAAGCTATGAGGGCCTATGTAAGGAGTAAATGAGATGACAGAGCTGGC

ACATCAAAGTTAGCTGAGTGTAGGTTGAATAAAAGTGTCTGTGCAGTTGACTTTTTCATCCAGTGTGGTAGAGAGGT

TGCAGTCCTGGCCACACCTTGACTTTAGAAATTAGGTGGGTCGTGGCCCCCTACCACGCACAAGTAAATAGGGGGAT

CTCAGAGTGCTGTCAGGCCACCTCTGTGGGTCTGTGCTGACTGCTGTTATCAGCCAGAATGTTGGGGGGGAGAATGC

AGTATGTCACCTGGCAAAAGAGAAAGAATGTGATCGAGACTTTAGGCAAAGCTGGGAAGAGAGACCTTGCATCTTGC

TCTAAGGTCAGGAGTCACTCTGGCCTCATTTGTGTTACTGTGAGTCATAAAGTTCACTGTAACATGATCTTTTAAAT

TTCACAGAAACGTAGACTCATAGAATATTAGAAATACCCAGCTCCAGATGGCTGCCTGTCTACGTATCTATCTCTTC

CTTTCAAAATGTGACTAATGACAAAAAAAAAAAAAGATTTTTAAAATGAAGCCAACAAGAAGGGAGCTGTCCATGCA

TGAGAGATTTCAGCAGATTTCTGGGAAACAAAAATAGATGGAGCAATGGTAACTGAAGAAGTAAGATAAGGAAATCT

AGGTTCCCACTGAGCATGGAAGAGGGTTATAGGAACAGGGAACAGGGGGTAGATTGACCTTAAAGAAGCAAAAAGAG

TTGGGGTCTTGGAAATGCAAGTAAAACAAAGGATGGAAATGAAAGCTGAAAATGGAAGATCTGGATAGTCCAGATTC

TGCACTCCTTATGCAGGGAGTGGGTGTTCGATCGCTAGTCAGGGAACAAAGATCCAACGTCCCATAGGCCATGTATC

ATGGCCAAAAGATTTCTAAACATCAGGGGTGGCAGGGTGGGAAGGCTGATGAAACTCTGCGTATTCCCTGCCAGATC

Page 79: MOLECULAR CHARACTERIZATION OF OVINE GM1

76

Appendix Figure 4 (cont.)

CTTCACTCCTTCACTCCACTTTCCAATGAACTGTCCATCAGAGAAGCATCTTTCTACCAGCCAGAAAACTGGAAGAT

TAAGAAACAAAAAAAAAAGTGCACAGCCCCAGAGCAAAGACCCCACATATTATGTCTGATTCCCTGTGAAATCATCC

TAAAACAAAGCTCCCCACTGGACAAGCCTGGCTCCTGTACGCATAACAGGACTGGCACATAGAAGCTGAGTGTGCAA

ATGTGAGTGCATTCATCTGCATTACCATTAAATGTGAACAGACAACTAAGGAGGATGGCCAGATGCTTGTGCAAACC

CAGAAAAACTGCACCCAGGAGGAGGAAGACCAAGATTAAGTAAGCAGGAAAATGACCCTAGAGGCAACAGAGAATCC

ACAGGACAGATCTTACACAAAACAAAGCAAACCTTCTCAAATTTATTTCCTTCAGAGATATTTGAGAAGATATTGCA

TCGATAAAATAAGAAGAGAATACTTTGATAAAGGAGACCAAGGAAAAGTTATTGGAAGTTTTTAAAATATCCTAGAA

ATTAGGGTGAGAAGACAGATGGAAACAGGAAAGAAAAGATGAGACACATAGAAGAATAATCTGGGAGGTGCAGGTTA

CTTACAAGGAAGGGGAGAAATGGAGAAAAAGAAGACATCAAAGAAATAATACAGAACTTTCTCCAAAATAAAAAAGA

CTATCCGAGTTGCCTAGCACAATGAATGTAAAAACCGTGTGTGTCCATATGCATCTTTACAAAAATTTAGGATGTTG

GGAATAAATAACCTACAAGCTTCCAGAGAGAAAAAGCTGGTCACCTTTTTCAGGAATGTGCTTGGCATGAGCCACAG

CAGATGAGAGAGGACGCTGAACAGCACCCTGGTCTTTCTGAGGAAGATGATTTTTTAGAAAAATATTTATTTATTTG

GCTGCATTGGGTCTTAGCTGCAGCATGCGAACTCTTAGTTGAGGCATGTGGGATCTAGTTCCCTGGCCAGGGATTGA

ACCCGGGGCCTCTGCATTGGGGGTCTTAGCCTCTGGACCACCAGGGAAGTCCTGAAGATGATTTTCAACATAGAATT

CTATACCTATCCAAATTGCTAACTAAATATGACATACTCAGACATTCAAAGATTCAGGAAGTTTCCCTCCCATGTAC

CAGTTCTTAGGAAGTAACTTGAGATTGCTCTAGTGAAATGAGGAAGTCATGAGATTCTAGAAACAGGAGGGAAAAGC

CAGAATAATGATAGAGCCTGAGGGACTTCCCTGGTGGTCCAGCAGTTAAGACTCCACACTCCTGATGCAGGGAGCAA

GAGTTTGATCCCTGGTCAGGGAATGGCGATCCCACAAGCGGTGCAGCGGGGCCATAAATAAATGAAGTAGGAAAATA

ATCGTGGACTCTCAGCCCTTGGAGCAGAAGACTGACGGTCCCAGTAGGAGGATTTCTAGGAGAGAAAAGAGTATTGG

AAGAAACTTGATACCGTCTTTGGAAATTTGGAACCATCTAAGCACCGTGTGAACCGAACAGCAGAGAGGAAAAAAGA

AAGGCAATTAGAAACCCCAGGGAAGAGAAAAGAAAAATAACGTCTGCAAGGAGAGAGAATATGCCATCCTGGTACAT

ACCGGCCATGTAGCTGTGCAGAGAGCAGTATTTATAGAATCGTAATAATGTGAGCACACGTGATTAATTTTAATATA

AGGTCAGTGTACACTTGAAGGGAGGACTTGTGACTAATAGGATAGACCTTTAACCCTGACGTTTAAAAAGCACAGCT

GATGGTTTGGAGATGGGAGTGGAGAGGAGAGCTAAGGGGAAGGATGCAGACAGCCTTATCTTTAAATGTGTGGAGAC

AACGGATAATGTCCTAGTCGGTAAGAACTAAGAAAAAAAGGTATAGGGTATTATTTAAAGCTACAAAGATAACCAGT

AGAGAAAAATGGTGACATAACCATATTGGCAAGAAAGGGTGATATTTGAAGAGTACAACTGAGCTAAATCCCATGGA

TTAAAGAAATAAATGATCGTGCTTTAAGTTGCTCAAACAAGAAGTAGCAGATAAATTTAGAGACCAACAGAAGCAAA

AATCGAAACAGTGAAATGATTTTAAAATGGTTTCCTCTGAAGAACAGAACTAAAAGAATATTGCAGGAAACCGCTGC

TTTTTACTACGCTTTTAAAAATTGCTTTTAAAAAGGGAAGCTGAGAGCCGGCGGTGGGGTGGGGGCGGGCGGGGAAA

GAAGGAAAGAACTAAGAGCCTGATAGATCATAATACAACCCATTAATACTTGGAGATTCCAGATGGACACCGACTTT

TTTTAAGACCTGGGAATTACACCCGTATCTTCTGACATTAATATAAGTTGTGTGTGTATGTATTTAATAAGGTTTTG

TTTTTATTTAAAAATAATTTCAAACTTAGAGAAATGCTTCAAGAATAAGAACAGCAGGACAAACACTTGTGTGTTCC

ACACCCAGATTCACCCGTGTGAATGTTTCACTACGTTTGTGTCACCATTTGCCCCTCACCGAGCCCGAATGCTCTCT

AAACCTGTGGAGGGTTTTAGACATCAAGACTCTCGACCCCTACATACTTCAGTGTATGTTGTTTAAGAATAGGCAAG

AATATCCTCTTATATAACCACAGCAAATTTAACATTGACACAAAACTTTAATCTACTCATAAGATTTAATTTGCAAA

CAGCATCTTTTCCTACTATAGACTCGCCCCTCCCTTCGGAGTCGGTTTTGCCATGTACCTTTTTTTCCCTCTCCACT

CGTCACTTTCATCCTCTCTGCTTGTTTTTGCTCTTTTGTTTTACCCCATTCCTAATTCAGATGTCAGTTTTTGTTGT

CGTTTTAAAAAATAATTGTTTCTCCTTTTGGCTGTGCTGGACCCTCTTTGCTGCAGGGCTTTTCTCTAGAGCAGGGC

CGACTCTGCGGTTGTGGTGTGGGCTTCCCTTGCAGGGCACTTGTCCTAGGGAGCACGGTCCTCAGTAGTTGCAGCAC

GTGGGCTCAGTAGTTGTGGCTCCTGGGCTCTAGACACTGGCTCACTAGTTGGGGTGCATGGGCTTGTTTGCTTTGCG

ACATAGGGGACCCTCCCAGACCAGGGACCGAACCCATTGTCTCCTGCATTGGCAGGCAGATTCCTTACCACTGGACC

ACGAGGGAAGCCCCTGTTGTCATTGTTTTTAATGGCAGCATTTAAAAATTTTGTTTTTGGTGTATAGTTGATTTCTC

CTGGCAATCTTGATTCCAGCTTGTGCTTCATCCAACCCTGCGTTTCTCATGATGTACTCTGCATAGAAGTTAAATAA

GCAGGGTGACAATATACAGCCTTGACGTACTCTTTTCCCAATTTGGAACCAGTCTGTTGTTTCATGTCTAGTTCTAA

CTGTTGCTTCCTGACCTGCATATAGATTTCTCAGGTCAGGTGGTCTGGTATTCCCATCTCTTTCAGAATTTTCCACA

GTTTATTGTGATCCACACAGTCAAAGGCTTTGGCATAGTCAAAGCAGAAGTAGTTGTTTTTCTGGAACTCACTTGCC

TTTTTGATGCTCCAACAGATGTTGGCAATTTGAGCTCTGGTTCCTCTGCCTTTTCTAAATCCAGCCTGAACATCTGC

AAGTTCACAGTTCACGTACTGTTGAAGCCTGGCTTGGAGAATTTTGAGCATTACTTTGCTAGTGTGTGAGATGAGTG

CAATTGTGTGGTAGTTTGAACATTCTTTGGCATTGCCTTTCTTTGAGATTGGAATGAAAACTGACCTTTTCCCATCC

CTGTGGCCACTGATGGGTTTTCCAAATTCATTGGCATATTGAGTGCAGCACTTTCACAGCATCATCTTTAAGGATTT

GAAATAGCTCAACTGGAATTCCATCACCTCCACTAGCTTTGTTTGTAGTGATGCTTCCTAAGGCCCCCTAGACTTCA

CATTCCGTAGACTTCACCACCCTTATGGCAGAAATCGAAGAACCAAAGAGCCTCTTGATGAAAGTGAAAGAGGAGAG

TGAAAGTGTTGGCTTAAAACTCAACATTCAGAAAACGAAGATCATGGCATCTTGTCCCATCACTTCATGGCAAATAG

ATGGGGAAACAATGGAAACAGTGACAGACTTTATTTTTGGGGGCTCCAAAATCACTGCAGATGGTGACTGCAACCAT

GAAATTAAAAGACGCTTGCTCCTTGGAAGAAAAGTTATGACCAACGTAGACAGCATATTAAAAGGCAGAAATATTAC

Page 80: MOLECULAR CHARACTERIZATION OF OVINE GM1

77

Appendix Figure 4 (cont.)

