67
Models and Measures of Virus Growth and Infection Spread John Yin Department of Chemical and Biological Engineering University of Wisconsin-Madison, USA [email protected]

Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Models and Measuresof

Virus Growth and Infection Spread

John YinDepartment of Chemical and Biological Engineering

University of Wisconsin-Madison, [email protected]

Page 2: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Our Genome in the News

President Clinton Announces the Completion of the First Survey of theEntire Human Genome (June 25, 2000)Hails public and private efforts leading to this historic achievement

Craig Venter Francis Collins

Page 3: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

transcriptome

A Challenge for the Century

Genome (Homo sapiens)

Given a Genome Predict the Organism

FertilizedEgg

Proteome“Interactome”

Metabolome

Mechanisms ofdifferentiation& development

Susceptibility todisease & treatment

Page 4: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

What are the most important traits for an organism?

Charles Darwin(1809-1882)

"In the struggle for survival, the fittest winout at the expense of their rivals because theysucceed in adapting themselves best to theirenvironment."

Traits that impact fitness: growth & adaptation

Page 5: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Systems Biology: from genome to organism

20th CenturyMolecular

Biology

21st Century“SystemsBiology”

Organism(traits)

Genome

OrganTissue

CellProteinGenetic

ProcessesParts

Networks

Molecules

Page 6: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Why focus on viruses?

1. As organisms that carry the smallest genomes, viruses encode the mostbasic “developmental processes”

i) virus finds and enters host cellii) makes virus progenyiii) releases virus progeny to environment

2. Many viruses have been well-characterized:sequencegenes (fully annotated !)regulation of transcription/replicationprotein-protein interactions

3. Synchronized virus-growth experiments are readily performed, providinga quantitative phenotype (virus fitness)

4. Viruses cause many important human diseases (e.g., AIDS, influenza,SARS, cancer).

5. Viruses are useful (vaccines; expression vectors, gene therapy; oncolytictherapy; antibiotics)

Page 7: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Human Virus

Physical size (m) 100 10-8 to 10-7

Genome size (bp) 109 103 to 106

Number of genes 104 100 to 103

Generation time (y) 25 10-5 to 10-2

Offspring per generation 2 102 to 104

Humans versus Viruses: by the Numbers

Page 8: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

How does a virus view the world?Relative Length Scales

!?

10-7 m

1 m

1 m

Page 9: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Vesicular Stomatitis Virus (VSV)

The VSV virion is 180 nm long and75 nm wide.

Causes symptoms in livestocklike foot-and-mouth disease.Non-pathogenic in humans

Negative-sense RNA genome11 kilobases, 5 genes; related tomeasles, rabies, ebola virus

Infects diverse cell types

Biochemically well-studied

Potential applications vaccine (HIV, RSV,flu) oncolytic therapy

http://www.virology.net/Big_Virology/EM/VSV-EM.GIF

100 nm

Surface

glycoprotein (G)

Nucleocapsidprotein (N)

Matrixprotein (M)

ss-RNAgenome

L and P proteins(RNA polymerase)

P M G LN3’ 5’

Page 10: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

VSV Genome (11,161 bases)ACCCGGUAUCAUUCUCGCAGAAGAAAGACGGUGGCGCAUUCAGCAUCGACCCUGAGGAACUCAUCAAGGAAGUCGAGGAAGUCGCACGACAGAAAGAAAUUGACCGCGCUAAGGCCCGUAA

AGAACGUCACGAGGGGCGCUUAGAGGCACGCAGAUUCAAACGUCGCAACCGCAAGGCACGUAAAGCACACAAAGCUAAGCGCGAAAGAAUGCUUGCUGCGUGGCGAUGGGCUGAACGUCAA

GAACGGCGUAACCAUGAGGUAGCUGUAGAUGUACUAGGAAGAACCAAUAACGCUAUGCUCUGGGUCAACAUGUUCUCUGGGGACUUUAAGGCGCUUGAGGAACGAAUCGCGCUGCACUGGC

GUAAUGCUGACCGGAUGGCUAUCGCUAAUGGUCUUACGCUCAACAUUGAUAAGCAACUUGACGCAAUGUUAAUGGGCUGAUAGUCUUAUCUUACAGGUCAUCUGCGGGUGGCCUGAAUAGG

UACGAUUUACUAACUGGAAGAGGCACUAAAUGAACACGAUUAACAUCGCUAAGAACGACUUCUCUGACAUCGAACUGGCUGCUAUCCCGUUCAACACUCUGGCUGACCAUUACGGUGAGCG

