19
This article was downloaded by: [Texas State University - San Marcos] On: 08 May 2013, At: 04:40 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Algebra Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lagb20 Modules with the summand intersection property George V. Wilson a a Department of Mathematics, University of Georgia, Athens, GA, 30602 Published online: 27 Jun 2007. To cite this article: George V. Wilson (1986): Modules with the summand intersection property, Communications in Algebra, 14:1, 21-38 To link to this article: http://dx.doi.org/10.1080/00927878608823297 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Modules with the summand intersection property

Embed Size (px)

Citation preview

Page 1: Modules with the summand intersection property

This article was downloaded by: [Texas State University - San Marcos]On: 08 May 2013, At: 04:40Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: MortimerHouse, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in AlgebraPublication details, including instructions for authors and subscriptioninformation:http://www.tandfonline.com/loi/lagb20

Modules with the summand intersection propertyGeorge V. Wilson aa Department of Mathematics, University of Georgia, Athens, GA, 30602Published online: 27 Jun 2007.

To cite this article: George V. Wilson (1986): Modules with the summand intersection property, Communications inAlgebra, 14:1, 21-38

To link to this article: http://dx.doi.org/10.1080/00927878608823297

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial orsystematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distributionin any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that thecontents will be complete or accurate or up to date. The accuracy of any instructions, formulae, anddrug doses should be independently verified with primary sources. The publisher shall not be liable forany loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever causedarising directly or indirectly in connection with or arising out of the use of this material.

Page 2: Modules with the summand intersection property

COMMUNICATIONS IN ALGEBRA, 1 4 ( 1 ) , 21-38 (1986)

MODULES WITH THE

SUMMAND INTERSECTION PROPERTY

George V . W i l s o n Depar tment o f Ma themat i cs

U n i v e r s i t y o f Geo rg ia Athens, GA 30602

Kap lansky [?] showed t h a t i f F i s a f r e e module o v e r a

p r i n c i p a l i d e a l domain (P ID) , t h e n t h e i n t e r s e c t i o n o f any two

summands o f F i s a g a i n a summand. T h i s r e s u l t p rovoked Fuchs

[3] t o sugqes t t h e f o l l o w i n g p rob lem.

Prob lem 9: C h a r a c t e r i z e t h e a b e l i a n groups i n w h i c h t h e i n t e r s e c t i o n o f two d i r e c t summands i s a g a i n a summand.

I n t h i s pape r , we add ress t h e c o r r e s p o n d i n q q u e s t i o n f o r

modules o v e r a r i n g . I n s e c t i o n I, we d e v e l o p some t o o l s w h i c h

a p p l y t o any r i n g and use them t o d e s c r i b e i n j e c t i v e s w i t h S IP

o v e r n o e t h e r i a n r i n g s . S e c t i o n I 1 q i v e s a f a i r l y c o m p l e t e

d e s c r i p t i o n o f modules w i t h SIP o v e r a n o e t h e r i a n domain t h a t have

a nonze ro i n j e c t i v e submodule. S e c t i o n I 1 1 c o m p l e t e l y c l a s s i f i e s

t o r s i o n modules w i t h SIP o v e r Dedek ind domains. T h i s c l a s s i f i c a -

t i o n i s t h e n combined w i t h t h e r e s u l t s o f s e c t i o n I 1 t o g i v e a

Copyright O 1986 by Marcel Dekker, Inc.

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 3: Modules with the summand intersection property

2 2 WILSON

complete classification of modules with SIP that have a nonzero

injective submodule over a PID.

All rings considered here are associative with unity.

I. General Case

Definition: An R-module M has the summand intersection --

property (SIP) i f the intersection of two summands is apain a

summand. M has the strong summand intersection property (SSIP)

if the intersection of any number of summands is aqain a summand.

We begin by recordinq a fact which can be eas

Lemma 1 : If M has SIP (SSIP), then every summand ---

has SIP (resp. SSIP).

ily checked.

of M also

We now turn to our two main tools for the analysis of SIP

Proposition 1 : a) M has SIP if and only if for every pair of -

summands S and T with T T : M + S the projection map, the

kernel of the restricted map v I T is a summand.

b) If M has SIP and S c T is a summand of M , then

the kernel of any morphism from S to T is a summand.

Proof: a) Suppose M has SIP. For S' = ker .rr , we get -

M = S O S ' . Now ker 7 i I T = T n S ' is a summand. Conversely,

suppose that M has the stated property. Given S and T

summands of M , choose S' a complement to S and let o be

the projection to S' . We see that S n T = ker is a

summand.

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 4: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY

b ) By Lemma 1, S G T has SIP. Take any morphism o

mapping S t o T. I n S G T , we l o o k a t

Bo th S1 and S2 a r e summands o f S T w i t h complement U .

I t i s easy t o see t h a t S1 n S2 = C(k,O) / k E k e r 03 , so k e r a

must be a summand o f S .