TTTGCCAATAAAGGTATATCTAGTCAAAGCTATGGTTTTTCCAGTAGTCATGGATGGATGTGAGAATTGGACCATAA

AGAAACCTGAGCGCCAAGGAATTGATGCTTTTGAACTGTGGTGTTGGAGAAGACTTGAGAGTCCCTTGGACCGCAAG

GAGATCCAACCAGTCCATCCTAAAGGAGATCAGTCCAGAATATACATTGGAAGGACTGATGCTGAAGCTGAAACTCC

AATACTTTGGCCACCTGATGCAAAAAACTGACTTATTGGAAAAAACCCTGATGCTGGGAAAGATTGAAAGCAGGAGG

AGAAGGGGACGACAGAGGATGAGATGGTTGGATGGCATCACCAACTCAATGGACACGAGTTTGAGTAAACTCCAGGA

GTTGGTGATGGACAGGGAGGCCTGGCGTGCTGCAGTCCATGGGGTCGCAAAGAGCTCGAGAGTTGGACACGACTGGG

CTGAACTGAACTGATAGCTGATTTACAATGTTGTGTTAGTCTACTTGTTTCCACTTTCTGTTTTCAGGTGTTTTGTT

CTCTAATTATTTGAATGATTCCTGGAGCTTAAACCACAGACATACACAGACGTGTGCTTAGAATTCTGTTTTGGAGG

GAGTTTTTGGTTCCTTTGCCTTTCCAAAAATCATTGGCGCTATTTGAATCTTTGATGGTTCTTTTGAAACATGAATT

GTAGAGATGTGTTTCTAAGAGTTTAATAGCCGTTTTTCTTTTCTTTTTTCCACTGTGGTTTATAGTTTGCAAAAGTA

CCGGAAGGTCCTATCCCCCCATCCACACCAAAGTTTGCATATGGAAAAGTTGCTCTGAAAAAGGTAAGAAAAAAACT

GACAGAAACATTAAGAGTGAGGAAGTGGAATTCAGTAGTCATGAGTCAAAGTGTTACGCCTGGCAATCGGTTCCTTA

TATTTTTGTGAACTTGTTTTCTGTGAGACTGATGGGGTGGGTGATGTTTCTGGGAAAATGGGGACACAGGCCACGAG

ATGCTGCGTGATGCTGACGGGGTGAGCATGTCAGGAGTGAGTGGGCATTCTTAGATCATTTTGTTTCCATTATCAGT

GTCAAAACCAGCATTAGGAGCCCTTGTGGGAATAACATGTAACCTTACTGTTATGGCTAGTGACATTCGTTTCTATA

ATTCTCCTTTTCTAAAAGCAGTTCTCAAAAGCCATGAACATTAACTCTAAATTATACACTGCCCTCCATCTCAAAAT

CATGTCTTCAGGAAAAAAAGAAAAATCTTGCCTTCATAGCTTGTGGCTTGTATGGTAATTGGGACATTGAGTGGGAA

AGCCAGAAACGAATCATAAATATTAGCGAAGAGCTTTTTCTTCTAGGGAAAGAGAAAAAGAGGAGAGGCTAAGTTTG

ATAGGAGTGACGTAAGCCCAAGGCAATTTGTTTTGACCATCTTCAGGTTTTCCCCTCTGATAATCCCTAACTCCTAC

CTGGGTTAACTAACAAGAAAAAAAAGTTACACATTTCTTAAGAATCTTGATATGCTAAAATAGCATCATAAGTTTTT

ATCTTTAAGCAAAATGCCAAACATGATTGTATAATATTTCCATTCGTGAAGCCCTTTGATGTTTGTTTGAGCTGTTG

TAACATTTTCCACCTAGTGTCAGATATGTGTGTTACATTCTACAAAGAATGTGGTTTCTCTGCCTGATAGGAATCTT

GCTTTAGATTAATCAGACTTTAATCACATTTGTAAAGGGAGTACCTGCTACTTTTTCATTGCTACTGCTACTTAAGG

AAAAGTTTGGTTTGCGTCTTTTTAAAAAAGCTGTGAAAAGTTTATTTTTATGCAACAGAAAATAACTGCAAATGTTT

TAAACAATATTGCTAACCTTAGTACCAAAGCACATTCTGTTTACCAGGAAGGAGAACTGTGAGACCAGAAACTAAAT

ACAGGATTGAAGACAGCAAATTGACATAAAACTGTGTAAAGTTTGGGAGTTCCTTGGTGGTCCAGTGTCGAAGACTC

TATGCTTCCAACACGGGGGGCCCAAGGTTTGATCTCTGGTCAGGGAGCTAGATCTCACATGCTGCAACTAAGACCCA

GTGCAGCCAAATAAATGAATAATTAATTTTTAAAAATACTGAATGAAGTTTATGTAGATCATAGTTATATAGGATAA

AAGCTTTGACCATGAGCTCCTTTAGTTGTCCAAGTAGGAAAGCACTCACTTAGCTGAATTGATGGGATTGTACCTAA

CAGATTTTTTTTTTTTCTTCCATGCTACCTATCAGTGAGGTAGCTCTAAAAAGCGTTTATAAAATTCCTAACCAGTT

TCATGCTGGGAAAAGCCCTGGGTTTGAAGCCAAAGCTAACTGCAAATCCCGTCTGGGCCATGACTCAAGTGAAATCC

TGAGTCCCCAGTTCTTTCTTCTTCCCTAACAAGGGACAGTATTGCCGTCCTTGCCGGCTTTTGTGAAGACTCAGTGA

GGTGTGTGGGTAAAGGGAGGTCTCTCCTAGAGTTTGGTGAGGCACCCAGGGTTGTTTTGTGCATCAGAGTAAATATC

ATGGGCTACAAGAAAACACAGTCATTTAGGCTGAATATAAAAAGTTTTAATTGGGTGTCTGTTATGTGCTGGACATT

GGAGGTGAGCACAGTACGGACCTTGGTCTTAAGAAGCTGGCTGCCCACAAGGAGTGCAGTGGGGTCAACAAGTGCAA

GGCGATCCCTTAAGTGCAAGGGAACGTGCTGCTGACACGCTCTGAGGAGGGCACAGCTGGGGCTGCTTCACTCGGGG

GTGGTGGGGAGGTTTCACAGAGCCTTGGTTTTCATGCATTTTATGGACCTTTTCTATACAGGAGGTTGTGATTGTGA

ATAGGTATGTTTAAAACTCTTTACAATATCATCTGTTATTTTTCATCCAGAGTTAGGGACTGGATAGAATTGATTGA

AGGTGACTGTGGGACAGCCCTGAGTGGAATTCAAACCATTTCATTTTATTTAGGGGTTTGGGCAAATCTGCTGTCTC

TGGTGATGACGTTATTTCTACTGTGATTAAGTGAGGGGTGACAGTGAGTGAATGCTGCTTTTGTTTCTTTCCAGTTA

AAGACGGTGGAGGATGCTCTCAACATCCTGTGTCCCTCTGGACCCATAAAAAGTGTTTATCCCTTGACGTTTGTTGA

TGTGAAACAGGTAGGGCTTCAGAGGTAATGCTTTACCTTTTTTCTACCCTCAAAAAAATGTGCTTTCTACCTACCTG

TTCTGAACACAGGGACCGAAATGGTAAGCAGATAAATCAGACCCCATGTAAAATCACCTCGGATCTCCAGGCTCTAG

CTCTGTGGCTGATCTTTCCTGTTCTCCCCACCCCTATTTCTTATCACATAGGTAATAACCTGCTTTAGCATAATTCT

GTGCAGGTTATACATTGAGTATATGTCTGATATAATTAATCTTATTAGATTTCAGAGTAAAACCACTGGCGGGTGTG

TGTGTGTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTGTTAACA

GCTGCTTCATTTGAGTTCTCTTTGTGTGTATGGTTCGGAGTCAGCTGCTTTTTGCTTTTTTTAAGCATTTGAGGTAG

TTGTCAACATCATGACACTTCTACTCTTAAATATTAGAGCATATATTTTTAAGAAGGACATTATCCTACATGATCAC

AGATAATGATCACCCTTAAGAAATCTAGCATGGATACAGTCCTATTATCTAATGTACATTCTACGATCAGGTATCCC

AGTTTATTCCAGTAATGTCCTTTATAGCGTATCACTTTTCAGTCCAGTTGCCAGTCCACGCGCACACATTGCGTTTA

GTCTGCTTTCATCTGAAACAGTTCCTGAGTCTGTTCTTCCTCTCTCTCTCGTGACATGGTCATGTCTGAAGAGTTCA

GACAGTTGCTGAGTTTTGTAGACCACGCCTCACCGTTAGATTCAGTGAGACATCTTTGGCGCACACACGACGGCAGC

GGTGTGTTCGTCTCAGGGTACCGTAGTAGGATCACTCGGTGTTGGTTCAGTGTTCTGTTTGATCACTTAGTTAAGAT

Page 81: MOLECULAR CHARACTERIZATION OF OVINE GM1

78

Appendix Figure 4 (cont.)

CTCAGCTCTGGTTTTTGAAATGGAAAATTATCTAGGGGCTCCTTTCTGACTTTCTGAGGAGCTCACCTTCTGGAGGA

TGATATAATAATAGCACATTTGATCTTGCTTTAGCTTATTTTGCTTCCAGTTACTATTGTTATGTTTGTGATTTCAC

CCCAGCATTACTGCTTTGTGATAAATAAAAATGATTAATTAAGCTCCCCCTCACTTTTTTATTAGCGTTGGGTAGTG

TTCTTTCTCTGGTTCTAACACACACTGGTTGTACACCCATGTCTCCATCTACCCGTCCTCTTCACCGAGTAGGGTCG

GAGCACATCAGATAAGACACAGCTCAGAGCAGTGGGAACCTGGGAAGTGGATCCCAGGTTAGTCTCCTTCCTTTTTC

TCAGCCCCTTTCTGCTCTCTCACCTTTAGGCCAAGGCAGTGGTCTCAGATCACGTGTGGCTCCTGGGCCCTGACTGC

TCAGATCTGGGACAGGCCATAGAAGATTTACTTCCAGCAAACCTCTCCTCTCGGCGAGCACAGCTGCAGGGAGTGGG

GTGCAGCTTTGGTACCCCTGCAGCTGCCTCCCCATCAGCCCCGACCCTGGAGTTCTCTACTTTGCCATTGCAGGGAG

CATCTCACCTTCTGGTCCCCTCCTGGAAACCCCTAGTCTCTAAGCTAGGACTCACCACTCTGCTCCATTCAAAAGAA

AAAAAGAAACAAGAGATGGAGATTTGGGGGTCTGGAAGGGAGGCATCCTTGTGCTTGAAGGTTTGGGTGATGACAGT

GGCGTTTCTTGAGTTCAGCACTTTCCTGCAACACAGGAACATGGGCTAGCATTTTCCTTCCGCTCTCGCATATCACC

CCTCTCCTTTGCTGGGCTGCACTTTCTTGCATTCAGGGCTGAGGAGTGGGAAACTGTTTTTCCTGATGAGTTTCCAT

TTGGATTCTCCTGTATGACTTGATTTGTCCAGCTCTCCCAGCTAATGACCACTCAGGAAGCCATTCACCCAGGCTGG

TGTTTGGGGGCTTCCTTTCCGACCAGGGGTCCCAGCATCTCAAAGTACTTTCTGAGGCACAGTGAGAGGCACATTTC

GCCCCCACCTCCGTCTTTCGCCGCCTGTTTCCCCCTCGCCTCCACTTGAAACAGTTTCTGATTGACTCTTGTTTTGT

ATGTTAGCCCAAGAAGCTGGAGAATGTTCTACAGAGCATTCTGTTGCTGTTTACCTTTTGTTTTTGTTGTCCTTGGT

TTTGGTTTTTGAGATAATAGCAGTCCTTTTGATCTGTGACGGGATTCCCCCCAAGTGATTCTGGGCACATCACCCAA

CACGTTCCAAGGTCTGGTTCCCTCTTGTGGGAGGGGAGGGGATGTTTGACAGAGGCCTCCAGGCTTCCTTGCAGTTT

GCTGCTGTGATGGTTATTCTGTGATCTGAAAACTGAAGCCAGTTCCCTTCTTTCAGACAGAATATTTGCCGAGGCTG

GGGAAGCATTTCATTCCTATAGTTTTAGAAACGTTGCTTTCACACGGATGGAGGGTGACCCCGTTCTCCTACGGTGA

ACTGCAAGAGTGATATCTTCTCTTGCATCCTTCTCTAACCAGTACTTTGGATTTGTGCTGTACCGAACAACGCTCCC

TGAAAACTGCAGCCACCCTACACCCCTCTCTTCTCCATCCAGTGGCGTCCATGACCGGGCCTACGTCTCTGTGAACG

GGGTAAGAATTCTCTCTGAACTTGTGTGTCTGCCCCCACGGTGGGGGAGAGTTGTGGGTTGCACTTGGTGATGGTCT

CAGAGAGACAGCAGTAAGCAGTCCTGAGGAGAGATCTTATTCCTTGCCCAGGAACTGGACCTGGGTAACCTGGATGA

AAAGCAGAAATCTTAGCCGCTGGGCCACCAGGGGCTACAGGCAAAGTTTTCCTGGCTCTTTCCCCTGTGTGAACACA

AGAATGTTTCAAGGAGGCAAAAACTGTAAAAACAGGTAGCAAGTTTATCCTTAGAGACACAGCATAGTGAGGGGGGC

AGCGCACAGAGAAACAGCATGTTTATCCGCGTTCCCTGGCCGCCTAGTGGTTAGGAGTCAGCATTTCACTGCCAAGG

CCTGGGTTTGATCCCTGATCCAGGAACTGTCTTGCATGCCACACAGCAGGACCAAAATACAAAAAAAATAAATAAAT

AAAAATAAAAGACTGAAGCAAGGCAGAAATACACACCTGGAGAGGACAGCAGGTGTCCTGAATGAGGAGTGTAGTAA

AGAGGTGATTTAAATCCCTTATATAAGACAGTCCTTCTGGGTCTTTGTGTACCTTTGGCCAATTATCGTTTCTTTTT

TCACACTTGACCTGTCCTCGGGCCTTCCCTAACCTGTGTGCGTAACTTTTTGCTAAAATGGATCCCACTGCAGAGGC

CTCTGGGTGCATATCCTCACTTGTCATGGGGTGGCATGTTGTGACCCCCAAGGAGCCTGCCTGCACGTGTACTGACA

GGGAAGTTTCCCTTGACCTCAGGAGTGGTCATCTTATTGCTTCTCTTCAGCAGAGATCAGCTTCTGCCACTAGCTTT

GTCCTTGGAGTGTCTTCAGTTTGACCCCACTTGACAAACGCCAGATGTCCAACCCAAGGGCCCATCTGTCTTCTGCC

TCAGTAACATGACAGTCAGGGAGACTGTTGCCTTCCCATCCCCAGGCTCCACCCTCCTCGTGACACTCCTGAGCTGT

CCCTTGCTGGCTGATGCACCCTCACCTGCACTCCATCTGCCCGAGGTATATACCCCCTCGTCCATCCGAACTTCCTG

GTCACTCCCCTAGTCCAGGGCCATCCCCTCTGACTGACACTGTCTCATTCACATCTTCTTTACTCCTGGATGGCAGA

GTCTGTTTTGTACACGCTAGATGAGTCATTTTAACTTAGGGTCTTCATCCTACATGAGAAGTTATATTCTGAAGGGC

TGTTCGTGATAATCAAAGCTAGGAGATACAAAGACTTTGGCTTCATAACGTTATACGATTTCCATTCCTCTCACTGA

AAACAATCATGTGAAATAAACACATGAAAGATTATTCCTAACCAAGAAAATTTGTTGAGAAAAAAATTTTATTTTTC

TTAAAAAAAAAAAAAAGAATGAAGTGATTTTAATATATGAAATAGGCAAACAACAAGGTCCTATTCTGTAGCACAGG

GAACTGTATTCAGTATCTTACAATAACCTGTAAGGGAGAAGAATGGGTAAAATGAAATCACTTTGCTGGACACCTGA

AGCTAACACAACATTGTACATCAACTATGCTTCAAACACACCACAAAAGGAAAGAAATTAAGGGTCAGAGAAGGGAA

GTGATTCACCCAAGGTTACTCAAGAACTATCAGAACTAGTTCCCGGCTTCTTCGATTTCTCCACAGCAATCTCCCAT

GTCTCCCAAACTACTTATTCTTTTTTTTTTTTTCAGATTTTAAACTTTTTCTTTTGTGTTGGGGTATAGCCAATTAA

TGTTGTGGTAGTTTCAAGCGAGAGACAATTTTAAAGGAAAATATTTCCATCCCATTGTCATGAGTGGTTTTGAGTGG

CAACAAATGTCTAAAGCACTATGAGTATGTATGGCAACGGTTTCTAAAATTCCAATTTGAGGGTTGTTTTCGTGATA

TACTTTTTTTTTTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNATTTTGAAGTAAAACTACTCCACCTAACCCTCTGATTTTATCTCGTTTGTCTTATTGTGTCCCATCTCCA

TGCAGTTTAAAACCTATTTTTTATTACTGCCTTTTTTTGCTGTGAGCACATGAAGAGATTCCTGTATTAGAAATCTT

CCCCTGGAATTTCTGCCTCCATCCCCTCTCTATTAAAAATAGATGCACAGCCTACTCAATACTCTGTAATAACCTAT

ATGGAAAAGGAATCTGAAAAAGAATTCATATATTGATATGTATACATATAACTGCACCACTTAGCTGTACACCTGTA

ATGAACACATTATAAATCAACTATACCCCAATATACAATAAAAATTAAATTTAAAAAATAAGGGACTTCCCTGGAAG

Page 82: MOLECULAR CHARACTERIZATION OF OVINE GM1

79

Appendix Figure 4 (cont.)