UUUAGCUCGCGAACAGUUGGCCCUUGAGCAUGAGUCUUACGAGAUGGGUGAAGCACGCUUCCGCAAUCUCACAGUGUACGGACCUAAAGUUCCCCCAUAGGGGGUACCUAAAGCCCAGCCAA

UCACCUAAAGUCAACCUUCGGUUGACCUUGAGGGUUCCCUAAGGGUUGGGGAUGACCCUUGGGUUUGUCUUUGGGUGUUACCUUGAGUGUCUCUCUGUGUCCCUAUCUGUUACAGUCUCCU

AAAGUAUCCUCCUAAAGUCACCUCCUAACGUCCAUCCUAAAGCCAACACCUAAAGCCUACACCUAAAGACCCAUCAAGUCAACGCCUAUCUUAAAGUUUAAACAUAAAGACCAGACCUAAAG

ACCAGACCUAAAGACACUACAUAAAGACCAGACCUAAAGACGCCUUGUUGUUAGCCAUAAAGUGAUAACCUUUAAUCAUUGUCUUUAUUAAUACAACUCACUAUAAGGAGAGACAACUUAA

AGAGACUUAAAAGAUUAAUUUAAAAUUUAUCAAAAAGAGUAUUGACUUAAAGUCUAACCUAUAGGAUACUUACAGCCAUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGG

UCAACCGGAUAAGUAGACAGCCUGAUAAGUCGCACGAAAAACAGGUAUUGACAACAUGAAGUAACAUGCAGUAAGAUACAAAUCGCUAGGUAACACUAGCAGCGUCAACCGGGCGCACAGU

GCCUUCUAGGUGACUUAAGCGCACCACGGCACAUAAGGUGAAACAAAACGGUUGACAACAUGAAGUAAACACGGUACGAUGUACCACAUGAAACGACAGUGAGUCACCACACUGAAAGGUG

AUGCGGUCUAACGAAACCUGACCUAAGACGCUCUUUAACAAUCUGGUAAAUAGCUCUUGAGUGCAUGACUAGCGGAUAACUCAAGGGUAUCGCAAGGUGCCCUUUAUGAUAUUCACUAAUA

ACUGCACGAGGUAACACAAGAUGGCUAUGUCUAACAUGACUUACAACAACGUUUUCGACCACGCUUACGAAAUGCUGAAAGAAAACAUCCGUUAUGAUGACAUCCGUGACACUGAUGACCU

GCACGAUGCUAUUCACAUGGCUGCCGAUAAUGCAGUUCCGCACGAUUGACCUCUGGGAAGACGCAGAAGACUUGCUCAAUGAAUACUUGGAGGAAGUCGAGGAGUACGAGGAGGAUGAAGA

GUAAUGUCUACUACCAACGUGCAAUACGGUCUGACCGCUCAAACUGUACUUUUCUAUAGCGACAUGGUGCGCUGUGGCUUUAACUGGUCACUCGCAAUGGCACAGCUCAAAGAACUGUACG

AAAACAACAAGGCAAUAGCUUUAGAAUCUGCUGAGUGAUAGACUCAAGGUCGCUCCUAGCGAGUGGCCUUUAUGAUUAUCACUUUACUUAUGAGGGAGUAAUGUAUAUGCUUACUAUCGGU

CUACUCACCGCUCUAGGUCUAGCUGUAGGUGCAUCCUUUGGGAAGGCUUUAGGUGUAGCUGUAGGUUCCUACUUUACCGCUUGCAUCAUCAUAGGAAUCAUCAAAGGGGCACUACGCAAAU

GAUGAAGCACUACGUUAUGCCAAUCCACACGUCCAACGGGGCAACCGUAUGUACACCUGAUGGGUUCGCAAUGAAACAACGAAUCGAACGCCUUAAGCGUGAACUCCGCAUUAACCGCAAGA

UUAACAAGAUAGGUUCCGGCUAUGACAGAACGCACUGAUGGCUUAAAGAAAGGUUAUAUGCCCAAUGGCACACUAUACGCUGCAAAUCGGCGAAUAGUGAGAACUUGGCGAGAGAACAACC

UCGAACGCCGCAAGGACAAGAGAGGGCGGCGUGGCAUAGACGAAAGGAAAAGGUUAAAGCCAAGAAACUCGCCGCACUUGAACAGGCACUAGCCAACACACUGAACGCUAUCUCAUAACGA

ACAUAAAGGACACAAUGCAAUGAACAUUACCGACAUCAUGAACGCUAUCGACGCAAUCAAAGCACUGCCAAUCUGUGAACUUGACAAGCGUCAAGGUAUGCUUAUCGACUUACUGGUCGAG

