Module 03 Seismic Reflection

Embed Size (px)

Citation preview

  • 7/27/2019 Module 03 Seismic Reflection

    1/53

    Seismic

    Reflection

    1

    Module 3

    Seismic Reflection

    Learning Objectives

    Know ledge Level:

    Properties of seismic traces

    Vertical and horizontal resolution

    Amplitude behavior and recovery

    Factors affecting amplitudes, detection, and

    resolution

  • 7/27/2019 Module 03 Seismic Reflection

    2/53

    Seismic

    Reflection

    2

    TOPICS

    Reflection Coefficients

    Convolutional Model

    Zero Phase Wavelet

    Vertical and Horizontal Resolution

    Thin Bed Tuning

    Geometric Spreading

    Factors that affect Recorded Amplitudes

  • 7/27/2019 Module 03 Seismic Reflection

    3/53

    Seismic

    Reflection

    3

    WHY IMPORTANT

    Interaction of propagating source wavelet withinhomogeneous subsurface is fundamental

    Understanding resolution is critical to final

    interpretation and in design/QC of acquisition andprocessing

    Quantitative amplitude analysis is based onunderstanding amplitude changes duringpropagation

  • 7/27/2019 Module 03 Seismic Reflection

    4/53

    Seismic

    Reflection

    4

    Normal Incidence Reflection Coefficient

    A

    AR12

    1V12V2

    A(1-R12)

    2V2 - 1V12V2 + 1V1

    V = Acoustic impedance

    Where = density in gm/cc and V= velocity unit length/sec

    R12 =

  • 7/27/2019 Module 03 Seismic Reflection

    5/53

    Seismic

    Reflection

    5

    Ideal Seismogram

    The seismic data recorded should give us the

    Earths reflectivity sequence:

    Surface

    Depth

    Time

    Reflection Coefficient

  • 7/27/2019 Module 03 Seismic Reflection

    6/53

    Seismic

    Reflection

    6

    Definitions and Basic Relationships

    for Sinusoids

    Phase refers to position

    of zero crossing.

  • 7/27/2019 Module 03 Seismic Reflection

    7/53

    Seismic

    Reflection

    7

    Exercise

    Given the above wavelet,

    1. What is the frequency of the wavelet?

    2. What is the wavelength in a layer of velocity 3800 m/sec?

  • 7/27/2019 Module 03 Seismic Reflection

    8/53

    Seismic

    Reflection

    8

    Exercise

    Most of the energy in a seismic wavelet is contained in a band of

    frequencies centered about the dominant frequency. The dominant

    period can be defined as the time between two major crests. The

    dominant frequency is the reciprocal of the dominant period. The

    equation for wavelength, , is:

    = velocity/frequency

    Calculate wavelengths for the following cases:a. Shallow rocks: V=2000 m/s, f=50 Hz;

    b. Deep rocks: V=6000 m/s, f=25 Hz.

  • 7/27/2019 Module 03 Seismic Reflection

    9/53

    Seismic

    Reflection

    9

    Convolutional Model

    Source Input Earth Noise Seismic traces

    + =

    Time

    *

  • 7/27/2019 Module 03 Seismic Reflection

    10/53

    Seismic

    Reflection

    10

    Normal Incidence Synthetic

    Wavelet contains

    source pulse, instrument

    distortion, near surface effects

    Rocks V LogRC Log

    (depth)

    RC Log

    (time)

    Z

    t

    Reflectivity R(t)

    Plus

    The Wavelet

  • 7/27/2019 Module 03 Seismic Reflection

    11/53

    Seismic

    Reflection

    11

    Composing a Wavelet by Superposition

  • 7/27/2019 Module 03 Seismic Reflection

    12/53

    Seismic

    Reflection

    12

    Synthetic Seismogram by Superposition

  • 7/27/2019 Module 03 Seismic Reflection

    13/53

    Seismic

    Reflection

    13

    Constructing the Synthetic Trace

    REFLECTIVITY

    WAVELET

    REFLECTIVITY

    WAVELET

    SUPERIMPOSED

    REPLACEMENTS

    EACH REFLECTION STICK

    IS REPLACED BY A

    PROPORTIONAL VERSIONOF THE WAVELET

    THE OVER-LAPPED WAVELETSARE SUMMED TO PRODUCE

    THE SEISMIC TRACE

    t

    t

    t

    R1 R4 R6

    R2R4

    R5

  • 7/27/2019 Module 03 Seismic Reflection

    14/53

    Seismic

    Reflection

    14

    Constructing the Synthetic Trace

    Zero Phase

  • 7/27/2019 Module 03 Seismic Reflection

    15/53

    Seismic

    Reflection

    15

    TOTAL SEISMIC

    RESPONSE

    (SYNTHETIC SEISMOGRAM)

    INDIVIDUAL

    RESPONSE

    100 MS

    ACOUSTICIMPEDANCE

    WATER

    GAS

    WATER

    LITHOLOGY

    Mixed Phase

  • 7/27/2019 Module 03 Seismic Reflection

    16/53

    Seismic

    Reflection

    16

    Pinchout?