TTCAGTGACTCTGTGATTCCACTGCAAGGAGTGCAGGTTTGATCCCTGGCTGAGGAACTAAGATCTTGTGTGCTTTG

TGGCATTGCCAAAAATTAAAAAAAAATGAATAACATTTAAAATAATAATAAATACAAAATAAAAAAATTAAAATAGA

CATACAGGAAAATAACCCAGAGGTAAGGAAATCAGCCTCAGCCCTTCCCTGCTGGGAGCTGAGTCTGGCAACCCTCC

TATGAAGAAAGCAGTGGTTGCCGGAGCCTGGGCATCTGGCTGAGGACTTGGGCAAAGGAGCCATCAGAGCATTTCTG

TCCGAAGTCTGGTGACACTTCAAGGTAGGAATATGAGTGTGGAACTGACTGAGCAGACTGCCTCTGCTGACCCTCCC

ACCCTAGTTAATTCTCATTTGGTATTGAACCCACAGGTTGCCCAGGGAGTCCTTGAACGAGAATCTGTGATCACCCT

GAACATAACAGGGGAAGCTGGAGCGACCTTGGACCTCCTGGTGGAGAATATGGGGCGTGTGAACTATGGCTCATATA

TCAACGATTTCAAGGTAGGCCCACCCTCCCTGTTGGGAGTGAGACTCAAAGGTTGACAGAACTGTGCCCAAGTCATT

GGGGAAGTTTCCGTAAATCCACTTAAAGGCTGTCCTGCATACACTCTTTCCTTCCAGCCCTGTTCACGTAGAAGTGA

TTTTCTGCTCTGGTCGTGCTGGGCCTTTGCTGCTGCGCACAGGCTTTCTCTAGTTGGGACAACTCTAGTTGCAGTGC

ATGGGCTTCTCATTGCGGTGGCTTTTTTTGCTGGTGCAGTACAGGCTCTAGGGCTTAGGAGCTTCAGTAGGTGCAGC

TTCTGGGCTTGAGAGTCCAGGGACTTCAGAAGTTGTGACTCATGGGCTTAGTTGCTCTGAGGCATGTGGAATCTTCC

CAGACCAGGGACTGAACCCGTGTCCCTGGCACTGGCAGGCAGATTCTTATCCACTGTACCACCAGGCAAGTCCACAT

AGAAGTAATTTTTAAAAGCACACCCCCTTTGCCAAATTTGATGAGTAAACTTACCTGATTTGTTTTGCAGCCTAGAA

GTTGGGTTATTTTGAAGATCTGTTTTCCTCTGTAGATGATGAGAAAGTTGAGCTTTGCAAACAGAACCCTTGCATTT

GAGTTCAGCCATCCTTTAGCAAGAAACAGAAGGAGGAAGCCACTGCACCATGCTTTTCCTTTGCTTAAAAAACCCAC

CGAGCCTGCAAAAGGCACTCCCATGCCAACAGAGCCAACTTAGCATTTGTTCTGCTGTTTTCTGGGTGTGGACAAAC

TCTTGAATTTTAGAAAGCCTGTCCCTCCGTGCACTGTTCTCACCTCTCTTGGTTAGTCTGTGCCTAGGCGTCTAGTC

CAAGTATGTTTTTCTGATGTACATTTTGAGAGCATTGTTCAGTAAATGTTTGTTATGCTCATCCTCTGTGTGTGTGC

TCCATGCGGTGCTTTTGGGGGAAGGCAAGGATGTTGAGATATAGGCTGCCCCTTGGGTAGCTCACCATGTGCTAGAG

GAAGGAAGCCTGCACCTCCAGAATGATGGCAACACCCACGACAGGACAGGTGTCTGGGGCTATCTCCTGACCCTCCT

GGTGGCATCTCAAAAGCAAAGCAGTGACACTCTTAGAGAACAGTCATGCAGGGGCCACTTTTGTCTCCAGTATAAAA

GAAATGTTCCTGTTACCGTCCTTGTGGTCAGACTAATTAATGGTCATCCTGCTTGGCTATCATAGGCCACACTGACC

CACAGAGTGACGGGGACTCTTGTAAGATGACTGAATCCCCAGGACCCAGCAAAGAGCCTGGCATACAGCTGCATGGT

TAACGCTTATTGAATTACTGATTGGGCCATTGAGACATGGTATTGAGAGGTGTTGTACAACAAATATGGGATCCCAC

TGGGATGGAAAAGTTCCCCTCCTGAAAGGCTGGGAAGAGGAAGCCAGATGAGCCACGAGCAAAGGCTTCCATGCAGT

GTCTGGTGCCATGGACACCGCAAGCCCTTGCCTCCACTGGACAAAGAGAGCAACTTCAGAATATGCGTCTCAGGCTC

CCCATCATTGTCACAGACTCTTCTGTCCTTTTAACAGTGGGCAAAGTGTTCCTTTGCATTCTCCCCCCACCTCCATT

CACTCCCCCATCCTCGAAACCATCATTTCCTCTGTTCTGGCCACATCTCTGAACCAGACACTGAAGACTGGGGATCT

GAGGTCGAAAGCTCTGGCCTCGAGCCAGATCTGCGTCACTCTGACGGACACACAGTTTGAGCTTCATGTGCTGTTGG

CGTTTCACATCCCAGTTTGCTTTTACCAGGAATTCACGGCTGGAACACAGAGTCACATGAAGCCTCTCTCCACCCCT

GTCTTTACCCCCCAGCTCATCACTCTGTTTCTCTTTTACAGGGTCTTGTTTCTAACCTGACCCTTGATTCCAAAATC

CTCACCAACTGGGAGATCTTCCCGCTGGACATGGAGAATGCAGTACTCAGTCACCTGGGGACCGGGGGTGGCAGTGA

CAGGCGCTACCACAATAAAGCCCGTGCACACAGTCCCCCTACCTACGCACTCCCGACCTTTTATGTGGGTAACTTCA

CTATTCCCAGCGGGATCTCAGACTTGCCTCAGGACACCTTCCTCCAGTTTCCTGGATGGACCAAGGTATGTGTCTTC

ATGGAAAGTATTTGCATTTAGGCCTCAGATGTCTTCTTTTCTGTGTCTGATACGGCATTAAAAAGACTGCTAATGGT

GTGCTGCGTGAGACTCAGGGGAGTGGAGGGTTTTCTGTGGAAGTTTATCCATTTCTCAGGAGCAGGGCCATAGCAGA

TCTTCAGAGATGCTGTGGTCAGCCTGAAGGTACACCGTCTAGCCCATTTTCATTGACAGCTTTCTTTAGCAACTTCC

TCCTTCCCCTAAGAAAAATCATACCTTCTTTGAAAACTGACTAGGAATAGCATTTCTTGTTTATACTGAAGAAAGTC

TGGCCCAGGCAAAGGGGCAAATCTCCGGGAAGCCTGTTTTCTCTTGTTCATGCCTAACGCTATACTCTCCAGAGCAC

CCCACCTCTGTATGGGGATGCTCCCGTGCCCGGGGTGCACCCACCCCTGTCTGTGGGGTCCCCAGCTGCCCCCAGCC

ACTTTACTGCCTGCTTCATTCTCCTTTATTCTTTGAAGACATGTCTTCTCTACTTCAAGCCCTGTTTTCATCCTAGA

CCTTTTCATGACTCAAGTTATTCATTCAACAAATATTTTTAGTGGTTTCTGTTTCTGAGAGTGGGTCCAGCTGCTCG

CCGCCCTAAAGCCAATGAAGAGTTCAGGTTGGTCAGAGGCTGGCAACGCTGGGGGAGGGCAGAGTTCTGTCACAGGC

TGACTCCCCCACCGCTGACAGTCAGTGGGCAAGAGCTTTATAGGCGGAGGGAGGAGCTACATGCAGAAACAGCACCG

TCAGCTCTGACAGTCATCTTGAAATTGGTGGTGCAGTGGTCTCAGCAGTGTCATTGTTTTGAGTACAGTTAATCTTC

AGTTCCAGGGGTGGTTTGTTCCCATTTCCTAGGGGCCAGTTCTTGGAACTGTGGCACCTCATGTCATGGCTGCAGTC

TGGTCCTCATGTAATTAAATTCTTCCATCTGGTGAGAGTTTCAGTGTCTACAACACAGCTCCAAGGATATGACTCAG

AATATTATCTATAACCCTTGAGAAGAAACTAAAGGTCTTTAACTTTGCTTACTGACTCAACCATTATCATTTTGTCC

TGTTTGATTGTTTTCCTTTCCTTCTGTATTTTCCCAATTCTCTGATTAAACTGGTTAAAGTTTTCTGCAGATAAAAG

GCAGGCAGAGGACATGGGAGGTTGGGGACCATAGGGTCTTCTTCCCTTTCAATCCACCCCTTTTTGACACTCTTCAA

GATTAAGGAGAGACAGATACAGAGCAAGAAATGGGATAAAAGTTTTCAATAGAGAATAAAGTTATTAATAAAGTTGG

CGGAGGAACTTGGTTTTAGTTCCTTTTTTCTTCCAGTATTCCCCAATTCTTTGAGGCAGTGGGGTGTGACTGCTCTG

GTTCCTTCCTGCTGAAATGGAGTGAAGTCCTGCCTAATTTGGGGAATGGACACAGAGTTGGAAATAATCTCAAGTCT

CAAGTTTAGCATCAGTATTTTGTATTGTGAAAACATGACCTCTGTCTGATCGCCTTGTCACAGTGCCTGGATAAACG

Page 83: MOLECULAR CHARACTERIZATION OF OVINE GM1

80

Appendix Figure 4 (cont.)

CTTAAAAATTAGTAGACATATTATGGATGAGGATAATAATCAAAATGCATCTTTATATTATTCTCTGAATGTATTTT

CTTAATGGTTAAAGCAGATGTACAATGTATGTCTAATAGGCCATAAGCCGGCTATTTGGAATACTGGAGCGGGCTGC

CATTTCCTTCCCCAAGGGATCTTCCCACCCAGGGATCGAACCCAGGTCTCCGCATTGCAGGTGGATTTTTTTCCATC

TGAGACACCAGGAAAGCCCTGGTTAGCCTAAAGTTCAAATTAAATCATGTATAAGCCAGAATGACCCTCACACCTCA

ATGCGTGAAAACTTCTTCTACCATTTTCCCCTTTCCCATAAAAAGCACTGATAATCAATATATTTTTCCACTGCCAC

CAGAGTCGCTCAGTTGTTGCCTGCTCTGGGTCCATTCATGTCCCTCGGTGCTAGGCCAACTTTTTGTTTATATATTT

ATCTAGTCATCCACACTGGGAGAAAACTAATTAGATGTAACAAACAAGCATAGAGAGGTATGCTGACAGGGAAGCAT

TTTATAGGTCATACATTTTACTGATTATACCCAATCTTTACACCTTGTACATGTGCTTTAAGTAGTAAACTTAAAGG

CAGCAATGATACACATCATGAGTGTTATACTCTGTGATAACTTCATTAAACAATTTCTTCCATCCTGAACACTGGGG

TCAAAAGTATGATTAGAAGAAAAACAACAGCTTTCCATTAGAATTCTGTCAATATCTTAACAGTATTTTTCTCTGAG

ATTCCTCAGGGGCCCTCTGGAAAACTCAAAGCTACCTAGATAAAGAAACTTATGATCTGTTATCAAAACCAGCACAA

TATTCCTGGAAAACTCTGTTCTCGTAACAGAGAGAAAACCAAATTGCTTCCCTGTATCAGCTCACTGTTAAAATTCA

TTTACCTTATTAAATTCAATCTAATTTTAATCAATCTTAAGTGTCCAAAATTCCTTTCTCATAGTACTTTGATTCTT

TACAAAAAAGGATATTTTCTATATCCATTTTAATTTCTAATTTTCTTCCCACCCAAAAGTTATTCTCCTTTTATCCT

TCAACAAAAATATCTCCAGGGAATTCCCTGGAGGTGCAGTGGTTAGGACTTTGAGCTTATACTGCAGGGGCACAGGG

TTGATCTTTGGTGAAAACTTAAGATCCTGGAGGCCACACGGTGGGGCCAAAGGAAAAAAACAAAATCTCCATCCTTT

ATATTTTCTCTGGCAGACAACACATGTCCTACTTGCTTTATATACTGAAATGTATCCCTTATCATTTTTACATATTA

CAATTTTTAACCCTTTAAAGCCTTAACAAAACTAAGAAACAAGTAGTTGAACTGTTATACCAGCATTTCTGATTCGC

AAACTTAAGAACATATTCCATAACCTCTAAAAACATAATTTTTTCTCATAGCACAATTTCTCTTTAATGTGGTACAA

TATGTGTATTTAATAATATGCATTTATTGTGTTTAAAGCTAAGCCCTCTTTCCTTTTTTCTTTTTGTTTAAAATTGT

ACTAAATAACCCAAGTCTGAAGTCTCAACGTGAGCTGTGTGTGTATTTCAAAGACAAGAGTTAACTTCAAGCTTTCT

CCTAAGCATATTTTTGTTTCTATCAGGGTCAGAATTGTGAAAAGAAAAAAAAAAGTTTTCTCTAATTACATATGCAA

AAATAAAAGACTTTCATCATAACCAATTTTTTTTGGAGTTTAAAGAACACTTGGTGGCCACCCAGTGTTTAAAAAAT

CTTTTTTTTTTCTTTAGTCATAGTTTCATAGCTAAAATCTTTCTAATGAATTGAACCTGAATTTTTCACTTTACAAA

GACAAGAATACCAATCACACAAACAGAATACACACTCACACACCAGAAAGAACTGTCATAAATCCCCTGAGAGGATG

ACGGATATGGAGTCCCAAATAAACACTTTCCAACACAAACAGTCCTCAACATCATACATACATCAGAACCAGTTGGC

AAAAATGCCAAAATAGCACTTCAAGCTCAAAAGAGAAGTTAGCCGGGTGCACACCTGTGGACTTACTGGGTCTGGGA

GCTCCTCAACTCATCCTGAGGTGTCTTTCCGTTCCACCAAGAAAGCGCATGTTGGCAGCCAGTGCCGAGCAGGGGAG

AAACAGGGAGGATCCCCGAAACAAATGGTTTTGGCAGCTGGTAGGAATGTCCCCCAAACCTCCTCCCCGGACCTGAG

AGCCATGAGCAATGGCTCCTTGAAGCTTTCCTGGCGCGTCTTCATGGTGGCAGCTTCCCTTGGGGAAAACCCCCAGG

AGGCAGGTGTTGCGAGAGCTCAGTCTCCCGTTGCGTCAAAATCTGTTAGCGAAAGTGGGTCCAGGTGCTCGGAGCTC

AAAAGCCAATAAGAGGCAAGGTTAGTGGAAAGGAAAGTTGTCTTTTTTTCAGATGTATGTATCCAAAGGGAGGGCAG

ACTCCCGCCCATAGGCCAACTCATTCCTCCTCCCACTGACAAGCAGTGAGCAAGAGCTTTTAAAGGGGATCTTCAGA

GTTGTATAGGTGTTAGGGAGGGGGCTACAGTCAGCTCTGACAGTCGCCTTGAAATTGACCATGCAGTGGTCTGACCA

GCATTTTGGGTGTTTGTTTCGCCGCACTGCTTATCTTGGGATCTTAGTTCCCTGACGAGCGATTGAGCATGGGCTCC

CTGTAGTGGAAGTGTGGAGTCCTAACCACTGGACCACCAGGAAATCCCTGACCAGTGTCATCTTGATTATTTTCAGT

ACAATTAATCTTCAGTTCTGGGGTCAGTTTGCTTCCATTTCCCTGGGGCCAGTTCGTGGAACTGTGGCATCTTATGT

CATGGCTAGAGTCTGGTCTTCATGTAGTTAACTTCTTCCACCTGGTGGGGGTTTCAGTGTCTACAACACAGCTCCAA

GGATATGGCTCAAATATTATCTAAAGCCCCTGAGAAGAAACTAAAGATCCTTGATTTTGCTTACTGACTTAAGTTAT

TATTATTTTATCCTACTGGATTGTTTTCCTTTGCTTCTGTATTTTCTTAGTTCTCTGATTAAACTTATCCTTTGGCT

AAAGGTTTTCTTCAGACAAAAGGCAGGCAGAAAGCATGGTGGCAGAAGGCCCATAGGGTCCTGCTCCTTTTCACTAC

TACATGCCCAGACTTTGTGCCAGGCACTAAGGATCCAAAAATGAAGAGAACTGGATGTGGTTCTTGCTCCCTTGGAA

CTTAAAGTCTGGGTGTGTGCTAGTCACTCATTCGTGTCCGACTCTGTGACCCCGTGGACTGCAGACCACCAGGCTCT

TCTATCCATGGGATTTTCCAGGCGAGAATACTGGAGTGGGTTGCCATGCCCTTCTTCGGGAGATCTTCCCAACCGAG

GGATCAAACCCAGGTCTCCTGCATTGCAGGCAGATTCTTTACCATCTGAGCCATGAGGGAAGCCCTCTTGCTCTCAT

GGAACTTAAAATCTAGCATACCCAAATCATATCATCACTCAAATTAAATGATACAATTGCAAATGCAACGGATGCTA

AGAAGAAATATAGAGGTTGACAATAATTGGGCATTTGACCATGTTAAGGTGGTTAGGGAACATGCTGGACAAGTGAA

CATGATGCTTGACAGAGAGGGGTTGAATAGGACTTAACATGGCAGAAAGGGGAGGGAAACATACGCCAGGCAGAGAA

GCCAGCATATGCCAAGGTTATGTGGTTACAGGGAAAAGTGGCCAAAGTGAAGAACTCATAGAGAACTCAACTGTATG

AAACACAGAGAAGAGGGAGTGTGGTTCAGAGAAGCAGCTGGAAAGTGGGTAGACACTAGATCGGGACAGGGTATTTA

ACCACATTATAGTTTTATCTTTCTTTTGAGAGCCACCAAAACAGAGTGACATGGCATGGTGGTGATGCAATGAGTTT

CTGTGACCCCGGGATGGATTGGGCTCAGGGAAACTGTCTAGGAGACGGGGTTGGTGGGAGACAAGATGGTAATGACA

GACTATTTGAGAGATGTTTGTAGTTAAATCCATAAAGAGGTAGTGACAGATTGGACAGAGGCATTTAAAGAGAAGGA

CATATCAGGTGACTCTCCGGTTCTAGGCGTGCTGCTAGGAAGATAACACCATTTACTGAAAGAAGAAATTTCAAAAG

AGGATTTGTGCTAGAAGAGCATGATCATGACTTTGGATGTGGACAGTTGAGTTAGGCCATGGGGAATAGCGGAGAGA

Page 84: MOLECULAR CHARACTERIZATION OF OVINE GM1

81

Appendix Figure 4 (cont.)