P r o p o s i t i o n 2 : L e t M = G Mi be a d i r e c t sum o f f u l l y i n v a r i a n t

submodules Mi . The module M has SIP (SSIP) i f and o n l y i f

each Mi has SIP ( r e s p . SSIP).

P r o o f ; L e t S be any summand o f M. S i n c e each Mi i s f u l l y --

i n v a r i a n t , vSMi 5 S n Mi . A l s o each s E S can be w r i t t e n as

a f i n i t e sum s = Cmi w i t h mi E M i . So, s = n s = C v (m ) . S S i

We have S F G T ~ ( M ~ ) E G (S n M i ) E S , o r S = a (S O M i ) .

Now, g i v e n two summands S and T o f M ,

S ~ T = [ G ( S n M i ) ] fl [ G T n M i ] = G [ ( S n M i ) n ( T n M i ) ] .

S i n c e each Mi has SIP, t h i s i s a summand o f M . The p r o o f f o r

SSIP i s s i m i l a r .

Us ing P r o p o s i t i o n 1, we can c l a s s i f y some r i n g s i n t e rms o f

w h i c h modules have SIP.

P r o p o s i t i o n 3 : a ) A l l p r o j e c t i v e R-modules have SIP i f and

o n l y i f R i s h e r e d i t a r y .

b ) The f o l l o w i n g a r e e q u i v a l e n t f o r a r i n g R :

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 5: Modules with the summand intersection property

WILSON

i) R i s sem is imp le .

i i ) A l l R-modules have SSIP.

i i i ) A l l R-modules have SIP.

i v ) A l l i n j e c t i v e R-modules have SIP.

P r o o f : a ) Suppose t h a t R i s h e r e d i t a r y and P i s any p r o -

j e c t i v e R-module w i t h summands P1 and P2 . F o r any morph ism

0: P1 + P i m o i s p r o j e c t i v e , so a s p l i t s . Thus, k e r a 2 ' i s a summand o f P1 and by P r o p o s i t i o n 1 P has SIP.

Conve rse l y , assume t h a t a l l p r o j e c t i v e s have SIP. L e t P

be any p r o j e c t i v e and N any submodule o f P . Choose a f r e e

module F and an ep imorph i sm a: F -. N . By assumpt ion , t h e

p r o j e c t i v e F C P has SIP, so by P r o p o s i t i o n 1 k e r a i s a

summand o f F . N = i m o i s i s o m o r p h i c t o a complement o f

k e r a and so i s p r o j e c t i v e . Thus, R i s h e r e d i t a r y .

b ) Tha t i i m p l i e s ii i m p l i e s iii i m p l i e s i v i s

t r i v i a l . So assume t h a t i v h o l d s . We show t h a t R i s semi-

s i m p l e by showing t h a t a l l modu les a r e i n j e c t i v e . F o r any module

M , t h e r e i s an i n j e c t i v e El and a monomorphism a, : M + El

L i k e w i s e , t h e r e i s a monomorphi sm a2: El/ im fi , + E2 f o r some

i n j e c t i v e module E2 . S i n c e El G E2 has SIP, M ;.. k e r o2 i s

a summand o f El , hence M i s i n j e c t i v e . We c o n c l u d e t h a t R ,

i s sem is imp le .

We n o t i c e t h a t p a r t a o f t h e p r e v i o u s p r o p o s i t i o n c o n t a i n s

t h e r e s u l t o f Kap lansky w h i c h was men t i oned a t t h e b e g i n n i n q o f

t h i s pape r .

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 6: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY

P r o p o s i t i o n 3 says t h a t when R i s n o t sem is imp le , t h e r e

a r e i n j e c t i v e R-modules t h a t do n o t have SIP. We c l o s e t h i s sec-

t i o n by s t u d y i n g t h o s e i n j e c t i v e 8 t h a t do have SIP. We assume

f o r t h e r e s t o f t h e s e c t i o n t h a t R i s a commutat ive , n o e t h e r i a n

r i n g . The i n j e c t i v e enve lope o f a module M w i l l be d e n o t e d

E(M) .

Lemma 2: L e t R be a commuta t i ve , n o e t h e r i a n r i n g . L e t El and E2

be indecomposab le i n j e c t i v e modules . I f El GE2 has SIP, t h e n e i t h e r

i ) Hom(E,,E2) = 0

o r i i ) El i s i s o m o r p h i c t o E2 and t h e r e i s some p r i m e i d e a l

A < R w i t h a n n ( x ) = A f o r e v e r y nonze ro x E El .

P roo f : Take 0 # u E Hom(E1 ,E2) . S i n c e k e r a i s a summand o f -- El w h i c h i s n o t a l l o f El , k e r u = 0 . Now i m 0 i s a non-

z e r o i n j e c t i v e submodule o f E2 , hence a summand o f E2 . S i n c e

E 2 i s indecomposab le , 0 i s o n t o and El i s i s o m o r p h i c t o E2.