AUGGUCAACAGCGAGACGUGUGAUGGCGAGCUAACCGAACUAAAUCAGGCACUUGAGCAUCAAGAUUGGUGGACUACCUUGAAGUGUCUCACGGCUGACGCAGGGUUCAAGAUGCUCGGUA

AUGGUCACUUCUCGGCUGCUUAUAGUCACCCGCUGCUACCUAACAGAGUGAUUAAGGUGGGCUUUAAGAAAGAGGAUUCAGGCGCAGCCUAUACCGCAUUCUGCCGCAUGUAUCAGGGUCG

UCCUGGUAUCCCUAACGUCUACGAUGUACAGCGCCACGCUGGAUGCUAUACGGUGGUACUUGACGCACUUAAGGAUUGCGAGCGUUUCAACAAUGAUGCCCAUUAUAAAUACGCUGAGAUU

GCAAGCGACAUCAUUGAUUGCAAUUCGGAUGAGCAUGAUGAGUUAACUGGAUGGGAUGGUGAGUUUGUUGAAACUUGUAAACUAAUCCGCAAGUUCUUUGAGGGCAUCGCCUCAUUCGACA

UGCAUAGCGGGAACAUCAUGUUCUCAAAUGGAGACGUACCAUACAUCACCGACCCGGUAUCAUUCUCGCAGAAGAAAGACGGUGGCGCAUUCAGCAUCGACCCUGAGGAACUCAUCAAGGAA

GUCGAGGAAGUCGCACGACAGAAAGAAAUUGACCGCGCUAAGGCCCGUAAAGAACGUCACGAGGGGCGCUUAGAGGCACGCAGAUUCAAACGUCGCAACCGCAAGGCACGUAAAGCACACAA

AGCUAAGCGCGAAAGAAUGCUUGCUGCGUGGCGAUGGGCUGAACGUCAAGAACGGCGUAACCAUGAGGUAGCUGUAGAUGUACUAGGAAGAACCAAUAACGCUAUGCUCUGGGUCAACAUG

UUCUCUGGGGACUUUAAGGCGCUUGAGGAACGAAUCGCGCUGCACUGGCGUAAUGCUGACCGGAUGGCUAUCGCUAAUGGUCUUACGCUCAACAUUGAUAAGCAACUUGACGCAAUGUUAA

UGGGCUGAUAGUCUUAUCUUACAGGUCAUCUGCGGGUGGCCUGAAUAGGUACGAUUUACUAACUGGAAGAGGCACUAAAUGAACACGAUUAACAUCGCUAAGAACGACUUCUCUGACAUCG

AACUGGCUGCUAUCCCGUUCAACACUCUGGCUGACCAUUACGGUGAGCGUUUAGCUCGCGAACAGUUGGCCCUUGAGCAUGAGUCUUACGAGAUGGGUGAAGCACGCUUCCGCAAUCUCACA

GUGUACGGACCUAAAGUUCCCCCAUAGGGGGUACCUAAAGCCCAGCCAAUCACCUAAAGUCAACCUUCGGUUGACCUUGAGGGUUCCCUAAGGGUUGGGGAUGACCCUUGGGUUUGUCUUU

GGGUGUUACCUUGAGUGUCUCUCUGUGUCCCUAUCUGUUACAGUCUCCUAAAGUAUCCUCCUAAAGUCACCUCCUAACGUCCAUCCUAAAGCCAACACCUAAAGCCUACACCUAAAGACCCA

UCAAGUCAACGCCUAUCUUAAAGUUUAAACAUAAAGACCAGACCUAAAGACCAGACCUAAAGACACUACAUAAAGACCAGACCUAAAGACGCCUUGUUGUUAGCCAUAAAGUGAUAACCUU

UAAUCAUUGUCUUUAUUAAUACAACUCACUAUAAGGAGAGACAACUUAAAGAGACUUAAAAGAUUAAUUUAAAAUUUAUCAAAAAGAGUAUUGACUUAAAGUCUAACCUAUAGGAUACUU

ACAGCCAUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGGUCAACCGGAUAAGUAGACAGCCUGAUAAGUCGCACGAAAAACAGGUAUUGACAACAUGAAGUAACAUGCAG

UAAGAUACAAAUCGCUAGGUAACACUAGCAGCGUCAACCGGGCGCACAGUGCCUUCUAGGUGACUUAAGCGCACCACGGCACAUAAGGUGAAACAAAACGGUUGACAACAUGAAGUAAACA

CGGUACGAUGUACCACAUGAAACGACAGUGAGUCACCACACUGAAAGGUGAUGCGGUCUAACGAAACCUGACCUAAGACGCUCUUUAACAAUCUGGUAAAUAGCUCUUGAGUGCAUGACUA