  • 7/27/2019 Module 03 Seismic Reflection

    17/53

    Seismic

    Reflection

    17

    Wavelets & Spectra

    Mixed PhaseZero Phase

    Wavelets can be decomposed into amplitude

    and phase spectra using the Fourier Transform

  • 7/27/2019 Module 03 Seismic Reflection

    18/53

    Seismic

    Reflection

    18

    The Zero Phase Wavelet

    Zero phase is optimum

    Strongest peak

    Symmetry optimizes resolution

    Peak at zero reference time

    Closest to reflection coefficient spike

  • 7/27/2019 Module 03 Seismic Reflection

    19/53

    Seismic

    Reflection

    19

    Common Types of Seismic Wavelets

    Name Shape Spectrum Features

    RickerNo side-lobe

    overshoot

    KlauderWhite from

    f1 to f2

    Texas

    Doublef3 = 4 f2

    Ormsby

    Controllable

    side-loberipple

    f1

    f1 f2

    f1 f2 f3

    f1 f2 f3 f4

    S

  • 7/27/2019 Module 03 Seismic Reflection

    20/53

    Seismic

    Reflection

    20

    Klauder Wavelet

    S i i

  • 7/27/2019 Module 03 Seismic Reflection

    21/53

    Seismic

    Reflection

    21

    Vertical or Temporal Resolution

    Seismic ability to define top and

    bottom of a rock layer

    In general, reflections are composites of thin layer effects.

    S i i R l ti Li it

  • 7/27/2019 Module 03 Seismic Reflection

    22/53

    Seismic

    Reflection

    22

    Resolution Limits

    Full Wavelength

    Resolved Layer

    Half Wavelength

    Resolved Layer

    Quarter Wavelength

    Unresolved Layer

    (Detected)

    Single Reflection

    No Layer

    Seismic

  • 7/27/2019 Module 03 Seismic Reflection

    23/53

    Seismic

    Reflection

    23

    Ideal Threshold For Vertical Resolution

    Dominant Wavelength of Seismic Wave =

    Where: V is the velocity in unit distance per second and

    f is the dominant frequency in Hz

    f

    V

    V(m/sec) F(Hz) / 4 (m)

    2000 50 10

    3000 40 19

    4000 30 33

    5000 20 62.5

    Seismic P ti l V ti l R l ti

  • 7/27/2019 Module 03 Seismic Reflection

    24/53

    Seismic

    Reflection

    24

    Practical Vertical Resolution

    estimateveconservat idatanoisy2

    12=N

    estimatenominaldataaverage313=N

    est imateopt imist icdatamodel4

    14=N

    qualitydataondepending4and2betweenisNWhere

    fthanveconservat imoreffBANDWIDTHmaxm inmax

    BandwidthN

    VR intv

    Seismic

  • 7/27/2019 Module 03 Seismic Reflection

    25/53

    Seismic

    Reflection

    25

    Vertical Resolution Exercise (N=3)

    A shallow feature with velocity of 2000 m/s and

    bandwidth of 50 Hz can be resolved if it is as thin

    as_______meters.

    A deep feature with 5000 m/s velocity and

    bandwidth of 20 Hz can be resolved if it is as thin as_________meters.

    The thickness of a deep feature must

    be__________(greater, less) than that of a shallowfeature in order to be resolvable.

    Seismic Lateral Effects

  • 7/27/2019 Module 03 Seismic Reflection

    26/53

    Seismic

    Reflection

    26

    Lateral Effects

    Fresnel Zone

    Lateral Resolution Before Migration

    Lateral Resolution After Migration

    Seismic

  • 7/27/2019 Module 03 Seismic Reflection

    27/53

    Seismic

    Reflection

    27

    Fresnel Zone

    frequencydominantf

    f

    t

    2

    V

    R

    V

    Z2t

    wave.aofphasecoherent

    common,areflecting

    areacirculartheof

    radiustherepresentsR

    o

    oo

    Velocity = V

    Reflections come from areas (not points) on interfaces. Seismic

    wavelength and wavefront travel time result in an area of

    constructive interference on the reflector.