I t rema ins t o show t h e c o n d i t i o n on a n n i h i l a t o r s . Suppose

x and y a r e nonze ro e lemen ts of E and t h a t t h e r e i s some 1

a E a n n ( x ) w i t h a f a n n ( y ) . De f i ne r: El -+ E2 b y

~ ( m ) = am) . We see t h a t x E k e r r , S O T i s n o t a mono-

morph i sm. A1 so y f k e r T , so T # 0 . Thus, k e r T i s n o t a

summand, c o n t r a d i c t i n g P r o p o s i t i o n 1 . Thus, ann x = ann y f o r

a l l nonze ro x,y E El . Tha t ann x i s p r i m e f o l l o w s i m m e d i a t e l y

f r o m @, Theorem 61.

P r o p o s i t i o n 4: L e t R be a commutat ive , n o e t h e r i a n r i n g . An

i n j e c t i v e R-module E has S IP i f and o n l y i f i t has SSIP.

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 7: Modules with the summand intersection property

2 6 WILSON

P r o o f : C l e a r l y , a module w i t h SSIP has SIP. So assume t h a t E --

has SIP. E decomposes i n t o a d i r e c t sum o f indecomposab le i n -

j e c t i v e modules . We g roup t h e s e i n t o components Ci a l l o f whose

summands a r e e q u a l , i . e . E = @ C . and Ci = jEi 1

where f o r

each i , Ci has a l l t h e indecomposab le summands o f E ( i n t h e

g i v e n d e c o m p o s i t i o n ) w h i c h a r e i s o m o r p h i c t o jEi . By Lemma 2,

t h e C i l s a r e f u l l y i n v a r i a n t , so by P r o p o s i t i o n 2 i t s u f f i c e s

t o show t h a t each Ci has SSIP.

Each Ci i s a sum o f i s o m o r p h i c indecomposab le summands.

By Lemma 3 e i t h e r Ci i s indecomposab le , i n w h i c h case i t has

SSIP, o r i t i s a d i r e c t sum o f c o p i e s o f some indecomposab le

i n j e c t i v e module I = E(R/A) where A i s a p r i m e i d e a l and

a n n ( x ) = A f o r e v e r y x E I . We see t h a t I i s a t o r s i o n -

f r e e , i n j e c t i v e module o v e r t h e domain R I A , so I i s i somor -

p h i c t o t h e q u o t i e n t f i e l d o f R I A . Thus, Ci i s a v e c t o r

space o v e r t h i s f i e l d . I n t h i s case t o o , Ci has SSIP.

11. Modules w i t h a nonze ro i n j e c t i v e summand

F o r n o e t h e r i a n r i n g s R , a1 l R-modules have a u n i q u e maxi -

ma1 i n j e c t i v e summand i f and o n l y i f R i s h e r e d i t a r y . However,

o v e r any n o e t h e r i a n r i n g , modules w i t h SIP have a u n i q u e such

summand.

P r o p o s i t i o n 5 : L e t M be a module o v e r t h e n o e t h e r i a n r i n g R .

I f M has SIP, t h e n M has a u n i q u e maximal i n j e c t i v e summand.

P r o o f : By Z o r n ' s lemma, choose a maximal i ndependen t s e t CE,} --

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 8: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY 2 7

o f indecomposable, i n j e c t i v e submodules o f M . Since R i s

noe ther ian , E = G E i s i n j e c t i v e and so a d i r e c t summand o f M. a

We c l a i m t h a t E con ta ins a l l i n j e c t i v e submodules o f M . L e t

I be an i n j e c t i v e submodule o f PI . Since M has SIP, E f l I

i s a summand o f I , say I = (E n I ) G I' . I f I' # 0 , we

would ge t a s t r i c t l y l a r g e r s e t o f indecomposable, i n j e c t i v e

summands. Thus, I' = 0 and 1 5 E .

For t h e r e s t o f t h e s e c t i o n we w i l l s tudy modules o v e r a

n o e t h e r i a n domain D w i t h f i e l d o f q u o t i e n t s Q . Wi th t h i s

a d d i t i o n a l r e s t r i c t i o n , we w i l l be a b l e t o s t reng then t h e d e s c r i p -

t i o n o f i n j e c t i v e s w i t h SIP. I n t u r n , t h i s s t r o n g e r v e r s i o n w i l l

be used t o show t h a t when a module w i t h SIP has a nonzero maximal

i n j e c t i v e submodule, t h i s summand e s s e n t i a l l y determines t h e whole

module.

P r o p o s i t i o n 6 : L e t D be a n o e t h e r i a n domain. For an i n j e c t i v e

D-module, E , t h e f o l l o w i n g a r e e q u i v a l e n t .

a ) E has SSIP.

b ) E has SIP,

c ) e i t h e r i ) E i s t o r s i o n - f r e e

o r i i ) E i s t o r s i o n and f o r any two d i s t i n c t , indecomposable summands I and J o f E , Hom(1,J) = 0 .