AGGTACTTGAGAAGGCTGTTGTATTTATGGGTGGATATTCGGAGGAGGGATCTGGGCTGGGAATATATGTATGAGAT

CATTTGTATATGGATGGTCATTGAAGACATGGCCAGTAGACAAGTTCCTCTAAGGAAAGATGATGTAGAAGGAAGAA

AGGGAGACACTGAGCTGATCTCTGAGAGACACAAACATGATGGAGAGTGAGGAGAGACCAAACAAATAGGAGGAGAA

CAGCATTATGCTGCCAAGAGGCAAGTGAGATGAAGACTGAAGCATCTCTGCTGGGTTTAGCACCAGGGGTCACAGGG

ACCCTCAGTAAGGGCTAAGCCAGTGGAGCAAACATTGCAAGCCAAACAGCCTTCTATTGAGGACTGAAGGGGGAGGA

GATGAACACATGAAAAATATAGATACTTGACGATAAACAATCTTCTTGAGAAGCTTGAAGGAGAAGAGGAAAAAAAT

ACTGGAAAAAAAGCTGCAAGAGAAGATGCGCATGTGAAAGTGAATGTTGCTCCGTCGTGTCCGACTCTTTGCCAGAA

TACTGGAATGGGTAGCCATTCCCTTCTCCAGGGGATCGTCCCAACCCAGGGATTGAACCCATGTCTCCTGCATTGCA

GGCAGATTATCTACCAGCTGAGCTACCAGGGAAGCTGAAGATGCACATGGCATGTGTTTAACAAGTGCCCTTTTATA

ATGTTTGATTTTTCCATATGTTTTCATTATCATTCTGTCTGAAATATTTTCTAATTTCCCTTAATAGCTCTTCTTTG

AACCATAAGTTATTTAAATATGCATTGTTTAATTTTCATATTTTGGTGGGTTTTTTTGGCCATACTGCACAGCTTTT

GGATCTTAGTTCCCTGACCAGGGATTGGACCCAGGCCCTCAGCATTGAATGCACACAGTCCTAAGCACTGGATCACC

AAGGAATTCTCTGTGTTTTTGTTTTTGTTTTAGAAAGCATTTATTTTTTTATTTCTAACTTAATTCTTCTATAAAAC

TTCTGGAAGAAGGAGAAAAATCTTCCTGATTTTGAGTTAGGCAAAAACTTCTTAGACTTGACACCTAATACATAATC

CTTAAAGGAAAAAATTCATGAATTGACTTTATCAAAATTGAAAATGTTTTCCCTTCAAAAGACATTATTTAAAAAAT

GAATATCCAAGCTTCAGATTGGCAGAAAATGTTTTCAATGCATATATCTGACAAAGGACTTATATAGAATATATAAA

GAATTCTTATAACTTAGTAATAGAAAGATAACCAAACCCACTCAAAAAATGGACAAAGGACTTGCATGGACTTTTCA

CCAAAGAAGATAAGTATGTGAAAAGATGCTTAATGCTTTTAGGAAGTGCCAATCATTAAGGAAATGCAAATCAACCA

CAATGAAATACCACTTCACACCCACTAAAATGGCTATAATATTAAAAGATGGACAAGAACAAATGTTGGCAGGGATA

TGGAGAAATGGGAACCCTCCTACATTGCTAGTGGAAATGTAAAATAGTACAAACACTTTGTAACACAGTTTGGCAGT

TTCTTCAATTTCTCCTAAAATTACCATAGGATTCTTCAATTCTACTCCCAGCTGTTTCCAAGAGAAATGAAAACATG

TGTCTACACAAAGAGTTACATGCAAATGTTCATAGTAGCATTATCAAAATAACCAAGAGTTGGAAATAATTCAAAAT

GTCCATCAACTGATAAGTAGAGAAATAAACTATGGAATATCCATACAAGGGAATGATATTCCACAATAAAAAGGGGC

AGACTACTGATACAGGTACATCATGGATAAATCTGAAAAACATTATGCTAAGTAAAAGCTGCTGCTGCTGCTAAGTT

GCTTCAGTAGTGTCCAACTCTTCAAGACCCCATGGACTATAGGCTCCTCCATCCATGGGATTTTTCAGGCAAGAGTA

CTGCAGTGGGTTGCCATTTCCTTCTTCAAGGGATTTTGCAGGGAGGAAGCCAATTCTGACTCCATGTTCAAAATTGT

TTCTTTGACTTGATTTTCATCGCTTTATTATTATAATCATACTCAATGGCCTCCCTGGAGGACCCTGCCCCTCTGCT

TGACAGGAAAGTGCCTTTGTTCAACTCTTGGAGAGACAGTTTGTCCCTGCCCACCTGTGAATAGAGATTAACACACC

CCATCCAAAGGCTGACCATTCCCTTGGAGGTGTTTTGCAAGACTGAAGACCCTTAAGTAAAAGCAGCCAATCATAAA

AGACCGCATATTGTGTGATCCCATTTGTCTGAATTCTTCAGAAAAGGCCAATCTATACAGCCAAAAAGTAAATGAAT

GGCTGCCTAGGACTTAGGGTGGGAATAGAGAGTGACTGAAAATGGGTATGGGGTTTCTTTTTGGAGTGATGGAAATG

TCCCCAAATTAAATTGTGGTGATGGTTGCAAAATCTTCTTAAATTTATTGAGACTTGGTTTATTGCCCAAGCATGTA

TTTCCTGGTGAACATACTTCTGTAATTTTAAGCTCTACCATCCTCTCTCCCAGAGGAGATGGCACCCCACTCCAGTA

CTCTTGCCTGGAGAATCCCACGGATGGAGGAGCCTGGTGGGCTGCAGTCCATGGGGTCTCGAAGAGTCGGACACTAC

TGAGCGACTTCACTTTCACTTTTCACTTTCATGCACTGGAGAAGGAAATGGCAACCCACTCCAGTGTTCTTGCCTGG

AGAATCCCAAGAAGGGGGGGAGCCTGGTCGGCTGCCGTCTACGGGGTCACACAGAGTTGGACATGACTGACGTGACT

TAGCAACAATCCTCTCTCTGGCCGTATGTTTCTATCCCTCAAAACTCTCAAGGCTCCCAGGTCTACTCTTGGATCCT

GTGGATGACCTGAAACTCCACCATCAGGGCCACAGTTCTTCCCTATCCTGCCTAGACGACACCACCATTTTTTTTTT

TCCTTAGGAGCCCTCAATCCCCTGGCCCCCTTGCCCTTCCACTCCTTGTTTAGGCTCACTGNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTCGCTTCAGTCGTGTCCAACTCAGTTCATCGGTAA

CTGAGGACCCCAGGTGTGGCCTCTGGCATATTCGTCCCCTCACTGTCTCCAAACTCTGGAGGTCCCAAGCTGCCCGG

CAGTCCTTGGCCTTAGTCTTCCCTATCCACAGCTGGCCTCTAACTCTCACCACCTCCCTTACACCACCTGCCTCCTC

CACTGAGGACTCACCCTACTTGACGCTATCAGGTGAGATCCTTTGTTCCTCAGCTTCCTGTCAGACTTACAGGACTT

CCTGCCTCCACCCTCACTTCCTGCCCAGTGGCCTCTAGAAGGAAGTGCGAGCTCCAAACCCCCTCCCCACCTTCTTC

CTCCAGGCCGAGATCCTGTTCTCTCTCTTCCTCCTCCTGCACTTTGTCAGCTTCTCCATCTCTCCAACTCCTGTCCG

CTGGGACCCGGAAACGAAGTATAGCCTGACCCGGATGCTCCCAGTGGATTGCGCATGCTCATTCTTTTCTCCCTCCC

TCTTCCTCGCCCCGCCCTTCCGCCACGTCCCCCTCCCCCGTTACTGCCCCCTCTTCTCCCTCTTGGTGTCCTCTCTT

CACTCTTTTTCATTCCCTTTCTGTGCCCACTGGGTCTTCACAACTTCAAGGCTGGCATTAACTCCTGTCTGAAACCT

TCCTGCACCCTTTGTCCCCTTTGATACCCCTGGAGCCCAGTCTGGACTCAGCACCCGTGGCACTTTGTCACTCAAGC

TGGCGCCCCAGTTTCACCGCTGAGCGATAAGTTTCACGAGGGGGCATTTTTTTTAAGTGCCTGGTTTATTTGGCCTC

CTCCCTGGGCCTGGTTGCTCTGTAACTGCCTCCAGGTGGAAGGGGGGACTTGCTTCTGTTGCTAGGTCCCTTTCAAG

AAACCTCTTGGCGGTGAGTTTGGAGGTGAGTGGAGTGCAGGCCTTCCGAGGGTCCCGTTGGTGAAGAGAGGCTTGGC

TGTTGCTGGAGGACCAAGGCCCACGAGAAGACCCAACACAAACGGTGGCTTTCACCAGGTGGCATCAGTTCCGTGGC

TTAGAGAAAGAACCTTCAAGAGATGAAACGCATAAAGACAGCATTATCTTTCCCAGGAGCTATGAGAAGGGCTGAGG

Page 85: MOLECULAR CHARACTERIZATION OF OVINE GM1

82

Appendix Figure 4 (cont.)

GCTCAAATGGAGCCTGAAACACACCCAAAGGATGGATAGTCCTTCATCAGAATCAGAGGTTATGTCAGGGAGGGAAC

TTAAAGTGAAAGAATAGTAGATACAAAGGAAAAAAATAAATGGAAAAGCATAGCATGTTTTTGGAGGTCAAAGGGGT

TCACCTTGGCCCGGTCATGGAAATGTCACACCCAAGAGTTACTGACCCAGGCATTTTGCTCAGCACTTAGGAAACAC

TATCTTTATAATCATCAAAGGAGGCCCCTGTGGTAGGATGTCCTGGTAGTGTCTTCAGTTTGCAGATGAGCAGATAG

AGGTTCAAAGACCTCAGTATCTGGCATGAGGTACAGACATGCTGGTGGAAAGGCTCCCCAGCCCTAGGTCTGTCTGA

CTTGGAGGCCCAGATGAAAAGGCTGGCAGCATGTACAGGGCCTCGAAGGCCAGGGGGAGCTTGTACTAATGATCCAG

GCAGAAGCTCTTCACTTTCTTAGTCTGATGGGTTTTCTGCACCTTTATGCTTGAAAAGTTCATGTACAGGACTCGCC

TGGTGGTGCAGTGGATAAGAATCCACTTGCCAGTGCAGGGGACACGGGTTCCATCCCTGGGAAGATTCTGCATGCCG

TGGAGCCATGAAGCCCGTGAGCCACAACTACTGAGCCCACACTCCAGAGCCCACTGGGCTCCGAAGCAAGAGAAGCC

ACTGCAATGAGAAGCTCCTGGACAGTAACGAAGAGTAGCCCCACAGCCCCCCTCGCCACAACTAGAGAAAGCCCACA

CAAAGCAACCAAGAGCCAGTGCAGTCAAAAGTTAAAAAAAAAAAAAATTAATCTTAAAGTACATGTGCGCACAATAT

TTATGAATGTGTCAGGGTGTTTAGAACCCAAGAAACTGATCTAATTCATATGTCTGATCAAAAACTAGTATGCAGGG

GAACTAAGATCCCACATGCTGCATGGTTCAGCCAAAAATAAAGGTAAAAACTGGTATACAGATGTACAGAGCAGTAT

TACCCAGAATTATCCAAAATCAACTAAAAGGTCAAAAAACCCAAGTGCCCATCAACTAATAATGAATAAACAAACTA

TGGCCTATCTGTTTAATGGAAAATTATTTGGCAGTAAAAACGAATGAACAGGACTTTCCTGGTGGCTCAGTGGTAAA

GAATCCGCCTGCCAATGCAAGAGGCACGGGTTCGAGCCCTGATCTGGGAAGATCCCACACGCTTCAGAGCGACTAAG

CCCGTGCACCACGACTATTGGAGCCTGTGCACCCTGGAGCCCTTGCTCCACAAGAGAAGTCACCACAGTGAGAAGCC

TACACACCACAACTGGAAAGTAGCCCCTGCTCACCACAACTAGAGAAAAGTCCGCACAGCAGTGTTAATACATAAAA

ATGCTAAAAAGACGAATGACATGGATGAACCTTGAAAACATGTTCTGTGAAAGAAGCTAGTCACAAACCATATAAAC

CATGTGATACCATGTATGTGAAATGTCCGGAACAGGCAGATCTATAGACCCAGGAAGATTAGTGGTTGCCTAGAGAA

GGGAAAAGGGGGTATTGAGGGAAAATGGGGGTGGGGAGCAGATACTGAAGACTGAAGAGTTTTTCTTTGGTTGGATT

GCTCTTTAGTAAACTAATAACCTCTGAGTTGCATACTTGAAGTGAGGGAGTTGTATAGTATGTGAATTACATCTCAG

TAAAGCTATACCTACACACACACACACACACACACACACNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCGATTTCTGTTCTATTCTGGCGAGC

GGTGGTCCCTATTGCCATGGACCGTCCATACCAGCTCCTGAGGTTCTGAGCAATCGGCAGACGCACGGCAGACAGAT

CACACCCCCGCTCTCCGGGCACGGAGTTCTGAGTTTGGGAGGATGCGCACTTCAGCAGATCAGGGGGATGCAGAGGG

GTTGGACCACCCAAAGCGTGGGCGGTTTCTAAGACTCTGCCTATCGGCACCAAACCCTCTGTATCCTTCAGCTGGGA

GGCCCTGTCGAGGCCCCTGTTCTGGCCCTTTGACTTCTGCCATTCACTTGTTATAGAGAAACTACTTTGATGGGGTG

AATGAAGTCACTGATAAAGAGATTCAGGAGATTAAAAAAAGTCACTTCTGATTAATCGGCCGTACTTGAGTCGGATG

TGGCTTTCTGGTTAAATGCCCGAACGTCAACTGGGATTTCTTTGGGAAGTGGTCTGACATGTTTGGCTTCATCCAAG

AGACACAGACCAGCGCTTGGTCTGCACAGAACTCTCGTCAGACCACAAACTCCCCACAGTGAGCATTGCTCCTCAGT

GATCCAGTGTGCCAGGTGGGCCAGACCTAAAACCCTTACTCTGTCTCGGCAGTGACGTGTGTGCTGTTTCTCTCTCC

TTCAGATGCATGTGGAGGACACCACATGAATATCCTCTGTAGACTTCCTGCACTTTTTACCACTTGCACTAGGTCTG

GATGCTTAGCAGAGCCTGGGGGTGAGAGGGCTGGGATAACTTCCAGTTTTTCCTCTACCAGAATTAAGCTTTGAACA

TTAAGAAGCAACATAGAGGGACCTCCCTTGTGGTCCAGTGGTTAGAACTCCAAGCTTCCACTGCTAGGGTCACAGGT

TCGATCCCAGGTCAGGGAACTAAGACACCAAATGCTGGTGACCAAAAGAAATCAACATTGAATATAGATGAAAAGCA

AGAAGCTGTAAAAGAACCAGGGATAAAAGAGTTTATAATGAAGGTTTGATAATTATCTTCTGTTTGGAGACTCTTTT

TGAATCTTGCTTTTGAAATTTCCAGCTCTCTAATCATTTGGTCTTTCTGGTGATCAGTCCTATCCTGAGGCTATCCT

AGTCACCAGAAGACAATGTGATTAGACATTGGAACTTTCAGCCCATCCTTCCTCAACCTCTGGAGTTAGGGTCAGGG

ACTGGAAATGGAATTCTATTAAAAAAAAAAACAAACTTTAGAACAACAAGATTCAAGGAGCTTTTGGGTCGGTGAAC

ACTTCCAGATGCTGAGAGCTTACACCTGGGCGGGAGGTACACAAGGAGACGGCTGGCAGCTCAATCCCACACCCCTA

ATACCTTGCCCTGTGAATCTTTTTCGTCTGGCTATTTCTGAGTTGTATTCTTTATAATAACCCCATAGATATCTGTA

AAGTGTTTTTCTGCATTCTGTGAGCCATTCTAGGACATTATTGAATCTGAGGAGGGGCTCACGGGAATCCCCAACTC

GTTGTTCAGAACTAGGACTCCAGAGTTTGGAGCCTACACATGTGGAGGTATGGCACTGTCAGCCTCTGAGGAGGACA

ACCCAGGAGCACGGTGGGGGCCAGAGGCCACTCCAGTGCTTGCTGCTCATTCAGGAAGAGCTGTCCGCTCTTGGTCA

TCACAGGGGGTGGCCATGAAGTCTGGAAGGCAGCAAAAAAGGGAAGCTGCATTCAGCACAATGAAATTGTGTCATCT

CTGTTTCCAGACCTGATGGCCATCTTCTAGATGGCCCATCAATCGAGTCTCTATGGATAATTCTGTACGGGTTGCGG

GGGCCGGGCTGTATGAGGCAAGTTCTGGGGAGACTTCAGCATTGATGGGAATGCAGCGGGAAGGTGCCTGTTCAGGA

AAAGACTCAGCCTGTAGAGTGGACGGCAGTGGGCAGGAACTCTGCTCCCATGCTCCTCCGAAGCTGTCCCCACTGAG

ACCACCGGCACCCACATGGTGACATGCTCCCCAGACATGTCTCACTTAACTTCTTGGCAAGTAACATCTGACACAGA

TGACCACTCCCTCCCTTGAAGCTCTCCTGATGCCTATGACCAAGCTTCTGCTTTCCTACCCTGTCTTCATTCCTTCT

CAGGCTTTCCTTTCTCTGTGTTTCAGTTCTCAGGACCTGATTCAGGGCCCTCTGCTTACACTTTGAGGGGAGTTCAT

Page 86: MOLECULAR CHARACTERIZATION OF OVINE GM1

83

Appendix Figure 4 (cont.)