    Seismic Fresnel Zone

  • 7/27/2019 Module 03 Seismic Reflection

    28/53

    Se s c

    Reflection

    28

    Fresnel Zone

    Where:

    V : is the velocity in unit distance per secondT : is time in second

    F : is the frequency in HZ

    T(sec) V(m/sec) F(hz) R(m)

    1 2000 50 141

    2 3000 40 355

    3 4000 30 632

    4 5000 20 1118

    f

    t

    2

    V

    RRadiusZoneFresnel

    Seismic

  • 7/27/2019 Module 03 Seismic Reflection

    29/53

    Reflection

    29

    Fresnel Zone in 3-D

    Map View

    3-D Migration reduces (but does not eliminate) fresnel zone in

    both x and y dimensions

    Seismic

  • 7/27/2019 Module 03 Seismic Reflection

    30/53

    Reflection

    30

    Implications of Fresnel Zones

    Seismic Lateral Resolution

  • 7/27/2019 Module 03 Seismic Reflection

    31/53

    Reflection

    31

    Lateral Resolution

    After migration, lateral resolution (RL) depends upon

    the maximum frequency contributing to the migrated

    image. This can be computed from the verticalresolution (RV) and maximum ray angle.

    angle)raym ax

    angleraym ax

    sin(BandwidthN

    VR

    sinRR

    intL

    VL

    Seismic Lateral Resolution

  • 7/27/2019 Module 03 Seismic Reflection

    32/53

    Reflection

    32

    Lateral Resolution

    Lateral resolution after migration

    Point diffractors, 30m separation, 10m traceinterval, 3000m/s velocity

    Hz100maxf Hz50maxf

    After Kirchhoff Migration After Kirchhoff Migration

    After Cordsen, Galbraith and Peirce

    Planning Land 3-D Seismic Surveys, 2000

    Geophysical Development Series, V. 9

    RLRL

    Seismic Lateral Resolution Concept Based

  • 7/27/2019 Module 03 Seismic Reflection

    33/53

    Reflection

    33

    p

    on Diffraction Properties

    Seismic

    R fl ti Practical Lateral Resolution

  • 7/27/2019 Module 03 Seismic Reflection

    34/53

    Reflection

    34

    Practical Lateral Resolution

    A pragmatic definition depends upon the interpreters ability to visually

    detect the seismic response of the target. An empirical threshold of 3

    consecutive traces is often used as the minimum detectable response.

    Minimum Detectable Size

    Rv = Vertical ResolutionDiffractions Prior to Migration

    angle)raymax

    angleraymax

    sin(BandwidthN

    V3R

    sin

    R3R

    intL

    VL

    3 traces * Rv / sin(max ray angle)

    Seismic

    R fl ti Exercise

  • 7/27/2019 Module 03 Seismic Reflection

    35/53

    Reflection

    35

    Exercise

    Calculate the size of a feature that is

    detectable under the following circumstances: Trace spacing = 25m

    Interval velocity Vint = 3000 m/s

    Dominant frequency = 40 hz

    Maximum ray angle = 30 degrees

    angle)raymaxsin(

    R3R

    BandwidthN

    VR

    VL

    intV

    Seismic

    Reflection Wedge Model and Tuning

  • 7/27/2019 Module 03 Seismic Reflection

    36/53

    Reflection

    36

    Wedge Model and Tuning

    Horizontal Distance (x)

    Depth(Z)

    Seismic

    Reflection Wedge Model and Tuning

  • 7/27/2019 Module 03 Seismic Reflection

    37/53

    Reflection

    37

    Tuning alignment at:

    bed thickness = /4

    wavelet time delay = 1/(2*fdom)

    Bed thickness as a % of dominant wavelength

    Wedge Model and Tuning

    Seismic

    Reflection Tuning Amplitude Behavior

  • 7/27/2019 Module 03 Seismic Reflection

    38/53

    Reflection

    38

    Tuning Amplitude Behavior

    AMP

    Bed Thickness

    1.0

    Seismic

    Reflection Spherical Divergence and Geometric

  • 7/27/2019 Module 03 Seismic Reflection

    39/53

    Reflection

    39

    p g

    Spreading

    Spherical Geometric

    Divergence Spreading

    CONSTANT

    Seismic

    ReflectionDecrease in Amplitude and

  • 7/27/2019 Module 03 Seismic Reflection

    40/53

    Reflection

    40

    Frequency with Time

    Amplitude is equal to 100

    Amplitude is equal to 10-6

    Time

    High frequency signal 0.5 sec

    Low frequency signal 6.0 sec

    Raw observed

    seismic data

    Seismic

    Reflection Changes During Propagation

  • 7/27/2019 Module 03 Seismic Reflection

    41/53

    Reflection

    41

    Changes During Propagation

    Decay in amplitude:

    divergence due to geometric spreading - v2t

    Loss of high frequencies due to earth's

    attenuation - Q effect

    Seismic

    ReflectionGeometric Spreading Correction

  • 7/27/2019 Module 03 Seismic Reflection

    42/53

    42

    Spherical Divergence:

    Constant Velocity = Vc

    Ar= A0(r0/r) = A0(VcT0/VcTr)= A0(T0/Tr)

    A0

    r2 Ar2

    r1 Ar1

    Source Source

    0

    2

    0

    2

    000

    t

    t

    V

    )t(VS

    SSpreadingGeometric

    TV

    TVAA

    V(t)timeand

    depthwithincreasesVelocity

    :SpreadingGeometric

    gs

    gs

    rrr

    Seismic

    Reflection Amplitude Recovery

  • 7/27/2019 Module 03 Seismic Reflection

    43/53

    43

    p y

    Seismic

    Reflection Absorption and Scattering

  • 7/27/2019 Module 03 Seismic Reflection

    44/53

    44

    p g

    Rock Fragments

    Seismic

    Reflection High Frequency Attenuation

  • 7/27/2019 Module 03 Seismic Reflection

    45/53

    45

    A shot record after

    correction for geometric

    spreading loss is shown

    at left

    The far left record is not

    filtered but narrow passband filters were applied

    to the next four

    The amplitude is seen to

    decay with both time and

    frequency

    Seismic

    Reflection Inelastic Attenuation

  • 7/27/2019 Module 03 Seismic Reflection

    46/53

    46

    (Absorption and Scattering)

    A(x) = A0e-ax

    where A(x) = amplitude as a function of distance

    A0 = reference amplitude

    x = seismic path length

    e = base of natural logarithms = 2.718...a = attenuation constant

    = p/Q pf/QV

    where Q = Quality Factor, = wavelength,

    f = frequency, and V = velocity

  • 7/27/2019 Module 03 Seismic Reflection

    47/53

    Seismic

    Reflection Factors That Affect Seismic Amplitudes

  • 7/27/2019 Module 03 Seismic Reflection

    48/53

    48

    Superimposed

    Noise

    Geophone Sensitivity

    and Coupling

    Instrument

    Balance

    SourceStrength

    and

    coupling

    Geometrical

    Spreading

    Reflection

    CoefficientVariation of Reflection

    Coefficient with angle

    of Incidence

    Interference of

    Different Events

    Interbed Multiples

    in Thin Beds

    Absorption

    ArrayDirectivity

    Scattering

    Reflector Curvatureand Rugosity

    Seismic

    Reflection Summary

  • 7/27/2019 Module 03 Seismic Reflection

    49/53

    49

    Properties of seismic waveforms and traces , f, velocity

    Vertical resolution Zero phase wavelet

    Resolution limits

    Tuning Lateral resolution

    Fresnel zones

    Detectable object size

    Amplitude effects Geometric spreading

    Absorption

    Seismic

    Reflection

  • 7/27/2019 Module 03 Seismic Reflection

    50/53

    50

    Answer

    40 ms

    m

    Hz

    15225

    3800

    Frequency

    VelocityWavelength

    25040.0

    1

    Period

    1Frequency

    Seismic

    Reflection Answer

  • 7/27/2019 Module 03 Seismic Reflection

    51/53

    51

    Shallow rocks: V=2000 m/s, f=50 Hz;

    Deep rocks: V=6000 m/s, f=25 Hz.

    m4050

    2000

    m24025

    6000

    Seismic

    ReflectionVertical Resolution Exercise

    Answers

  • 7/27/2019 Module 03 Seismic Reflection

    52/53

    52

    Answers

    A shallow feature with velocity of 2000 m/s and bandwidth of 50 Hz can

    be resolved if it is as thin as_______meters.

    A deep feature with 5000 m/s velocity and bandwidth of 20 Hz can be

    resolved if it is as thin as _________meters.

    The thickness of a deep feature must be__________(greater, less) than

    that of a shallow feature in order to be resolvable.

    m3.13503

    2000

    BandwidthN

    VR intv

    m3.83203

    5000

    BandwidthN

    VR intv

    Greater

    Seismic

    Reflection Answer

  • 7/27/2019 Module 03 Seismic Reflection

    53/53

    53

    m150)30sin(

    253

    sin(

    R3

    m25403

    3000

    v

    angle)raymaxRresolutionlateral

    Rresolutionvertical

    L

    v

    Assume N = 3 for normal data

    Minimum

    Number

    of Traces

    (empirical constant)

    Vertical

    Resolution