Proo f : P r o p o s i t i o n 4 shows t h a t a i s e q u i v a l e n t t o b. To

show t h a t b i m p l i e s c, we beg in by showing t h a t E i s n o t mixed.

For any nonzero i d e a l A o f D , Hom(Q,E(D/A)) # 0 because t h e

map D + D/A + E(D/A) extends t o Q . Thus, no module w i t h SIP

can have Q 6 E(D/A) as a summand. E i s e i t h e r t o r s i o n o r

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 9: Modules with the summand intersection property

28 WILSON

t o r s i o n - f r e e . Suppose t h a t E i s t o r s i o n w i t h indecomposab le

summands I and J . Lemma 2 shows t h a t i f Hom(1,J) f 0 , t h e n

I i s i s o m o r p h i c t o J and a n n ( x ) = a n n ( y ) f o r e v e r y x,y E I . We show t h a t t h e r e a r e e lemen ts i n I w i t h d i s t i n c t a n n i h i l a t o r s .

Take any nonzero x E I and nonze ro a E a n n ( x ) . S i n c e I i s

d i v i s i b l e , t h e r e i s some y E I w i t h a y = x . C l e a r l y ,

a n n ( y ) f a n n ( x ) , so I J does n o t have SIP. T h i s c o n t r a -

d i c t i o n shows t h a t Hom(1,J) = 0 . F i n a l l y , suppose t h a t c h o l d s . I f E i s t o r s i o n - f r e e ,

t h e n i t i s a Q - v e c t o r space and c l e a r l y has SSIP. I f E i s as i n

c, ii, t h e n E decomposes i n t o a d i r e c t sum o f f u l l y i n v a r i a n t

indecomposab le modules E = G E S i n c e indecomposab les have i '

SSIP, P r o p o s i t i o n 2 shows t h a t E has SSIP.

To s t a t e t h e n e x t r e s u l t s we need t h e n o t i o n o f q u a s i -

i somorph ism. F o r t o r s i o n - f r e e modules A and B , a q u a s i -

homomorphism f r o m A t o B i s a homomorphism cp: E(A) + E(B)

such t h a t f o r some d E D , dcp(A) 5 B . A quasi-homomorphism cp

i s a q u a s i - i s o m o r p h i s m i f i t i s an i somorph i sm o f E (A ) w i t h

E(B) and cp-' i s a quasi-homomorphism. F o r A and B o f

f i n i t e r a n k , A i s q u a s i - i s o m o r p h i c t o B i f and o n l y i f A i s

i s o m o r p h i c t o a submodule o f B and B i s i s o m o r p h i c t o a sub-

module o f A . F o r f u r t h e r i n f o r m a t i o n , t h e r e a d e r i s r e f e r r e d

t o [3 5921 w h i c h t r e a t s t h e case o f a b e l i a n g roups e x t e n s i v e l y

and t o [ 2 ] w h i c h t r e a t s modules o v e r any domain.

Lemma 3: L e t D be a n o e t h e r i a n domain w i t h f i e l d o f q u o t i e n t s Q. --

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 10: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY 2 9

a) L e t A and B be rank one, reduced, t o r s i o n f r e e D-modules.

If C! G A G B has SIP, then A i s quasi - isomorphic t o B .

b ) L e t {Aili EIN be a c o l l e c t i o n o f quas i - i somorph ic ,

rank one, reduced, t o r s i o n - f r e e D-modules. W r i t i n g A = G A i '

Q G A does n o t have S I P .

P roo f : a ) We i d e n t i f y A and B w i t h submodules o f Q . S ince

A i s n o t d i v i s i b l e , we can choose d E D w i t h l / d F A .

De f ine a map 0: A G B -+Q by o ( r , s ) = d r - s .

k e r a = { ( r , d r ) : r € A , d r E B } . By P r o p o s i t i o n 1, k e r o i s a

summand o f A 6 B , say A G B = k e r o G X . k e r a has rank one

as does X . Obvious ly , A i s n o t con ta ined i n k e r a , so vx

t h e p r o j e c t i o n t o X sends A i s o m o r p h i c a l l y t o a submodule o f

X . A lso, ( 0 , l ) E A G B can be w r i t t e n

( 0 , l ) = (c,dc) G ( - c , l - d c ) E k e r o X . We cannot have dc = 1 ,

s i n c e l / d E A . Thus, 1 - dc f 0 and nBX f 0 . Now .ir .rr B X

sends A i s o m o r p h i c a l l y t o a submodule o f B . Symmet r i ca l l y ,

B i s isomorphic t o a submodule o f A , so A and B a r e quas i -

isomorphic .

b ) Again, we i d e n t i f y t h e Ai w i t h submodules o f Q .