CCCCACAGATGTAACACCTTGATTTCCAGCTCATCATTTTTGAGGGCGGGGAAAACCACATCCAACCACCGGGATGG

ACTGACCACTGGAGCCTCAGAGGCACCTCTCGTCTGATACATATAAGACAGACCCTTCTTCCTCATTCCCCCAACAC

TTGCTTTTCAGCAAGAGAAGTGGTCCAGGGACAAGGAAGGAAGCTGGACTTTAGCACAGCAGAGAGGATGAAAAAGG

GGCCCAGCTGCGGGAAACAATACCAGCAGTCTTGCTGTGGAGAGCTCCCTGCGCACCAGCCACCGTGCTGAGTGCTC

ACCTGAGTCCTCTCACTTACTTACAATACCCCTGAGAGAGGTACAGATACGGCAGAGGTGGGGACTTGGAGATGGAT

GGGATCTGGAGGCTAATTGGTGAAAGAGGAGCTTACTAGTAGAGGATAACCCTACTCTTGTGAAATCGGGTTCAATG

ACGTCATTTACTTTACTGAAAAGTAGCATGCTGGTGTACATTGATGCCATGGAGTTGTGTTATCAGTTAGCTTTCGC

TGTCTAAAAAACCACCCCAAGCTTAGTGGTTTCAAACAGCAACCTTGTATTTAGCTCCTGATTGGGAGTGTTGGCAG

ACTGGGTTGTGGTTCCGCTGGTCTTGGCTGGGCAAGCCCTTCTAGTCGGTGAGGAGGCCCTCGTCTTGGGGCTTGGC

TGGCTGTCTGCTGAGGCCGTACAGATCGGTCTGTGTCTCTCTCATCATCTAGCAAGCCAATCTGGGCTTGCTCATAG

GATGACTGGCAGTGTCCAAAGAAAAAAATGCAGATGTGCAAGGGTTCTTAAGACCCAAGTCAGAATTCACGTGTGAC

TTCTTCCATGTTCTTTGCCCAACACTTGACCAGCCCCATCCAAGATTCTACTTCCTGAGTGCATATGCTGTGAAAAG

TTGTGGGCATTTCTGCAGCCTGCCACGAAGTCTTAGCCCTGTTTGACCCTACTTTCATTCTGAATTTGACATGCTTT

TTCAACTCTTTTGGCCTGATTTACAGTTATCCTACCCCTAACAAAGTTTACTATTTCCACTTTATTCATTGTTTCTG

ATCACAAGTCCTGTGAACTTGGAAACTAGATAGACACCTTTGCCCAAATGTGTATTAATTTAGTAACAAGGCTTGTA

AGAATTGTATACCAACAGGAGTAAATGGGCTCTGAGTAAAGGAGAATCTCCTTCAAATTATAGTGCATGGACTCTGC

AACAAATAGTGTATGGCTGCCTAGAGACGGTTTTCGCTTACCAATTCTTAGCTTCATTCCAGGAGTGTGAAGACACA

TGGGAAAGTCATAGGGGAGATGCTCCATAAAAAGATCAGGCAATGGTGGCACCCAGGGGGAGTTGAAAAGGAAGGAA

TGGGTTTCTGAGAGCAGGAAGTGACTCATCTTTTATGTTAATATTCTGTGTTTTCGTGGCTTCGATTCTATCTGGGT

CTGTCCTAAAATACAGAGACATCATAAACTTTTTACTCTAAGACAAAGGAAGAAGGAAAGGATTTGCATCAGCTGCA

GACTTGGGGTCTGAAGGAAGGGGAGATTTTGGTTTTCTCCTGTGTGAAGGTTTATGTAACATCTTATCTCTCACTCT

TTTACTTTTTTTCTTTGTTTTTTCCTCCCAAGTTAGCACCATAAATACTCATGAATCATGCATGTGAGAACCTTGTA

ACCTTGAGAAATGGACTTTTCAGTCTTCCAAGTATCAAATGTCTTCTTCCAGAGTAGAACAGAGTCAATGTTCAACC

CAAGTGTGGTGTTGTTAAAGGAACTCCTGACCACATTTGAAAATGTTGAAGCTATGACTTAAACCAGGATTGAATCT

TTTGTTTTACATTCTTCTCAGAGGGTTCTATTTATCTGGGGAATTGAAAACATGTCTGTCTGTCTGATTAACACAGA

AGCAAGTCAGTCACTGCCAGGAACCTGTCATTCACTGGAACTGTTACCACCTTGGTGATAATATTTAGCAGAGAGTG

GGGAGTCTGTCAGGGGTCAAGCCACAGTCAGAGAAAGTCAGCATTTGTCATGGAGATGTTTCAGCTGGGACAACCCG

GGGAAACTCTGCAGCCATCGGTGTTCACTCTACAGATGCTCAGCCTTAGTATGTATTAATACTTAACTGTGTTGATT

AAGAGTGTGTCTACTTTTAGGAATTTTCCTGGAGGTCCAATGGTTGGGACTCAAAGCTTGCGCCWCAAGCGGCACAG

GTGCCATTCGCAATTTTTATGGCGAGGGCCAAAGGAAAAAAAGGGGTTACGTCCATTTTGCGATCACATGGACCGAG

TCTCCCCCCACAAATACTTTGGGCATAAAAAAAAGAAAAAAAAAAGATTTTGTTTTTTTTTTGATTACTATGGGTAT

TTTTTTCCCCCCCCCTTAAATTTTGCCTAATTTTTTTAGAGAAACAAAAATTTTAAAGGGGAAAAAAAAAAAAAAAA

ATTTTTAAAAGTTTTTTTTTTCAGTTTGACTTTTTTAAAGGGATTTTTTTTTTTTTTGGCTGCGCTGGATCTTAGTT

ACCAGCGCAGCTAGTTTCTCTTGGTTAGTTAGTTTCTCTAACCGTCTTAGTTAGTTTCTCTAGTTGCGCTCTAGCAG

CACTGCGCCGGCTTCTCATTGCGGCGACGCCTCTTGTTGCAGAGCATAGGCTCTAGAGCGTGGCCTTCAGAAGTTGT

GGACACGGGTTCAGTTGCTCACAGCATGCGGGATCTTCCCAGACCTGGGATTGAACCCACGTCCCCTTCATTGGCAG

GCGGATTCTTAATCACTGGACCACCAGGGAAGTCCTAAACTGATTATTTTTTGCGGTAAAAAATTGTGGTTTAAAAA

ACTCACAGTGTTAATCAAGGGAGCAGGGAAGTGCTGCGTTGTTCTGCCTGTGGGCAGTAGTCCCTAAAATTCTTAAG

CTGGGAGGGGAGGGACAGGAGTATTCTTGAAGTGGGACTGGGCATTTGCCCGGGCAGAATCGTCCACGAGTCCTACC

TCCTGGGTGTCGTGGGTGTGTATCGTATGTCTCGCTGCTGGAAACAGCTGCTAAAGCAGTAGTGAAACAAGTGACTG

CATGTGCAAACAATGCCAGTAACTAGAAGAACAATATCAAAGGGCAAGCGCGTGGCTGGGAATGGAAGGCCCAGGAC

TGAGGAGGGTGACATGACTTTCTCTCTGTGGAGGTGGTGATGGGGTGGATGCTTGAGGGGTCCGAAGGCTTGGAGTG

TGGGGGATAGCCTTTGAGGCTCGGGGTGAAGCACGGGGCACAGGTGAGTGAGCTTGGGGTGGGCAGGAGGAAAGCAG

GGAGCTGACCACAAGGGCGAGAGGACCGAGGCATATGCCCGTGGGCCACATACGGAGCTTAGAAGCAGGACCTCGTG

AGAACTGTTTGATGTTCATGTGGCTGCTACGTGGAGCCTGGGATCTAGAGTTAGAGGACGTAGGGGGACCTGCCCAG

GCGGCAGGGGGTGGGGGCTCCAAGCTCCTGAGCCAACGCTGCCCGGAATGTGTCTGAAGACCTGGCTGGGAAAGTAG

AGGGGAGCAGGGAGATGGGTCTGACGATGGAGTGCTGGGCATTCACCCCACCTCTGCTGAGCTGCTCAGCACAACAG

TCACCGGGCACCTGCTATTTTACATTTACCTTTGAATTAATTCAAAGTGAAAACTTAGTTCCTCCCTTGCACCAGCC

ACTGGTAAGTGCAGGTAGCTACCCTGTGGAGCAGCACAAGCCCTCCATCTCTGTGCACAGTTCTGTTGACCAGCAGG

GCCTCAGAACTCTGTACCGTGACCTGTGCTCTCCGAATCCTTCATTCCTCCGGGTTGGAAGGGCAACCAAACTGTCA

TAGGCATCCCTGAACGCCCATTCTGTTCAGGACGGAGAGTAGAGGGAAACTGTCCTGAAGACTTTCCTTGCTTTGGA

GAATTAACCAAAATCAAAGAACTCGCCTGCAATGTAGGAGACACCGGTTCGATTCCTGGCTCAGGAAGATCCCCTGG

AGAAGGAAATGGGAATCCACTGCAGTATTCTTGCCTGGAGAATTCCATGGAGAAGCCTGGTGGGCTACAGAATGACC

CTACAGCACGGGGTCACAAAACAGTTGGACACGACGTAGCGACTAACCACCAACAGCAAAGATCCTGTAACCCTGAA

TTTGGGGAAGGTTGGAGAGAAGGTGCCAGGCACGATATCTACATGTTAGAGTCACTTAGGTGAGTAAGGAGGCAGAA

Page 87: MOLECULAR CHARACTERIZATION OF OVINE GM1

84

Appendix Figure 4 (cont.)

