25
Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations Mohamed Shehata - Master Thesis – REMENA 09/12/2014

Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Agenda

1.  Motivation

2.  Introduction

3.  System Physical Design

4.  Results and Conclusions

5.  Recommendations

Mohamed Shehata - Master Thesis – REMENA 09/12/2014

Page 2: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

1. Motivation

Help in making Egypt a better place

Skills

Masters

Bachelor

2

Page 3: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

2. Introduction

Project Application / Tool

Need Material

Work Scope

3

Source: Harald Mehling · Luisa F. Cabeza (Heat and cold storage with PCM)

Parametric tool (annual sum on hourly basis) http://english.ahram.org.eg/

Solar container design

Source: ZAE Bayern

Source: Quarterly energy prices, DECC. Table 4.1.1

Page 4: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

3.System Physical Design Technical break-down analysis

4

System schematic diagram showing the sub-systems for input determination

Page 5: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Source: Shenzhen Shine China ltd.

Source: Solar med-atlas

Source: sunxtender

Source: western co.it

Source: Solar med-atlas

3.System Physical Design Electrical System Inputs

5

Source: Egyptian ministry of electricity website

Source: Google maps

Page 6: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Source: DC Masterflux USA (DC)

Source: GEA, Germany

3.System Physical Design Refrigeration Cycle Inputs

6

Page 7: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Source: ZAE Bayern

3.System Physical Design Thermal Storage Unit

Parameter   Value  Product mass per batch   400 kg  

Product loading intervals   ½ day  

Time at loading   9 am  

Product shifting intervals   ½ day  

Time at shifting   9 am  

Product unloading intervals   4 days  

Time at unloading   9 am  

7

Page 8: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

3.System Physical Design Annual Cooling load

Annual required cooling load

8

Page 9: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Parametric Tool

Cooling load coverage driven

from the PV system

Input

3.System Physical Design Parametric Tool

Input Input

Input Input

Input

9

Page 10: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Source: Google pictures Source: Rubitherm Gmbh

3.System Physical Design Output

Source: Google pictures

$$

10

Page 11: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Systems/Properties CW4.64   CW4.06   CW3.48   Ice4.64   Ice4.06   Paraffin3.48   Paraffin 4.06  

Cold Storage Material   Cold-water   Cold-water   Cold-water   Ice   Ice   Paraffin   Paraffin  

PV [kWp]   4.64   4.06   3.48   4.64   4.06   3.48   4.06  Chiller capacity [kW]   4.2   5.2   7.3   7.3   7.3   7.3   7.3  

Battery capacity [kWh]   4.8   3.6   1.2   1.2   1.2   1.2   1.2  

Battery lifetime [years]   10   11   7   20   17   15   17  

Mass (tons)/   3   3   3   0.3   0.31   0.5   0.5  Storage Capacity (kWh)  

20.9   20.9   20.9   31.32   32.36   32.22   32.22  

Solar load Coverage   0.995   0.996   0.995   0.999   0.997   0.995   0.999  

3.System Physical Design System alternatives

11

Page 12: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

4.Results and Conclusions

12

Page 13: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

4. Results and Conclusions Economical Assessment

Item   Price  PV Array   600   €/kWp  Solar charge controller   180   €/1,8kWp  Battery   200   €/kWh  DC Chiller   650   €/kW  Evaporator   500   €/system  Pumps/piping   500   €/system  Water fan coil units   1000   €/system  Installation   500   €/system  

Component   Lifetime [years]  PV Array   20  Solar charge controller   10  

Battery   Depends on the no. of cycles  

Storage Unit   20  DC Chiller   20  Pumps/piping   10  

Water fan coil units   20  

Material   Price € /kg  Water   0.07  Ice   0.07  Paraffin of purity 95%   1.5  

13

Maintenance     Frequency  Annual  maintenance   Each year (5% initial

cost)  Spare parts / replacements   Midlife time  

Page 14: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Years   CW 4.64   CW 4.06   CW 3.48   Ice 4.64   Ice 4.06   Paraffin 3.48   Paraffin 4.06  