Replac ing Ai w i t h an isomorphic copy as needed, we can assume

t h a t A < A < A . . . < Q . Since A1 i s n o t d i v i s i b l e , t h e r e 1 - 2 - 3 - i s some d C D w i t h dA1 f A1 . I t f o l l o w s e a s i l y t h a t

dAi # Ai f o r a l l t h e i ' s . Now d e f i n e a map o f rom A = G A i

t o Q by a ( o ) = a/di f o r a E Ai. C l e a r l y , d ( i m a) = im o ,

so o does n o t s p l i t . Thus, Q G A does n o t have SIP.

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 11: Modules with the summand intersection property

WILSON

We a r e now i n a p o s i t i o n t o p r o v e t h e ma in r e s u l t o f t h i s

s e c t i o n .

P r o p o s i t i o n 7 : L e t D be a n o e t h e r i a n domain and l e t M be a

D-module w i t h SIP. L e t I f 0 be i t s maximal i n j e c t i v e summand

w i t h complement I , M = I I .

a ) I f I i s t o r s i o n , a l l o f M i s t o r s i o n .

b ) I f I i s t o r s i o n - f r e e , t h e n t h e t o r s i o n submodule T

o f M i s a summand and M = I G T GU, where U i s a f i n i t e

d i r e c t sum o f q u a s i - i s o m o r p h i c , r a n k one modules .

P r o o f : a ) Suppose t h a t A i s an i d e a l o f D and t h a t

E = E(D/A) i s an indecomposab le summand o f I . The n a t u r a l map

D + D/A -+ E ex tends t o a nonzero , non isomorph ism T E Hom(Q,E) .

I f I ' i s n o t t o r s i o n , t h e n I ' / t o r s ( I 1 ) i s t o r s i o n - f r e e .

Thus, t h e r e a r e nonze ro morphisms o E Hom(1' ,()) . S i n c e Q i s

d i v i s i b l e , m u l t i p l i c a t i o n by any q E Q d e t e r m i n e s a n automor-

ph ism m o f Q . F o r a s u i t a b l e q , im(m a) i s n o t c o n t a i n e d 9 9

i n k e r -r . Thus, T m n i s a nonze ro morph ism f r o m I ' t o E . 9

B u t T m o c a n n o t s p l i t , because o a n n i h i l a t e s t o r s i o n . T h i s 9

would g i v e t h a t E G I ' does n o t have SIP, c o n t r a d i c t i n g o u r

assumpt ion. Thus, I' must be t o r s i o n .

b ) I f I ' i s t o r s i o n , t h e r e i s n o t h i n g t o show. So

assume t h a t I' i s n o t t o r s i o n and x E I ' i s t o r s i o n - f r e e .

The submodule <x> g e n e r a t e d by x i s i s o m o r p h i c t o D and so

embeds i n Q . S i n c e Q i s i n j e c t i v e , t h i s map ex tends t o a non-

z e r o m a p a f r o m I ' t o Q . S i n c e I' GQ has SIP, o s p l i t s

and I , I I a - c Q i s i s o m o r p h i c t o a summand o f I ' . By Z o r n ' s

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 12: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY

lemma, choose a maximal independent s e t Csi 1 o f rank one,

t o r s i o n - f r e e summands o f I ' . L e t U = G Si. C l e a r l y , U G T F I ' .

We c l a i m t h a t U C T = 1 ' . Say n o t . Take any x f U E T and l e t

r;: I' + I ' / U G T be t h e q u o t i e n t map. I f <x> n ( U G T ) = 0 ,

then nx i s a t o r s i o n - f r e e element. The embedding o f a x > i n t o

Q extends t o a nonzero map -r f rom I 1 / U G T t o Q . Now TTT

must s p l i t , g i v i n g a rank one, t o r s i o n - f r e e summand S o f I ' .

Since a r a n n i h i l a t e s U T , S 0 U = 0 c o n t r a d i c t i n g t h e

maximal i t y o f CSi 3 . Therefore, we must have dx E U G T f o r

some d E D . We can f i n d a nonzero a E D w i t h a d x E U .

Since U i s pure, ad x = ad w f o r some w E U . We ge t

ad(x - w) = 0 so x d i f f e r s f rom w by an element o f T . We

conclude t h a t x E U T and t h a t I' = U G i . Since I G U

must have SIP, Lemma 3 shows t h a t a l l t h e rank one summands o f U

must be quas i - i somorph ic and t h a t U must have f i n i t e rank .

Wi th some a d d i t i o n a l r e s t r i c t i o n s on the domain D , we can

complete t h e d e s c r i p t i o n g i v e n i n P r o p o s i t i o n 7 o f t h e modules

w i t h SIP t h a t have a nonzero i n j e c t i v e submodule. We d e l a y t h e

a n a l y s i s o f t h e t o r s i o n submodule u n t i l t h e n e x t s e c t i o n . We

f i n i s h t h i s s e c t i o n w i t h a r e s u l t on t h e t o r s i o n - f r e e p a r t , when

D i s a PID. I n t h i s case, quasi - isomorphic rank one modules a r e

isomorphic , so t h e U o f P r o p o s i t i o n 7 i s a homogeneous,

comp le te ly decomposable module o f f i n i t e rank.