TGCAGATGGGAGCTGAAGGGTCCAAATGGGTGATAATTTGGGAGAGAAAAGATAGCTTAAACAGATGGTGCAAAACC

AGGAGGATCAGAAGAAAAATTACATCTACTTTGATGAGCAACTAGGAGTGACAGTTAGGGGTTACTGAGGGCACCAA

GGGCAAGCTGAGCCCATAGGTGCCAGTCCCTCGTCTACCCGTGCAAACCCCTGACAGTGGCCCAGCTCCCCTGCCAC

CTTCCAGTGTCAAGCAAGGTGCTCCTGGGGTCCCAGCCCACTGCGCCAGGTGAATTGCACCCCCCAACCCTGGAGGA

AGCTGGGGGGAGTCTTTTCCCACCCAGCTCCCCAGTCCCAACAACCAACACAGGAGACCAGCTCCGTGCAGCGGGAG

AGGTGTTGGAGGGGCAGCATCTTGGGAGGGACTGGTCCTCGGTGTGGCCAGGATGCAAGGTGGAGCCGGGGTGGCCC

ACACGTGGTGCTCACAGCGCTCTCCCTCGCTTCCTTGGAGCCCATCTCCCCCCACCCCGACTGCAGAGTCGGCCTCT

GCCGTTCTCTAACTTGGCGGAAGCGGGGCGCCACCAGATCTTCAATGTGATAAACCCTGGTGAAGCTGACGGTTGCG

TGTACCTTCAGCATGGATCGAGACAGCATATCCCGTGGTAAAAACAAGAGTAAAATAATTCTGAGAAGTGTGAAACT

GTCATCCTTTTTCTAAATGACTTATCCCAACAGACAGGTGGCTTTCCATCACTGGCTTCCTTTCAAGGGGCCGTGGA

GGCCAAGGTCTTTTCACTGGGTGGCATGAGGGGTGCAGCCACACCATGCTGACCACGCCCGGCTTCCTCCTGCCTGC

CACCCATCCCCGGGTACCAGTGGGAGTGGGGACCTGCCCAAGGTCACATAGGCAGGAGGCGGCAGGAATAAGGTTGG

AAGCCAGGTGGGAAGCTCGCATCCAGGGGCCACCTGGGGGCTGAAAATTACCCAAAGGTGAGAACTGAGTAGGTAGC

TCCAGGGTGAGCACCCAGAGCTGGGTTCAGGTCTGGGCTCCAGGGGGCAACTGGGGCGGGACCTCTCCAGGATGTAT

CCCCAAGACATTAGGGGCCAATTTTGGTGCTTCTTCCTCCCTCCCATCCTCTCCCAGGTATCCTTTCTCCCTCTAGT

GTGTGACCTCCTCTCCTTTGCTCCCTTGCTTTCTCTGTAACAGAATGGTCCATCTGTCACATCAACTGCTAAGTCTC

ACCGGACAGCAAATTCTAGCTCCTGCCGTCACGCTGTGCAGACACACCCGGGCCCAGTCCCCATTCCTGAGAACTTT

CTCCTCCTTCTGGGTTTTGCAGAGGAAGCAGCTTTTCCTACTCCTAAGTGTCGGGCACGACTGAGCGACTTCACTTT

CCCTTTTCACTTTCATGCATTGGAGAAGGCAATGGCAACCCACTCCAGTGTTCTTGCCTGGAGAATCCCAGGGCCGG

GGGAGCCTGGTGGGCTGCCATCTATGGGGTCGCACAGAGTCAGACACGACTGAAGCGACTTAGCAGCAGCAGCAGAA

GTCTTCGCAGCTTGTAGGATCCTCTGTGCTCCTTGAAGCAAGTCCTCACCCCTCACTCTTATGCTGGTGTGAAAACC

ATCAAAAGGCAGCAAGAAGGTAGACGCCCACCTGGGCAGCCAGCCTCTCCCTCCTCGACCCCCTCTATCTTTCCAGA

GGAAGCATGTGTCTGGGCTGCTGGGCTCCTGCTTACCTGGGGCAGCAAGACCCCTACAGCCTGGAGGAGGGGGGAGC

ACAGAGGCAAAGCTCGTCTCCTGAGGAGGCAGGGAGGCGACTGTGTACAGAGGCCTCGGGCAGAGGCGGGTGTGTGC

AGACAGGCACCCCCACCCCCACATCGCACCGTACCCAGGACAGAATTCGGAAACTTGGTGACTGCCGCAGCGTCATC

CAGTCCTGACCTGCGCGGCACCGAAGCCACAGGAGGGACCGAACACGTCTCCTGTGAAGCAGGGTGGGTACTGGGAT

GAGTGGATTCTCTCATCCAACTCCTGCCCGACTTGAGCATCTTCCTGGGGACACTGCCTGCTTCCCCACCCCACCCC

CCCCGACCAAGGTTCTCATGCCCCTCAGAAGGGTCAACACAGCTGAGTTGATGGTTTTCTCTCTCTCCAGGGTCAGG

TGTGGATCAACGGCTTTAACCTCGGCCGCTACTGGCCAGTGCAGGGCCCCCAGATGACCCTGTTCGTGCCTCAGCAC

ATCCTGGTGACTTCGACCCCAAACATCATCGTGGTGCTGGAGCTGGAGTATGCGCCCTGCCAGGACGGTGACCCGGA

ACTATGCACCGTGGAGTTCGTGGACAAGCCGGTTTTTCGCACAGTCTAGACCCACAGACATGCAAACTAGGAGCAAG

ACTCATGGCCGACTCCCTGGGACAAAGACTGTGACCCTTCAGAGTTCCAGCCTTGCACATACCTCATCTGCCACTCG

GAAGGCCAGCATTCACTTCTGATTGGAAGATGGGCTAGGCGTGTGCTTACCTAGGTTTCCCTGGCGCCCGGCGGTGC

CTGACACACCCCGTCCAGGCTGCGTGGTCATGGGGCGGGGCTGGTAGCCCAGCAACACAGAGGCATCCACAGGGTTG

GAAGGGAAGCATTTGAAGTTTTTCTGATTTTTATTTTGTTAAGAATCATGTAGCCTTTTTATTAAATAAAATTTGTA

TTCAAATGATCTTACTGTTTTTAATGTTGAGCAGGTATTAAATTATAGCTTCTGATTTAAATCATAACTAGACTTGA

GTGGGCTGAATAAGCCACTTCACTAAGTTGAGGTTGGTTCAAAGGAGTGGAAAATAGTCTTGTTTTGATCTAGTGGA

CCATTGCTTTTCTGATCTTTGACTTCCTTTAGAATTTCTGTGCTACCCACCAGGAGAGCTCATAAACACAGCCCCAA

ATGATTATGCAGACCAGCAGCAGTGGGAAAGCATAGATGGGGTGGGAGACCCCAGAGCCGCTAAGATGCAGATGGAG

ATCTGTACTTATTTACTTGAAAATATCTTCACGGTAAGTGGTGTGGAAAAAGCATTTGCCCTAAGTTGGATCCTGTG

TTGTCGGTTTGGACAGAAGAGCTGCACACACGCACACACTCAGGCCAGGCCTGTCCACCTGTCAACAGACAGGGGCA

CACATGTGGACGTGCAGAACCCGGCAACTGTGGGAGACGCTCTTCCTGCTCCAGGCGTCCTGATCTCACACCGTAAG

CACTGTCCTCCACCATGTCCAGTTCTGAGCATATTGTGTATTTAATCCGCTCGTCCCTCCCCAGAACTCAGAGGAGC

TTACTGTCCTCTTCCCTGATTTACCGGGTCGTGTGTCTACATACTGGTCTTCCCTGGTAGCTCAGGTGGTAAAGAGT

CTGCCTGCAATGCGGGAGACCCAGGCTTGATTCCTGGGCCGGGAAAATCCTCTGGAGAAGGAAATGGCAACCCACTC

CAGTATTCTTGTCTGGACAGTCCCGTAGATGGAGGAGCCTGGCAGGCTACAGTTCGTGGGGTCTCAAAGAGTTGGAC

ATGACTGAGCGACTAACGCGTTCGCTTCACATCTGCACATTGTGGAGACGTGGTCTGAAGCCCAGTCCTCTGGCTCT

GGTGTGGCACCTGTCTTATATTGACACGTGCTCATGTTCCCAGAGGAGAAGACTAGTGAGAGAAACGGAAATGTTGG

CATGAGCATATCTGGGGGCAGGGGATGCAGATTAGATTTCACATGCTGCAGAGCAACTGCTGAGCTCACGCCCAGCT

AACGAGCCCACACACCCTAGACCCTGTGCTCCACAGCAAGAGAAGCTGCTGGAGTGAGAAACCCACACACCGCACTA

GAGAGGAGACCCGCTCATGCAACTAGAGAGAGCCTGCGCACAGCAACGAAGACCAGCACAGCCAAAATCAAGTAAAT

AAATAAAAATTTTAAAAATATATGCACATATCTGGGTGGTGGGTGTGAGAGGTTGTTTACAATTTCTTTTTTTGCTT

ACCTGTATTTTAGATTCTGTGCAGAGATGAGGTCCACTTTCTTAAGAGAGGAAGAAAGATGTCTGTTGCTAACCAAC

AGCATCTTTTTACAGGAGTGTGTTTCTCTGTCTCCCAGACATCAGTGATGACCGGGAGTCCGGGAACTCTGCAGGAG

GCATGTATGTGCTGAAAAAAATAGCCCAGACCCGGACTGAGGGGTGTCTCCGTAGCATCTTCTGCTGGATGTCCCGC

Page 88: MOLECULAR CHARACTERIZATION OF OVINE GM1

85

Appendix Figure 4 (cont.)

ATCCTCTGGGTGTTGGGCAGAGTGCAGGCACTGCTCCCTGCGCCTAAGCCTCAGTGCATCCCTCTTCCTTCCACTAA

GTTCCTGAACAATGAGAAAGTGATGCTCAAGAGCTGTACCTTGTGACATGCTCTGGGGAGACGAGAGACTAAAGCCT

TGCGTGCGTTGGTCCCCTGCACATCCCCCGTCCCAGAGAGTCCCTGTTGTGGCGTCTCCAGAGGCTCGGGCCCTGGA

GTGAAACCGCCTCGGCAGAGTGTTTCCCTTCCATTGCCTTCCCTGGTTCCCCTCATCCAGCCTTCAGAACCGCACCC

CACAGGTGGCAGTGGAGAGCCCGCTTCACGGATGAAAACGTTTAAACTTCAGGGAGAGGTGGAACTGGATTCCAATC

TGGTCTGTCTCCACCGAAAGTCAGAGTGTTTTCTTTGTTTGTGTGAGGGAGTCTTTGGGGGTTCTCCCCCTTGTCCA

GGGTGCTATGTTCTGGAAAACAATCTTTTTGAATTTTTAAATTAATTTTTATTGGAGTATAGTTGCTTTACAATGCT

GTGTGTGTTTCTGCTGTCAAGTGAATTAGCTCTACATATATCCCCTCTTTTTCAGACTTCCTTCCCATTTAGATCAC

TCTAGGAGAAGGCAATGGCACCCCACTCCAGTACTCTTGGCTGGAAAATCCTATGGACAGAGGAGCCCGATGGGCTG

CAGTCCATGGGGTCGCTAAGAGTCGGACACGACTGAGCGACTTCACTTTCACTTTTCACTTTCATGCATTGGAGAAG

GAAATGGCAACCCACTCCAGTGTTCTTGCCTGGAGAATCCCAGGGACGGGGGAGCCGGTGGGCTGCCATCCATGGGA

TCACACAGAGTCGGACACGACTGACTCGACGCAGCAGCAGCAGCAGCAGCAGCAGCAGAGCTCTGACTGTGCTGTAC

AGTAGGTTCTCATCACTTAACTACTTTATACATAGTATCGATAATGTATATAGTTCAATCCCAAGCTCCCAATTCAT

CCCGCTGCCTTCCCTCCCCCTTACCTCTGGTATCCATACATGTGTTCTCTATATCCGTGTCTTCTATTGCTGCTTTG

CCAATAAGTTCATCTGTACCATTTTTCTAGATTCCACAAATAAGCGACATTCTACGACATTTGTTTTCCTCTGACTT

TCTTCACTCTGTATGGCAGTCTCCAGGTCCATCAATGTCACTGCAAACTGCATGATGTCATTTCTTTTGATGACTAA

GTGGTATTCCGTTGTATTTCCGTAGCGCATCTTTATCCATTCATCTGTTAATGGATATTTAGGTTGCTTCCTTGTCT

TGGCTATTGTAAAGAGTGCCGCAATGAATATTGAGAAACACGTATCTTTTTGAATTATGGTTTTTTCCAGGTATATG

CCCAAGAGGGGGATTACTAGAGTCATATGGTAGTTCTACTTTTAATTTTGTTTTTTCTTTAAGGAACTTAAGGAAAT

GGCACCCCACTCCAGTACTCTTGCCTGGAAAATCCCATGGGCAGAGGAGCCTGGTGGGCTGCAGTCCATGGGGTCGC

TAAGAGTCGGACACGACTGAGCGACTTCACTTTCACTTTTCACTTTCATGCATTGGAGAAGGAAATGGCAACCCACT

CCAGTGTTCTTGCCTGGAGAATCCCAGGGACGGGGGAGCCTGGTGGGCTGCCGTCTATGGGGTCGCATAGTCGGACA

CGACTGAAGCGACTTAGCAGCAGCAGCATACTGTGGAAAACAGAATCTTAATACTAAATGACCCTACCCTGGACTCT

ACCCAAACCAATCCAACTCTTTGTTTGTCTCTCAGGGGCATACATTTCACCTTCTACAATGTCATTTGTAAAATTCA

ATGAGCCTCTGAAAATAATACGGACAACATCTTTATTGACCGATGTGTAAACCTTTTATATTAAATTTACCTTAAGC

TGATTTTTAATATGTCAGAGCTTTCTGGGGCCCTCCCTGATGGTCCAGTGCCTAAGACTACACACTCCCAGTGCAAG

GGGCCCGGGTTAGATCCCTGGTCGGGGAACTAGATCCCACATGCAGCAACTAAAGGTCCCATGTGCTGCAGCCAAGA

CCTGGTGCAGCCAAATGAATAATTTTTAAAAATATGTCAAAGCTTTCTGAGCAGGCCTGAACTAACCCATCCGTAAC

ACTGATGTTCCTGGAACATTACTGTATTTTCAGCCATCCTTGTGAACAGCAGGGCTTTTTCCTTGGCCTCCTTGGCC

CAGATTTGCACAACCAGCAGATCGTCTTGTTTGGAAAAGTGTTGTTGAAGTATAATTTACGTACCATTAATTTCACT

CATGTTAGGGTACACTTTGATGGGTTTTACTAAACTTGTGTGGCAGGGGGGTGGTTCTCAGTCATGTCTGACCATTT

GCAATCCCATGGACTGTAGCCTGCCAGGCTCCTCTGTCCACGGGATTTTCCAGGCAAGAACACTGGAGTGGGTAGCC

ATACCCTTCTCCAGGGGATCTTCCTGATCCAGGGATCAAACTGGCATGTCTTTTGTCTCCCGCGTTGGTGGGCGAGT

TCTTTACCAGCTGAGCCCCTGGGGAAGGCCTTTACTAAATTTATTCAGGTGTAAATCCACCACCACAATCCAGTTTT

AGGACACGTTTTTCACTCAGAAGACTCTCTCAAGCAGGAAGTCTTCATTTCCACCCCACATCAGGCGACCACTAACG

TTTTCCATCTCTGTGGTTCTGCCTTCTGCTGGAATTTCATAGAACTAGGGGCTTCCCTGGTGGCTCAGACGGTAGAG

CGTCTGTCTACAATGTGGGAGACCTGGGTTCGATCCCTGGGTCAGGAAGATTCCCTGGAGAAGGAAACGGCAACCCA

CTCCAGTACTCTTGCCTAGAAAATCCCATGGACGGAGGAGCTTGGTGCAGGCTACTGTCCATGGGGTCACAAAGAGT

CAGGCACGACTGAGCGACTTCGCTTCAGCCATGTGAAGTCTTCTGTGCCTGACCTCTTTCACTCAGCGTCGTGTGTT

TGAGGCTCATTCCTGCTGCAGCACGATGTGGAATGTTCTCCGTTTTCCTGCTGAGGAGTGTTCCATGTGTGAACATT

GATTCGTCAGCTGATGGGCATTCAGACTGTTTCCAGCTTGGGACTCTTACAAATAATGCTGATCTGAACATCTGTGC

CCAATTCTCTGTGTGATCAACTGTTTTCCTTTCCCTTGGGTAGGCACCTGGGAGTGGAATTCTTCAGTCATATGATA

AGTGTATGTTTAACTTTTTCAAGAAACTGCCAGACAATTTCAGAAGATCTGGCTTGAGCCGAGGAGGGAATGAAGAA

GACTGCTCACACCCCTCCCACCTCCCTCTGTCTCTTTGCCTTGCTCTGAGTCAGGCCAGTCACTGTCTCTCTCTCTT

TTTATCTGTCAGCAAATCCAGTTTGTTCAGAATGAGATTGTTTCATGTTCATCTGAGTTTGGGTTTTTCTTTCACTG

TTTCCCCAACAAGCGCTAGGTCTTCTGGCAGACGACATACATAGGAAATGATTTTGTGTGGCCTTTGTTTCTTGCCT

TACAATCATTAAAAAAAAAGTCATTTCCTGAAACTGCTTTTTCAGCTCGTACTCTGAGGGATTCTGTCTGGTCTGTG

GTAGAGAGGACGGCTCATGCGGTCCAGCCACTCGTGGGCTGTGAGGAGAGTCTGGTCAGCGTCCAGATGCTCAGGGT

GAGGGGTTCTGGGTTCCGCCCAGCCTCTGCTCTTGATCTAACTGAGTGTGTTCCCGGGTTGTCCCCTGCCTTCCAGC

CTTTGGGGCCTGAGGTTTGCTAACTAGACACCCAGCAGCCATCTGTGACGATTCTCAGCTGATTCCCCAGCAGACAG

CTGCTCTATTTGTACCCCCAGGGGCTTTCCATGTGTAAGGAAGTCCCCTAGGAGCCCCAGACTTGTAAGCCCCCAGG

CCAGCACCACTGTCTCCTGGGTGAAATGGGACAGGCTGGGGGCGGGGGGGTGCTGCAAAAACGCAAGTGGGTGCTCC

CCGCTCATCACTCACCATCAACATGATCTTAAGCAAGTGATTCACTTATTAAGCCCTCATTTCGTAAGGGGGCCTCC

ACTTGTGGAGTTTTTACATCAAAGGCAATAATCATAAAAGCACCTCCCAGGTCACTTGCCATGGAGAAAGGGTTTCC

TGAAGGCTATTTGGATGCTTTCCCATCACATTCCTCCACAGAAGCAGGTAAAGGGTCATCTGGAAACCTGAGGGACA

Page 89: MOLECULAR CHARACTERIZATION OF OVINE GM1

86

Appendix Figure 4 (cont.)