1   10724   10786   11143   10730   10383   10583   11111  2   137   169   237   237   237   237   237  3   137   169   237   237   237   237   237  4   137   169   237   237   237   237   237  ..   ..   ..   ..   ..   ..   ..   ..  9   137   169   237   237   237   237   237  10   137   169   237   237   237   237   237  11   3379   3267   2524   3062   3062   2832   3062  12   137   169   237   237   237   237   237  13   137   169   237   237   237   237   237  ..   ..   ..   ..   ..   ..   ..   ..  20   137   169   237   237   237   237   237  

Total   16560   17095   18562   18063   17715   17685   18444  

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pri

ce in

EU

R

Years

Annual Cash Outflow

CW4,64 CW4,06 CW3,48 Ice 4,64 Ice 4,06 Paraffin3,48 Paraffin 4,06 Conventional

4. Results and Conclusions Annual Cash-outflow

14

Page 15: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

4. Results and Conclusions Sensitivity Analysis NPV (IR 10%)

Years   CW 4.64   CW 4.06   CW 3.48   Ice 4.64   Ice 4.06   Paraffin 3.48   Paraffin 4.06  

1   10724   10786   11143   10730   10383   10533   11111  2   124   154   216   216   216   216   216  3   113   140   196   196   196   196   196  ..   ..   ..   ..   ..   ..   ..   ..  ..   ..   ..   ..   ..   ..   ..   ..  18   27   33   47   47   47   47   47  19   25   30   43   43   43   43   43  20   22   28   39   39   39   39   39  

NPV   13116   13394   14245   13804   13456   13518   14185  

15

Page 16: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

13456

15644

NPV (EUR)

NPV

ICE 4.06 Diesel

4. Results and Conclusions Ice Storage System vs. Conventional

Economically

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Acc

umul

ated

Sav

ings

in E

UR

Discounted Payback Period (Net Savings ICE 4.06 vs. Diesel IR 10%)

10 years 5 years Conventional

16

Page 17: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Parameter   Value  

Chiller capacity   7.3 kW  

PV power   4.06 kWp  

Storage material   Ice  

Storage material mass   310 kg  

Battery Capacity   1.2 kWh  

System COP   1.29  

Evaporator temperature   -5oC  

Container storage temperature   12oC  

4. Results and Conclusions Conclusion I

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec

kWel

Time

Actual PV Electricity -DC Used electricity from PV field

Battery Charging Power

17

Page 18: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

4. Results and Conclusions Storage system operation

18

Page 19: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

�  The suggested ice alternative fulfils the set criteria

�  14% cheaper than the Diesel alternative with subsidized fuel price (2014)

�  The chosen system saves the environment from 80.9 tons of CO2 and 0.918 tons of Nox (for lifetime of 20 years)

�  Increase the technology know-how curve in Egypt

4. Results and Conclusions Conclusion II

19

Page 20: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

5. Recommendations

�  Cascaded PCM storage

�  Feeding the un-used electricity into the grid – (Feed-in tarif)

�  Mobility of the system

�  Using Capillary-tube matrix of higher thermal conductivity (With respect to the application’s material)

20

Page 21: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Thanks for you attention

Questions & Discussion …

21

Mohamed Shehata - Master Thesis – REMENA 09/12/2014

Page 22: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Back-up Slides

22

PCM-Details      

Latent heat of Fusion   kJ/kg  

Specific heat capacity L   kJ/kg.k  

Specific heat capacity S   kJ/kg.k  

T melting   °C  

T congealing   °C  

Density Liquid state   kg/m3  

Density Solid state   kg/m³  

Page 23: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

PCM Testing

23

Page 24: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Q components

24

Page 25: Mohamed Shehata - Master Thesis – REMENA 09/12/2014 Agenda · 2014-12-16 · Agenda 1. Motivation 2. Introduction 3. System Physical Design 4. Results and Conclusions 5. Recommendations

Diesel aspects / Maintenance

25