P r o p o s i t i o n 8: L e t D be a PID. L e t I be a t o r s i o n - f r e e i n -

j e c t i v e module and U be a homogeneous, comp le te ly decomposabl e

module o f f i n i t e rank. The module M = I G U has SSIP.

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 13: Modules with the summand intersection property

3 2 WILSON

P r o o f : L e t CSi} be any c o l l e c t i o n o f summands. S i n c e M i s

t o r s i o n - f r e e , K = n Si i s p u r e [3 526 f a c t e l . IK = I n K i s a

p u r e subgroup o f I , hence i s d i v i s i b l e and a summand. W r i t e

K = IK G U K . By [4, - Lemma 61, i t s u f f i c e s t o show t h a t K / I K i s

a summand o f M / I K , so we can ssume t h a t IK = 0 . A g a i n u s i n g

[4, Lemma 61, i t s u f f i c e s t o show t h a t ( K + I ) / I i s a summand o f

M / I . B u t ( K + I ) / I i s a p u r e subgroup o f M / I = U , hence i s a

summand by [3, 86.81. T h e r e f o r e , K i s a summand o f M .

Of cou rse , t h e above r e s u l t i n c l u d e s t h e case I = 0 . We

c o n c l u d e t h i s s e c t i o n by g e n e r a l i z i n g t h i s case . Our r e s u l t i s

based on a lemma o f Botha and Grabe, w h i c h does a l l t h e work .

These a u t h o r s c o n s i d e r e d t h e c l a s s @ o f a l l f i n i t e r a n k ,

t o r s i o n - f r e e modules whose endomorphism r i n g i s a PID. T h i s

c l a s s i n c l u d e s a l l t o r s i o n - f r e e modules o f r a n k one. The p a r t o f

t h e i r work w h i c h i s u s e f u l h e r e i s t h e f o l l o w i n g lemma.

Lemma 4 : [I] L e t A be a f i n i t e d i r e c t sum o f c o p i e s o f some -- -

C E @ . The k e r n e l o f each endomorphism o f A i s a summand o f

A , w h i c h i s i s o m o r p h i c t o a d i r e c t sum o f c o p i e s o f C .

C o r o l l a r y : A has SSIP. --

P r o o f : By P r o p o s i t i o n 1, A has SIP. S i n c e A has f i n i t e r a n k ,

i t has SSIP.

Remark: I n f i n i t e r a n k , homogeneous, c o m p l e t e l y decomposable

modules need n o t have SSIP. F o r example, a f r e e a b e l i a n g roup o f

t h e power o f t h e con t i nuum has SIP, b u t n o t SSIP.

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 14: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY

111. T o r s i o n

Hav ing d e t e r m i n e d t h e i n j e c t i v e p a r t o f a module w i t h SIP,

we t u r n t o t h e reduced p a r t and, i n p a r t i c u l a r , t h e t o r s i o n .

Throughout t h i s s e c t i o n , D w i l l d e n o t e a Dedek ind domain w i t h

f i e l d o f q u o t i e n t s Q . I n t h i s case, a t o r s i o n module T i s

u n i q u e l y a d i r e c t sum T = TB o f Q -p r imary submodules, one

f o r each p r i m e i d e a l 8 . We n o t e t h a t Tg i s u n i q u e l y d i v i s i b l e

by each d f B .

Lemma 5 : L e t D be a Dedek ind domain and l e t T = GTG be a

t o r s i o n module. T has SIP (SSIP) i f and on

B , t h e B-component TQ has S IP ( r e s p . SSIP

P r o o f : The TB a r e f u l l y i n v a r i a n t , so t h e --

i m m e d i a t e l y f r o m Lemma 1 and P r o p o s i t i o n 2.

P r o p o s i t i o n 9: L e t D be a Dedek ind domain --

l y i f f o r e v e r y p r i m e

) .

lemma f o l l o w s

a n d l e t C b e a

reduced module w i t h SIP. F o r each p r i m e i d e a l 8 , t h e @ - t o r s i o n

Cg i s a d i r e c t summand o f C w h i c h i s e i t h e r e l e m e n t a r y o r c y c l i c .

P r o o f : Cg i s a module o v e r t h e PID DQ, so we can use some o f --

t h e s t a n d a r d r e s u l t s on P I D ' s . I n p a r t i c u l a r , QDQ = ( p ) f o r

some p r i m e e lemen t p . Not e v e r y e lemen t o f o r d e r p i n CQ

can have i n f i n i t e h e i g h t ( a t p ) , s i n c e t h a t wou ld i m p l y t h a t CB

i s d i v i s i b l e 14, Lemma 81.