GCGGAUAACUCAAGGGUAUCGCAAGGUGCCCUUUAUGAUAUUCACUAAUAACUGCACGAGGUAACACAAGAUGGCUAUGUCUAACAUGACUUACAACAACGUUUUCGACCACGCUUACGAA

AUGCUGAAAGAAAACAUCCGUUAUGAUGACAUCCGUGACACUGAUGACCUGCACGAUGCUAUUCACAUGGCUGCCGAUAAUGCAGUUCCGCACUACUACGCUGACAUCUUUAGCGUAAUGG

CAAGUGAGGGCAUUGACCUUGAGUUCGAAGACUCUGGUCUGAUGCCUGACACCAAGGACGUAAUCCGCAUCCUGCAAGCGCGUAUCUAUGAGCAAUUAACGAUUGACCUCUGGGAAGACGC

AGAAGACUUGCUCAAUGAAUACUUGGAGGAAGUCGAGGAGUACGAGGAGGAUGAAGAGUAAUGUCUACUACCAACGUGCAAUACGGUCUGACCGCUCAAACUGUACUUUUCUAUAGCGACA

UGGUGCGCUGUGGCUUUAACUGGUCACUCGCAAUGGCACAGCUCAAAGAACUGUACGAAAACAACAAGGCAAUAGCUUUAGAAUCUGCUGAGUGAUAGACUCAAGGUCGCUCCUAGCGAGU

GGCCUUUAUGAUUAUCACUUUACUUAUGAGGGAGUAAUGUAUAUGCUUACUAUCGGUCUACUCACCGCUCUAGGUCUAGCUGUAGGUGCAUCCUUUGGGAAGGCUUUAGGUGUAGCUGUAG

GUUCCUACUUUACCGCUUGCAUCAUCAUAGGAAUCAUCAAAGGGGCACUACGCAAAUGAUGAAGCACUACGUUAUGCCAAUCCACACGUCCAACGGGGCAACCGUAUGUACACCUGAUGGGU

UCGCAAUGAAACAACGAAUCGAACGCCUUAAGCGUGAACUCCGCAUUAACCGCAAGAUUAACAAGAUAGGUUCCGGCUAUGACAGAACGCACUGAUGGCUUAAAGAAAGGUUAUAUGCCCA

AUGGCACACUAUACGCUGCAAAUCGGCGAAUAGUGAGAACUUGGCGAGAGAACAACCUCGAACGCCGCAAGGACAAGAGAGGGCGGCGUGGCAUAGACGAAAGGAAAAGGUUAAAGCCAAG

AAACUCGCCGCACUUGAACAGGCACUAGCCAACACACUGAACGCUAUCUCAUAACGAACAUAAAGGACACAAUGCAAUGAACAUUACCGACAUCAUGAACGCUAUCGACGCAAUCAAAGCAC

UGCCAAUCUGUGAACUUGACAAGCGUCAAGGUAUGCUUAUCGACUUACUGGUCGAGAUGGUCAACAGCGAGACGUGUGAUGGCGAGCUAACCGAACUAAAUCAGGCACUUGAGCAUCAAGA

UUGGUGGACUACCUUGAAGUGUCUCACGGCUGACGCAGGGUUCAAGAUGCUCGGUAAUGGUCACUUCUCGGCUGCUUAUAGUCACCCGCUGCUACCUAACAGAGUGAUUAAGGUGGGCUUU

AAGAAAGAGGAUUCAGGCGCAGCCUAUACCGCAUUCUGCCGCAUGUAUCAGGGUCGUCCUGGUAUCCCUAACGUCUACGAUGUACAGCGCCACGCUGGAUGCUAUACGGUGGUACUUGACGC

ACUUAAGGAUUGCGAGCGUUUCAACAAUGAUGCCCAUUAUAAAUACGCUGAGAUUGCAAGCGACAUCAUUGAUUGCAAUUCGGAUGAGCAUGAUGAGUUAACUGGAUGGGAUGGUGAGUU

UGUUGAAACUUGUAAACUAAUCCGCAAGUUCUUUGAGGGCAUCGCCUCAUUCGACAUGCAUAGCGGGAACAUCAUGUUCUCAAAUGGAGACGUACCAUACAUCACCGACCCGGUAUCAUUC

UCGCAGAAGAAAGACGGUGGCGCAUUCAGCAUCGACCCUGAGGAACUCAUCAAGGAAGUCGAGGAAGUCGCACGACAGAAAGAAAUUGACCGCGCUAAGGCCCGUAAAGAACGUCACGAGG