GGCTGGGGAGAGAACCCACCAGGAGCCACTGCCCTCTCCTTGTACCCCCCTTGTGCTCAGTTCAACAGCTGGGCCCT

TCTGACTGGACACTGCGCTTGACTGAAGGATGCAAAGCCAAAGAGATAGTTTGGTATCGAAGATGGACAAGGACCAG

AAAAAGGGAGGGCAGAGGCTGCACCGAAAACGGAAGGCGCTTCATCCCTCAGGACCCTCCAGCACTGGCCTGACCTT

GCTGGGGGCAGCTTATGCCGACAGAAAACACTTGAAATCCAGCGTGGACGTCAGAAACCCTCAGTGTAGACTGAAGG

GTCCTCCATTCCTTTAAAGCCTCTGTTCACCTGTTCTCAAAATTGAAGCAACTCTCTGATGCCAACACCTTAATTTC

TAATCCGAAGGGCACGTCCCATCACTATGTGCCTGCCGCTCATGGTCTGTTGCTACACATCCAAGCACTTCAATACA

TTTGTGGAAGTGGCACAGAAAACTATCTTGTGATGCGTGTGATTCCATGGATCCGGAATTCAGACAGACTCTGCAGG

ATGGCTTGTCGCCGTTGTGGCACTGCGGCCTCTGCCGGGTCCTAGAATCGTCTGGAGGTTCCTTCACTCCAGATGGC

CTTTGGGCTGGCGTCTCTGAAGGCTGAACTCAGCTGGGATTGTCAACCAAAGCTTCCACCCATGGCCTAGGACTTCT

TACAGCCTGGTAGCCAGGTTCAAGAGGGTGTGTTCCAGGAGGAAATTCCAGAGTGCTATATGTATTTCCATTCTTCC

CACTCAAGTCTGAGAACCGGGTGAGCATGAATCGGGTCCTTTCACCTCTGGTGCCAGGTCCTATTGGCAGAGCACTG

TGCTTCTTCCATAGCAGCTGTGTTTCACCTGTGTTAATGAGTGGGATTCGTCTTTTTTTGCAGATTACTGGCCTTTG

GTGGTCCTGCCAGGTATTAGTCAGATGGGAATTGTGACTCTGAACACAGACCTCACCAGGAAGAGTATACGGCGGGG

TGAGATGACAGGAGTGTGCCCTGCGCTTAAAGTTCAGTTTGGTTTCCCGTTTTATTTTTGGCAAAGCCTTTGGATTT

AGATTTCTGAGCAGGATGTGCAGTTCAGTTCAGTTCAGTCGCTCAGTTGTGTCGGACTCTGTGAACCCATGGACTGC

GGCGCAGCAGGGCTTCCCTGTCCAACACCAGCTCCCAGAGCTTGCTCAAACTCACGTCCATCAAGTCAGTGATGCCA

TCCAACCATCTCATCCTCTGTCATCCCATCATTCTCCTCCTGCCTTCAGTTTTTCCCAGCATCAGAATCTTTTCCAA

TGAGTCAGTTCTTCACGTGAGGGGGCCAAAGTATTGGAGCTTCAGCTTCGGCATCAGTCCTTCCAATGAATATTCAG

GACTGATTTCCTTTAGGATTGACTGGTTTGATCTCTTTGCTGTCCAAGGGACTCTCAAGAGTCTTCTCCAATACCGC

AGTTCAAAACACATCAATTCTTTGACGCTGAGCTTTCTTTATGGTTCAACTCTCACATCCATCCATGACTACTGGAA

AAACCGTAGCTTTGACTAGATGGACATCTGTCAGCAAAGTAATGTCTCTGCTTTTGAATATGCTGTCTAGGTTTGTC

ACAGCTTTTCTTCCAAGGAGCAACCGTCTTTTAATATCATGGCTTCAGTCACCATCTGCAGTGATTTTGGAGCCCAA

GAAAAAAAGTCTCTCACCGTTTCCATTGTTTCCCCATCGATTTGCCATGAAGTGATGGACCAGATACCATGATCTTA

GCTTTCTGAATGTTGAGTTTTAAGCCAGCTTCTTCACTCTCCTCTTTCACTTCCATCAAGAGGCTCTTTAGTTCCTC

TTCACTTTCTGCCATAAGGGTGGTGCCATAAGGCAAGATGTGCGACCTGCCCAATTTACTTCACCTTGGCTTTAATT

TTTACTAGGCAAGAGGATCTTTATCCAGGTAGTTGGGCCATTCTGGCTCACCTGTCCTCCTTTCCACACCTTTGAAG

ACATTAAGTGTTCCAAGAAGTGCCAGAGAGGACTCCTGGGGGGTTCAGATCCTGTCCCTTTTAGGGTCGGTGTGCTC

CTCACCTTTAACTATGAGCAGTGTCCTCACCCACACAGTAAACATTCATTCAGTACTTACTCTGAACCCCATGTTAC

TGAGCAGGATATATTTCTTGCCCCTCGAGGATCACACAGGTGTGTATGAATGGACGAGGCAGTGTTGTGGGAAGACA

GTTTCAAGGAGAGCAGCATGCTGTGAGCATGCCGGCTCTAGACCTGGCCCTGGCGCAGAGCAGGTGTTGGTCAGGGT

AAGCCTGCCTGAGTGGAGACACACGGGGAATGAGAGGAGGAGGAGCAGAGATGAAGAGAACAGAAGGCACTTCAGAG

AGGAAGCAGCAACTGCAGAGATCCAGAAAGACAATAGAGAATTCCACAGATATCCAGACCCCAGCCAGTCTTACTCA

ACGAGTTCCCTTGCTTCTCACCAGCTCCAACTCTAATGCTCGATAAGCAACTCCTGAAACTCACTGGAACCTGTGGG

TTTTGCCTGGATCAGCCTCTCTCATTTTGTAGTCCAGCAGAACAAACTCTGGTGCTTCTCGAGTCTGTGTCTCCCAG

GCTACAGCCTTAACAAACCCCAAATAAACACTTTTTTATTTCAATCAGGCATTGGTTTCTAAAATTTTAGTTAACAT

GCTTCTATCAGGGTCCCATGAATCCCTCTGTTGCAGAGTCTGAAATACAAGAACTTAGTTTCCTCCTAAACTGTTGA

CACTTAGAAAATTTATTTTCTTTCTTTTTTTGATTGCTATTGTTATTATTGAAAATGGGAGGGGAGAATTCTTCTTT

GCCATTCTCACTTAAAGAAAGCATGTCCCACACAATCCCTCCATCTCTAGCATGTCTCATAAAATCTCTCCATCTTC

AAGCTAAATGTGCTAAGAATCTCATCAGTCTCTTTGGGACAAATGCCCACCCCCCTCCATGCTAACTATGGACATCA

AGGCAATTATCTCACCCAAAGGTTTTTGAGATGATGGGCAATATCCTGTTTTGGTGACACTTGGTCTCCCATCAGCT

TAACTATAACATGGGATCACCATGGAGCTTCTGCAGAGTTGTCCTGTGCTCATGAACCAACAGGCAATGATAATAAC

AATCAAAAAAGAACAGAAACTTCCATCGTTTAATTAGGCAAAGGACACATAAGTAAATATCCAGGGCACTGTGTCAG

AAATTCAGACGTGGATTAGGACCAGGTTGGCAAAACATTCTGTGAGCCTCAGGAGCAGATGAGGAAATGAAAGAGCC

AGGGTCCCTGATATTTGTTAGTGGAGAGACTGTTAACCCTTTCTCTGGTTACATCCCCTCTATGGCACTTAGCTCAT

AAAACTGTAGTTCTTTCTTTACCACTGACCAGAGAGCCTTCATGACAACTACCATGTGATTTTCATTCTTGTATCCT

TGGTACCCACTTCAGCACATCTAGCCCACAGTAAGTCGTCCATCAATGCTTCCTGAATGCAAAAAAAAAAAAAAAAA

AAAAAAANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTGAAAATCTAGAAAAGACTTGTTTTTAAAACCTT

CCCAAGATTTCTGTGAACCCCTGGAGGGCTTCCTTCTCATCATTTCCTCTGGCTAGACACTCTGCCTCCACTGAATG

AGTTCAAGGCATGAACGAGCTCACCGTCCCACATATTTTCTTGCAGTATCTTGACTCAAATGTGGAACTGAGTCCCT

TGAGTTTCACAAAACCTCACCCACACTGGCCCTTTCATCTTTCGAACTTTACAGAAGCTTAAAGAGACAGGGGTGGG

GGCGGTCTACAGAGTAATAGCATAAGCTTAATTGTACTGAATATCAGATATTCCAGTTTTTACAAGACATTTTACCA

TGGTCCATATTGCTTGGCCAGCTTTTCTTAATCTTCACTGCTCTTTGTCCACTCCCATCTCTCAGTTTCTAATGATT

TTAAAATTAAGCATGCCCCAATCTTCATTTCTGAAATGACACATGCTTGCCTTTCTCCTTCAGATCTAACTTCTTAG

Page 90: MOLECULAR CHARACTERIZATION OF OVINE GM1

87

Appendix Figure 4 (cont.)

GAAGGGGCCCTGAGAGGGAAGAGGCTTCCATGGGCTGAGAGAGAGGAGTCAGAAGGAAAGCAAAAGTCAGATGCTAG

GAAGTACACCTGGGAAGGGTCCTTGTATGGCCACCGCCCATAGCCAGGCTTTTAGAGCTAGAGAACACAATGGAATC

CCTACCAAGGTCTTGAAATTTGAGCAAAAAGGGAGGACGCAAGATCTCTGCATTTTCCATTGTAGCTCAAGTCTGGA

GGAAGCATAGCATAGGTGTCTGCACAAGGACCAAGGTCCCTTCAAGGTTTCCTATGATCCAGAGATGGACCAGGGAG

AAGAAGGGTGATCTCTCACGCCAGCCAGAGCAGCAGGAAGTAGCAACGGCTCCAGAAAGCCCTGCTATGTCTGCTGA

GGCCACAGAGGAACACAGGGGATAATGGAGCGTTTCCAGTGTTGCCACAGGATCGGTGAATAAACTCAGCAGGTCAG

TCCATGGATTGATGGTTGAGGCCTGGGCGGGATTAGGCAAGTCTCAGCAGTTGCTGACAACAGATGACGAAGACCAT

TTTCCAAAACTGTAATACCAAAATGCCACTGAAGCAAGGCGGAGTGGGTGAAATGCTGAATTGACTGAGATTAGGTC

TCTGATTTCTGGGAGAGAAGTCAGATCTCAGATCTTGAAATAGAAGTTCAGTTCAGTTGTAGAAGAAAGTTCACTGT

TAACACTCGAATTCATCTCTCCTAACACCTTTGGGTAGGGTCAGTTCTATCAGGTGTCAGTAAAATGCTTGTTCTTT

GTTAGTGGGTGTTATTACTTCCTCCAAATGGATCAGCATGTTTATTTAGAAATATTTTCCCTGCTATTTTCTTATAT

TGAGTTCATCTCAAGTGATCTCGTTTTGAGTGTTGATCTTGTTCATTGTACAATCATATCTCTTCCTTGGAGTAAGG

AATGTTGGATTGCAGGCTCGTTTTGAATGGAGATTTCATATTAGTTTGTTTATAAAGATTTATTTCTCTCTCCCTCT

GCTCCTCCATCTCTGCACTGGAATTTTGAGGTTGCCTCTGTAGTGGATGTTGTTGGTATCCTACCCAGAAGCCTTTG

CCTACTGCTGCACCCTTCCTTTAGCTGCTGTGTTAGTTGCTTTTTTTCCCCCAGAAAACTACTCTCTTAATTAATTT

ATTTATTTATGGGCTGCATGGCATGTGGGATCTAACTCCCTGACCAGAGATTGAACCCAGGCCCCACACTGGACGTG

CAGTCTTATCCAGTGGACCAGCCACCGAGGAAGTCCTACCACAGATCTACTCTTGGCTTAAGTAGGAAGACGCCTCA

CTGACATGTGGATACAAAAGGCCAGCCTCTTTGCCTCAGAATGGAACTAATTCTGTGGAGCAATTCATGCTCCAGAG

CCCCTGTGAAATCAAGCCAGTGCAGGCAACTTGTAATGGTTAATTTTATGTGTCAACTTGACTGAGCCACAGACATT

TGGTTGAACAGTATTCTGGGTATGTCTGTGAGGATTTCTGGATGAGGTTAATATTTGAATAGAAATATTGATTTATG

TTGATCTTGTATCCTGTAATCTGCTGAACTCACTTAATAGCCCTAAGAGTTTTCCTTTTTTATGGATTCCTTACAAT

TTTCTACATAAAAGATCAGGTCCTCTGCAGAGAGACATAGTTTTACTTCTTCCTTTCCAATCTGGATGCATTTAATT

CAGCAGTTCTTTTTCTTGCCTTATTTTCCTAACCAGAACCTCCAATATGCAATGATACAAGTGGCAAGAGCAGACAT

CCTTGTCTTGTTCCTGACTTTAAGGCAAAGGCAACTACAATCAGGTATCAGCTCACACTGGTCAGAATGGCCATCAT

CAAAAAATCTGCAAACAATAAATGCTGGAAAGGATGTAAAAATAAAGGGAACCCTCTTCACCTTTGGTGGGAATGTA

AACAGATACAGTCACTGTGGAGAACAGTATGGGGATTTCTTTAAAAACTAGGAATAAAACTACCAAATGACCCAGCA

ATCCCACCACTGGGCATACACCCTAAGGAAACCACAATTGAAAAAGACACATGTACCCCAATGTTCGTTTGCAGCAC

TATTTATAATAGCCAGGGCAGGGAAGCAACCCAGATGTCTCTCAACATATGAATGGATAAAGAAGTTGTGGTATATA

TATACGATGGAATATTGCTCAGTCATAAAAAGGAACACATTTGAGTCAGTTCTAGTGACATACAGAGTGAAGCAAGT

CAGAAAGAAAAACACAAATATTGCATATGAATGCGTACATATGGAACCTAGAAGAATGGTACCGATGAACCTAGTTG

CAGGGCAGGAATAGAGACTCAGACAGAGAGAGCAGACTTGCGGACACAGCGGGGGCAGGAGAAGGTGGGACAAACTG

AGAGGGTAACATGGAGATAGATACATTACCATGTGTAAAACAGAGAGCCTGCGGGAAGTTGCTGTATGACACGGGGA

GTTCAGTCTAGTGCTCCGTGACAACCTAGAGGGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNCCAGTTAAAAATAAATAAAAATTTTTAAAAGGGGAAAGCATTCAGTCTTTCACCGTCAAGTTTGATGT

TGTGAACATTCTTGTACAAGCCTTTTTATGGGGAGGAAGGTGGGAGGGGGGTTCATGTTTGGGAACACATGTAAGAA

TTAAAGATTTTAAAATAAAAAAAATAAAAAATAAAATAAAAAAAGAACTAAGATCTTGCGCAAATACCTAGATATAG

AATTCCTGGATCATAGGGTACATATACGTTCAACTTTACCATTGTCAAGGTATTTTCTAAAGTGGCTTTTGTATCCA

ACCATCTTTTAAATTTCTCTTGTTACATCCCAGTGAGTTTTGGAAGACAGAAAGGCCCCCAAACTGTAGACTTATGT

TGCACCTTAATTGGAAGTCTTCTCTGTGATAGACTCAACGTGTCTGTAACCTTCAAGAAGCTTTCAAGAGATTATTT

TTTATTTTCAGCTTAAATCCATTCCCTCATAAGCTCACTATTTGTCGACTGTGCAAACCCTGTCAAACTCCTCCTCA

GTCATTCCCCCAAGAGAAGCCCAGCGAGACCACAAAACGCACCACTGGAACCACCATTCACTTTATTTGCATGAGAT

GTTTTTGTAGCAATGTCATTACAATTAGGAGGAATCCCTCAAACCAAGGCAACCATGGAGAGGTAGCTGTACAGTCC

AGCGTTGGTGCAGAGCTTTTTCCTGCTTGGCGGGGCTCCAGGCATCACCTTGGCTTATCTCCTGTGAGATCAAAAGA

ATGCAGACATTCTTCAGGTTCCCACAAGTTATCTTGTAACCATCTCATATGCAAACTCCGCTTCCCATCCCACGACT

GACATCAGCATCTTCTTCAAAGAACCCATCTCTGTAGGCAGGTATCATACCAGGATGAGCAACCACCTGCTCACCTC

ACCTGGGAGCCCTACTTTTTAGATTCTCTCTGCAGTTCATTAGTCAACTTTCCCCAATCACAAGGCCTCCCTCTTTT

TATTTTCTAAAATGGGGAGATCCTGATTGTTTTGGCAGGCTGTGAAAATAAGGCATGTCTGTTTAAAGAAATAAAGA

AGCCTAGAAATTGTAAAGTAGTATAATTGTTACCTCTATAAAAATGGATAAAAGACATCCTGGTGGTTCAGTGGTTG

AGAATCGCCTGCCAAAGCCAATGCAGGGGACACAGGTTTGATCCCTGGTCCGGGAAGGTTTTGCAGGCCACGGGGCA

ACTGAGCCGGCATTGCCACAACTGGAGAAAGCCCACGCGCAGCAGTGAAGACCCAGCGTAGCCAAAAACAAGTAAAT

ACATATTTTCAAATTGTATAAAATTTTTTAATTAAAAATAATTTCAAGAAATGGCTAACATCAATAATATCTCCACA

AATCTAGAAAAATTTTAAATGAATAAGAGTTTGGGATTTAAGTTTTAGGTGTATCATTCCAGGTTTTTATAATGCAC

TTACAGGAATTCCTTGGTAGTCCAGTGGTTAAGACGAGACACTTTCAGTGCCGGGGCCTGCGTTCACAAAAAGCCAC

Page 91: MOLECULAR CHARACTERIZATION OF OVINE GM1

88

Appendix Figure 4 (cont.)