Case 1 : Assume t h a t t h e r e i s a n e lemen t t E Cg o f o r d e r p

n w i t h h ( t ) = n 0 < n < . Take y E Cg w i t h p y = t . Now

(<y> + # c ) / Q ~ c i s bounded and p u r e as a submodule o f t h e Dy

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 15: Modules with the summand intersection property

WILSON 3 4

module C/@C . T h e r e f o r e , [3, 27 .51 (<y> + Q ~ c ) / Q ~ c i s a

summand o f C/@C . A l s o <y> fl = 0 , so <y> i s a summand

o f C [$, Lemma 61, say C = <y> 6 X . We c l a i m t h a t X can

have no Q - t o r s i o n . I f x E X has a n n ( x ) = B , t h e n t h e r e i s a

map a f r o m <y> t o X w h i c h sends y t o x . S i n c e k e r a

i s n o t a summand, t h i s i s a c o n t r a d i c t i o n . We c o n c l u d e t h a t

Cg = <y> w h i c h i s a summand.

Case 2: Assume t h a t a l l t E Cg o f o r d e r p have h e i g h t 0 o r

t h i s

CQ

CQ

We c l a i m t h a t Cg i s an e l e m e n t a r y summand o f C . To show

we n o t e t h a t a n ascend ing u n i o n o f e l e m e n t a r y summands o f

s p u r e [3, 526 f a c t f ] and e l e m e n t a r y and so a summand o f

3, 27.51. By Z o r n ' s lemma, choose a maximal e l e m e n t a r y -.

summand B o f Cg. We w i s h t o show t h a t B = C g . W r i t e

Cg = B X and assume t h e c o n t r a r y . As above, n o t a l l e l emen ts

o f o r d e r p i n X can have i n f i n i t e h e i g h t . By assumpt ion ,

t h e r e i s no e lemen t o f o r d e r p w i t h nonze ro f i n i t e h e i g h t , so

t h e r e i s some x E X w i t h o r d e r p and h e i g h t z e r o . B u t now,

t h e c y c l i c module <x> i s a p u r e and bounded submodule, and so a

summand o f X . We see t h a t B 6 <x> i s a l a r g e r e l e m e n t a r y

summand o f Cg, c o n t r a d i c t i n g o u r c h o i c e o f B . T h i s shows

Cg = B . Now, (Cg + BC)/BC i s a summand o f C /QC and

C Q n 8 C = 0 , so Cg i s a summand o f C .

C o r o l l a r y : Cg has SSIP.

P r o o f : I f CQ i s e lemen ta ry , i t i s a v e c t o r space o v e r D/&

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 16: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY

Before go ing on, we remark t h a t t h e t o r s i o n need n o t be a

summand o f a module w i t h SIP. For example, t h e 72-module i'I 22 P '

t h e p roduc t be ing taken over any i n f i n i t e s e t o f ( d i s t i n c t ) pr imes,

has SSIP, b u t i t s t o r s i o n G 72 i s n o t a summand. P

For a module w i t h SIP, we can now w r i t e M = E 6 C&. 6 XG

where E i s d i v i s i b l e , Cg i s B -p r imary reduced and XQ i s

some reduced complement. The p o s s i b l e E ' s and Cgls have been

determined. However, t h e r e can be some i n t e r a c t i o n between t h e

summands, so t h a t n o t a l l E G CB combinat ions occur . We now

determine which ones do have SIP.

P r o p o s i t i o n 10: L e t D be a Dedekind domain. L e t E be d i v i s i b l e

and CQ be a reduced Q-primary module. The f o l l o w i n g a r e equ iva len t .

a ) E G Cg has SSIP.

b ) E G Cg has SIP.

c ) i ) b o t h E and Cg have SIP

and i i ) i f E(DIB) i s a summand o f E, CQ i s e lementary.

P roo f : a o b v i o u s l y i m p l i e s b .

Suppose t h a t b ho lds . By Lemma 1, bo th E and Cg have

SIP. To see t h a t c o n d i t i o n ii i s a l s o r e q u i r e d , assume t h a t

E(Dl.8) i s a summand o f E and t h a t CG i s n o t e lementary. Then

C = <y> i s c y c l i c o f o r d e r pk f o r some 1 < k < m . Choose 8

z E soc(E(D/B)) . There i s a map u f rom <y> t o E(D/B)

sending y t o Z . k e r u = <py> i s n o t a summand, c o n t r a d i c t i n g

P r o p o s i t i o n 1 .

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 17: Modules with the summand intersection property

36 WILSON

To prove t h a t c i m p l i e s a , we examine t h e rema in ing

p o s s i b i l i t i e s . Note t h a t E and CQ b o t h have SSIP. I f E i s

t o r s i o n - f r e e , bo th E and CQ a r e f u l l y i n v a r i a n t , so by Propo-

s i t i o n 2 E G Cff has SSIP. I f E i s a summand o f Q/D , then

E G CG i s t o r s i o n , so i t s u f f i c e s t o check t h a t f o r each pr ime

2 , (E GCQ)2 has SSIP. Obvious ly , we need o n l y l o o k a t

(E G Cy) = EQ Cq. I f Eff = 0 t h e r e i s n o t h i n g t o show, so

assume t h a t EQ = E(D/ff) (and t h a t CQ i s e lementa ry ) . L e t

?'Si Ii I be a c o l l e c t i o n o f summands o f E(D/B) 6 Cg . C l e a r l y ,

t h e o n l y elements o f E(D/ff) CG which a r e d i v i s i b l e by p E D

a r e o f t h e form (e,O) . Since a l l Si a r e pure, t h i s means t h a t

e i t h e r each Si c o n t a i n s E(D/B) o r i s e lementary. I f a l l Si

c o n t a i n E(D/ff) , then w r i t i n g Si = E(D/Q) G B we g e t i

Ti Si = E(D/B) G n Bi i s a summand. I f some Si i s e lementary, I I then n S i s a submodule o f t h e DIG v e c t o r space Si , hence

r i 1

i s a summand o f Si .

C o r o l l a r y : If M has SIP, i t s t o r s i o n submodule has SSIP. A-

C o r o l l a r y : L e t M = CE MG be a t o r s i o n module. M has SIP i f

and o n l y i f each MQ i s e i t h e r elementary, E(D/ff) C elementary

o r c y c l i c .

P r o p o s i t i o n 7 showed t h a t t o r s i o n i n E t h e d i v i s i b l e p a r t

of M = E C makes M t o r s i o n . Tors ion i n t h e reduced p a r t

a l s o p laces severe r e s t r i c t i o n s on C , and so on M .

P r o p o s i t i o n 11 : L e t D be a Dedeki nd domai n . C = Cg G Xg has

SIP (SSIP) i f and o n l y i f

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 18: Modules with the summand intersection property

THE SUMMAND INTERSECTION PROPERTY

i ) b o t h CQ and XQ have SIP (SSIP)

and i i ) i f C@ f 0 , t h e n XB i s B - d i v i s i b l e .

P r o o f : Assume t h a t C has SIP(SS1P). By Lemma 1, b o t h CQ and

Xg have SIP (SS IP ) . Assume t h a t CB f 0 and t h a t XB i s n o t

B - d i v i s i b l e . Tank any y E CQ w i t h @ = 0 . The c y c l i c

module < y > i s i s o m o r p h i c t o D/B . X@ f BXQ so t h e r e a r e non-

z e t o maps 8: X@+ <y> . Ker e c a n n o t be a summand l e s t we have

XQ = k e r 8 6 i m 8 w h i c h has @ - t o r s i o n . Thus, CQ f 0

i m p l i e s XG i s B - d i v i s i b l e .

Conve rse l y , i f ii h o l d s , t h e n CQ and XQ a r e f u l l y

t o g e t h e r w i t h i i m p l i e s t h a t XB G C@ has

C o r o l l a r y :

M has a d

P r o o f : I f

i n v a r i a n t . T h i s

SIP (SS IP ) .

L e t D be a PID and M be a D-module w i t h SIP. I f

i v i s i b l e submodule, t h e n M has SSIP.

M i s t o r s i o n , t h i s i s a c o r o l l a r y t o P r o p o s i t i o n 10.

I f t h e d i v i s i b l e submodule o f M i s t o r s i o n - f r e e , t h e n b y

P r o p o s i t i o n 7, M = I G T G U . By P r o p o s i t i o n 8 and 10, I G U

and T have SSIP. Of c o u r s e , T i s f u l l y i n v a r i a n t . By

P r o p o s i t i o n 11, I G U i s f u l l y i n v a r i a n t a l s o . Now, P r o p o s i t i o n

2 shows t h a t M has SSIP.

Acknowledgement

I wou ld l i k e t o t h a n k Dr . L. Fuchs. H i s h e l p f u l comments

g r e a t l y improved t h e o r i g i n a l p r e s e n t a t i o n o f t h e s e r e s u l t s .

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3

Page 19: Modules with the summand intersection property

REFERENCES

WILSON 1

[l] J.D. Botha and P. J. Grabe, On t o r s i o n - f r e e a b e l i a n groups whose endomorphism r i n g s a r e p r i n c i p a l i d e a l domains, Comm. i n A l g . (11 ) 1 2 (1983), 1343-1354.

[ 2 ] M.C.R. B u t l e r , A c l a s s o f t o r s i o n - f r e e a b e l f i n i t e r a n k , Proc. London Math. Soc. ( 3 ) 15 680-698.

[3] L. Fuchs, " I n f i n i t e Abel i a n Groups", two vo Press, New York, 1970.

i a n groups o f (1 965 ) ,

1 umes , Academic

[ 4 ] I. Kaplansky, " I n f i n i t e Abel i a n Groups", U n i v . o f M i c h i g a n Press, Ann A r b o r , 1969.

[5 1 , "Commutat ive R ings " , U n i v . o f Chicago Press, Chicago, 1974.

Received: July 1984 Revised: May 1985

Dow

nloa

ded

by [

Tex

as S

tate

Uni

vers

ity -

San

Mar

cos]

at 0

4:40

08

May

201

3