ATGGCCAAACAAACAAACAAACAACAATATATATCATGAACTTTTGTGCATAGTAGTAAGTTTATAGCTGGAAGCCA

TTCTTTTTTTTAATGGCATATTCCATAATATACATTAATTAGTTTTTTATGAAATGATTTAACCATATAGAAAAGTA

TTGAGAATGATGTAACAAACGTCCTTTTGCCGTTTAGCAGTAGAAAAACTGCTCAATTGCAGATACATATTTACTCC

AGTTTGTCACTTGTCCTCTGAGTTTTATTTGGGGATGTTTCATCACGCATATTTTTGTTTTCACATGGTTGAATTTA

TTACTCATTTCTTTTATGGCTTCTGAATTTTGAGAATGTTCTTGCCTGTGCCATAATTATGAAGAAATTCTTCCATG

TTTCCATTTAGAATTTATATTGTTCCAATTTTTACATTTACATGTTTATCTATTTGCCACTCAACCATGCACGTATG

ATGAATGAATCAAGCTTAATTTTTTTCCCAGATAACAGTCCAACTTGACCTACTCCTTAAGTAAATCTGTTGTGTCC

CTCCTTTGATTTATGATCCCATCTTTATTTTTTTTATTGAAGTATAGTTTATTTACAATTTTGTGTTAGTTTCAGGT

ATATAGCAAAGTGATTCAAGTATATATGTATAAATATTCTTTTTTAGAAGATTTAGATATAGATACAGGCAGAGATG

GGCTTCCCTGGTGGTTCAGATGGTAAAGAATCTACCTGCAGTACAGGAGACCGGGGTTCGATCCCTGGGTCAGAAGA

TCCCCTGGAGAAGGGAATGGCTACTCACTCCAGTGTTCTTGCCTGGAGAATTCCATGAACAAACAGTCCATGGGGTC

ACAAAGAGTTAAACATGACTGAGTAACTAACACTTTCACTTGTTCACAGGTTAAGATATGCAAACAACGTAATATTA

CTCAACCATAATAAAGAATGAAATATTGCCATTTGTGCAACATGGGTAGACAGAAATGGTATAGACTTAATAGAAGC

AGGAGATAATAAGAAGAGGCTGCAAGAATACACAGAAGAACTGTACAAAAAAGATCTTCACAACCCAGATAATCACG

ATGGTGTGATCACTCACCTAGAGCCAGACATCCTAGAATGGGAAGTCAAGTGGGCCTTAGAAAGCATCACTATGAAC

AAAGCTAGTGGAGGTGATGGAATTCCAGTTGAGCTATTTCAAATCCTAAAAGATGATGCTGTGAAAGTGCTGCACTC

AATATGCCAGCAAATTTGGAAAACTTGGCAGTGGCCACAGGACAGGAAAAGGTCAGTTTTCATTCCAATCCCAAAGA

AAGGCAATGCCAAAGAATGCTCAAACTACCACACAATTGCACTCATCTCACATGCTAGCAAAATAATGCTCAAAATT

CTCCAAGCCAGGCTTCAACAGTACATAAACCATGAACTTCCAGATGTTCAAGCTGGATTTAGAAAAGGCAGAGGAAC

CAGAGATCAAATTGCCAACATCTACTGGATCATCAAAAAAGCAAGAGCGTTGCAGAAAAGCATCTACTTGTTTATTG

ACTATGCCAAAGTCTTTGACTGGATCACAACAAACTGTGGATAACTCTTAGAGATGGGAATACCACCTGACCTGTGT

CCTGAGAAATCAGTATGCAGGTCAGGAAGCAACAGTTAGAACTGGACATGGAACAACAGACTGGTTCTAAATCGGGA

AAGGAGTACTCCAAGGCTGTATATTGTCACCCTGCTTCTTTAACTTATATGCAGAGTACATCATGAGAAATGCTGGG

CTGGAGGAAGCACAAGCTGGAATCAAGATTGCTCGGAGAAATATGCAGATGACACCACCCTTATGGCAGAAAGTGAA

GAGGAACTAAAGAGCCTCTTGATGAAAGTGAAAGAGGAAAGTGAAAGTGTTGGCTTAAAGCTCAACATTCAAAAAAC

TAAGATCATGGCATTTGGTCCCATCTCTTCATGGCAAATAGATGGGGAAGCAATGGAAACAGTGTCAGACTTTATTT

TGGGGGGCTCCAAAATCACTGCAGATGGTGACTGCAGACGTGAAATTAAAAGATGCTTGCTCCTTGGAAGAAAAGTT

ATGACCAACCTAGACAGCATATTAAAAAGTAGGGACATTACTTTGCCAACAAAGGTCTGTCGAATCAAAGCTACGGT

TTTTCCTGTGGTCATGTATGGATGTGAGAATAAGTAAGTAAGTAAAGTCACTCAGTCGTGTCCAACTCTTTGTGACC

CCGTGGACTGCAGCCCACCAGGCTCCTCAGTCCATGGGATTCTCCAGGCAAGAATAGTGGAGTGGGTTGCCATTTCC

TTCTCCAGGGGATCTTCCCTACCCAGGCATCAAACCTGGGTCTCCTGCATTGGAGGCAGACGCTTTAACCTCTGAGC

CACCAGGGAAGCCCTGAGAATAAATGAACAAAAACAAAAGAAATGAACAAACATTAAAAAATAGAAACAGAAGGGAG

GGTATGGGGGAATGAGTAAACCAGGTGAAGGAATTTAAGGGGTACAGGTTTCCAGTTACAAAATATATGAGTAGCAA

GCATAAAATGGACAGTGTGGGGGAATATATCCAATAATTATGTAATATCTTTGGTATCCTTTTTTAAATTTCATATC

TCTATAAGCAGATGGATATTCCCTAAACTTACATGCTAATCATTTCATGATATATGTAAGTCAAATCATTATGCTGG

GGACTTCCCTAGTGGTCCAGTGGCTAATATTCCATGCTCCCAATGTAGGGGCCCAGGTTTGATCCCTGGTCAAGAAA

CTAGATCCTACATGCAGCAACTAAGAGTTCACATTTTGCACCTAAGAACTGGGACAGCCAAATAAATAAATATTTTA

AAAACCATCATGCTGTACACCTTAAACTTAAACAGTATCCATCTCACTCAGTCGTGTCTGACTCTTTGAGACCCCAT

GGACTGTAGCCCGCCAGGCTCCTCTGTCCATGGGATTCTCCAGGCAAGAATACTGGAGTGAGTTGCCATGCCCTCTT

CCAGGGGATCTTCCCGACCCAGGGATCGAACCCAGGTCTCCCACATTGCAAGTGGATTCTTTACCTTTTGAGCCACC

AGGGAAGCCCAGGAATACTGGAGTGGATAGTCTATCCCTTCTCCAGGGGAACTTCTTGACCCAGGAATCAAACCGGG

GTCTCCTGCATTGCAGGCAGATTCTTTACCAGCTGAGATGCCTGGGAAGCCCAAATGTATATGCTGCTGTATGCCAA

TTATATCTCACTGAAACTGGAAGAATAAAAGAAAATTATGAAGAAAGTAGAGTGTTCCCATATACCCCATGCCCCAT

TTTCCCTATTGCTAATACCTTACATTAGCGTGATACATTTATTATACTGAATGAACCAATATTGAGGCATTATTATC

AGCTAATGTCCATACTTTATTAAATGACCTTAGTTTTTAGCTAATGTTCTTTTCTGTTCCACAACTACATTTTATCA

TCACGTGTCTCAGGCTCCTCTAGTCTGGGACAATTTCTCAGACTTTCTTTGTTTTTACTGATGTTAACAGTTTTGAA

GGATCTTGGTCAGATATTTTGTAGAATATTCCTCTTTCCAAATTTTTAAACCTCTAATTTATCCCTAAATAGGAAGG

AGCTGGTATCTCAAAGCCTGGTATCGTGTAGCAGCAGTGATAGCAGGCATTCTTGTCTTCTGTTTTGAGCTAAAATA

TCTCAGGAGTGCCCTGTTAAGCATTTTAAGAGAGTGAAAGTGAAAGTCTCTCAGTCGTGTCCAACTCTTTGTGACCC

CGTGGACTATGTCCATGGAATTCTCCGGGCCAGGATACTGGAGTGAGTAGCCTTTCCCTTCTCCAGGGGATCTTCCC

AACCCAGGGATCAAACCCAGGTTTCCCTCATTGCAGGCATTCTTTACCAGCTGAGCCACAAGGGAAGCTGGGGATAA

ATATATTTGATGATAGTAATAAAACATTATATTCCTATACTTCTATAGTACTCCTATCCTGATTATAGTCAGTATGA

TTTTTCTGAGTGTCGCTCTTTGAATTGTTAAGTATGAGTATGCGTGTGTTTGAGGCAGGGTGTCCGTTCTTTTCCAG

GAGGCAAGCTGTTTGCACAATCCAATGACTCTCTTCTGTAGCCACAGAGATAGATTGCATCCTGCCTGCAGATCTGA

AACTGAGCAAATCTGCCTCCTCTGAACCAAACTGGGCCTCGGAGGGCTTCTGATTCAGGCTCCACTCCTGCCAGCTC

Page 92: MOLECULAR CHARACTERIZATION OF OVINE GM1

89

Appendix Figure 4 (cont.)

CTGGCGGTAAAACTCTCCCTATGGGAAATGAGTTCCTGCAGAGACTGGGAGCTCTGTCACTGCCGTCCTGGCATCGA

GCGCTTTTAGTAGGCCTTTCATGTATATTTTAGGCTCTGAAAATATTTCTCTCTCCAAGTTTGATTGAAAATGGAGT

TTGTGGGGGTTTTTCATTCTTCTTGCTGATATTTTATAATTTCCCAGAGAAGATGAAAATGCAGATTTTTGCAACTC

TGTTCATACCAAAAGTCATAATGAAGTCATTTTTGACCCAAAGACCACCCACTAATTTCTGGAACTAGGAGGCAAGT

CAATCAATCTTTGAACTCTGTCACACAAAGTTTTATTAGAAACATATTGGGGATTTTGGAGAGAGGACTGGTGAACT

TTGTGTAGTGAAATAGAAACTTGAGTTGCCAGCATAGACTACTTAATTAAGAGATAAGGAAATTCACTCATTCACTA

AAAAATAATTGAACAACTGCTCTGTGCTAGGCATTTTACTAAGCAGTTAGGTGATGATTATTGTTGCTGGAGCTGGT

TTACTTCATTATTAAAATGTTGTTTCCCCTGAACTCAATTGCTTGGGGATAAAAAAACACCAACCTTATCTATGTAA

AGAGAAGGCTGAAATGAGTTTCAAAACTAGTTAGTGGAGTTCTGATATTCTGAAAGGGGAATTTGAAGCCATTAGAA

GCTTTTGAGGAGTAAAGTATTTTTTAAAAAACTTTATTGAAATGTAGTTGATTTGAAATGTTGTCTTAGTTTCAGCT

GTACAGCAAAATGATTCAGTTATACATATATATCTATTCTTTTTCTGATTCTTTTCCATTACAGGCTATTAGGTTAT

TACAGGATATTGAAGATTGTTGCTTGTGCTATAGGTCCTTGCTGGTTATTCCATGTGTAGTAGTGTGTGTATTTTGA

CCCCAAACTCCTAATTTATCCCTCCCCCTTTGCTTCTCCCTTTTTAACCATAAGTTTGGTTTTTACATCTGTGAGTC

TATTCCTGTTTTGTAAATACATTCATTTGTATCATTTTTTTTAGATTCCACATGTAAGTAACATCATAGGATATTTG

TCTTTCTCCGTCTGATCTACTTAGTAAAATAATCTCTGGTTCCATCCATGTTGCTGCCAATGGCATTAGTTGATTCT

TTTTACAGCTAATATTCTATTGTGTATGTATATATATACGACATCGTCATGCATTCATCTGCAGCACTTAAGCTGCT

TCCATGTCTTAGCTATTGTGAATAGTGCTGCTATGAACACTGGGCTGCATGTGTCTTTTCGAGTGGGAGTTTTCTCC

AGGTGTATGCCCAGGATTGGGATTGCTAGATTATGGCAGCTCCATTATTCATTTTTTAAGGAACCTCCATACAGTTT

TTCATAGTGGCTGCACCAATTTAGATTACCACCAACTGTGTAGGATGGTTCCCTTTTCTCCACACGCTCTCTAGCGT

TATTTTCTCCCCATTTTTGGTGATGGTGGTGGTGGTCATACCACTTGGCTTGTGGGATCTTAGTTCCCCGACCAGGG

ATGGAACCCAGGCCTTGGCATTGAAAGCAGTGAAAGTGAAAGTCCTAACCACTGGACCATTAGGGAACTCCCTCCAG

CATTTACTGTTTACAGACTTTTTGATAATGGCCATTCAGGAGTGAAGTATCATGACCCCAGAAATGAATGGAACTTG

TGTCTGGTTCATCTGAGTCCAGGAAGCCACAGACCAGTGCAGAGTACAGGACCTCATGGCCAAGGGTAGAGCTGAGC

TGTTACCATAACAGAATAGGGATGATGGCTCAGGGTTTGAGGCAGGTGAATTATGACAGCAAAGGCGAGGCTGACTG

AAGGAAGCACATGAACCAAGAGTCAAATGGGGTTGCTAGCCAGAGGGTGATGAATGGACAGCCTGATGCAGACTCTG

TGCATCCTCATTTTCCCACACCTGGGGTCAAGCCTATTTATATTAGGTGATGATCCAGAACTCCCATTTTAGACTTG

AGTTCCTGGGAGCAGACCCTGAGACTGAGATGAGCATACAGGAGATTCACTGGGGAGTCCTCTTGGGAACAACATCT

GTAAGGGCATGAAGGAAGCAGGACTGGGCAACAGAGGCTGATCTTATGGGCAGCTCTGCGGCTGGAATGGCTTGTCA

GCATGTCCCAAATTAAAGCAAGGGAGCAAGTGTTTCTTTCCCCTCAAGACTCAGGCACTGGAAGTGAGCTGCCCCCC

TGTGAGGACAGTCCTGAAGAGACCAGCCGAGAGCCCCAGGTGTCAGCGCTCCTGGAGCCGATGGGGTGAGTACTCCT

CATTCTGCACAGGGTGTGTGGACAGCATCCCACAACCCCAACAGTCTCCTCCAGCCTGATGCAGGAGGGCCGCTGTC

CCAGGAGCTCAAAACCACGGCCAAAAATGAGGTCCCTAAGTTTTCCTTTGTCTCAGCTTTTCCTCTTTTGCCCCTCT

CCCCACCCAACCCCCCCTTCACTTTAACTACAAAAACCCACGCACCCCTCCCTGACCACAAGGGGCAGTCTTGACAC

AGCATCTGCCTTTTCACGTGCAATTTCACCAGCTTAGAATGTCCTTCCTCCCTTCCATTCACCAAAATCAGGCTCCT

CTTACAAGGCCAACTTCAAAAGCTAGTTGAAGTTTGACATTTGACATTGGTTCCTTCTTTGTCTGGGGTCCTGAGGC

ATTTTGTTTGTGACTCGGTTATTGCATCTGTCCTGCTTGCTTCTTAGTTGACCTTGTTCTTGTGTCTTCCCTTCTCA

GGTTACAATCTATACATGCAGCGCTCACTCCTTTATCCTACCTCCTCTCCACTACCCACCATCCCGCGTGGTACAAG

ACAGACTCCCAGCAAATCAGAAATCATTGCATAAAATGTCCCAGAGTGTTATTACAGTTTCTTGTGAAAAATCTCCA

TAAAGGTCTATACATCAACCAGCATTCTTCCTTCTCTTGGGAGAATTCTTCC