GGCGCUUAGAGGCACGCAGAUUCAAACGUCGCAACCGCAAGGCACGUAAAGCACACAAAGCUAAGCGCGAAAGAAUGCUUGCUGCGUGGCGAUGGGCUGAACGUCAAGAACGGCGUAACCA

UGAGGUAGCUGUAGAUGUACUAGGAAGAACCAAUAACGCUAUGCUCUGGGUCAACAUGUUCUCUGGGGACUUUAAGGCGCUUGAGGAACGAAUCGCGCUGCACUGGCGUAAUGCUGACCGG

AUGGCUAUCGCUAAUGGUCUUACGCUCAACAUUGAUAAGCAACUUGACGCAAUGUUAAUGGGCUGAUAGUCUUAUCUUACAGGUCAUCUGCGGGUGGCCUGAAUAGGUACGAUUUACUAAC

UGGAAGAGGCACUAAAUGAACACGAUUAACAUCGCUAAGAACGACUUCUCUGACAUCGAACUGGCUGCUAUCCCGUUCAACACUCUGGCUGACCAUUACGGUGAGCGUUUAGCUCGCGAACA

GUUGGCCCUUGAGCAUGAGUCUUACGAGAUGGGUGAAGCACGCUUCCGCAAUCUCACAGUGUACGGACCUAAAGUUCCCCCAUAGGGGGUACCUAAAGCCCAGCCAAUCACCUAAAGUCAAC

CUUCGGUUGACCUUGAGGGUUCCCUAAGGGUUGGGGAUGACCCUUGGGUUUGUCUUUGGGUGUUACCUUGAGUGUCUCUCUGUGUCCCUAUCUGUUACAGUCUCCUAAAGUAUCCUCCUAA

AGUCACCUCCUAACGUCCAUCCUAAAGCCAACACCUAAAGCCUACACCUAAAGACCCAUCAAGUCAACGCCUAUCUUAAAGUUUAAACAUAAAGACCAGACCUAAAGACCAGACCUAAAGAC

ACUACAUAAAGACCAGACCUAAAGACGCCUUGUUGUUAGCCAUAAAGUGAUAACCUUUAAUCAUUGUCUUUAUUAAUACAACUCACUAUAAGGAGAGACAACUUAAAGAGACUUAAAAGAU

UAAUUUAAAAUUUAUCAAAAAGAGUAUUGACUUAAAGUCUAACCUAUAGGAUACUUACAGCCAUCGAGAGGGACACGGCGAAUAGCCAUCCCAAUCGACACCGGGGUCAACCGGAUAAGUA

GACAGCCUGAUAAGUCGCACGAAAAACAGGUAUUGACAACAUGAAGUAACAUGCAGUAAGAUACAAAUCGCUAGGUAACACUAGCAGCGUCAACCGGGCGCACAGUGCCUUCUAGGUGACU

UAAGCGCACCACGGCACAUAAGGUGAAACAAAACGGUUGACAACAUGAAGUAAACACGGUACGAUGUACCACAUGAAACGACAGUGAGUCACCACACUGAAAGGUGAUGCGGUCUAACGAA

ACCUGACCUAAGACGCUCUUUAACAAUCUGGUAAAUAGCUCUUGAGUGCAUGACUAGCGGAUAACUCAAGGGUAUCGCAAGGUGCCCUUUAUGAUAUUCACUAAUAACUGCACGAGGUAAC

ACAAGAUGGCUAUGUCUAACAUGACUUACAACAACGUUUUCGACCACGCUUACGAAAUGCUGAAAGAAAACAUCCGUUAUGAUGACAUCCGUGACACUGAUGACCUGCACGAUGCUAUUCA

CAUGGCUGCCGAUAAUGCAGUUCCGCACUACUACGCUGACAUCUUUAGCGUAAUGGCAAGUGAGGGCAUUGACCUUGAGUUCGAAGACUCUGGUCUGAUGCCUGACACCAAGGACGUAAUC

CGCAUCCUGCAAGCGCGUAUCUAUGAGCAAUUAACGAUUGACCUCUGGGAAGACGCAGAAGACUUGCUCAAUGAAUACUUGGAGGAAGUCGAGGAGUACGAGGAGGAUGAAGAGUAAUGUC

UACUACCAACGUGCAAUACGGUCUGACCGCUCAAACUGUACUUUUCUAUAGCGACAUGGUGCGCUGUGGCUUUAACUGGUCACUCGCAAUGGCACAGCUCAAAGAACUGUACGAAAACAACA

AGGCAAUAGCUUUAGAAUCUGCUGAGUGAUAGACUCAAGGUCGCUCCUAGCGAGUGGCCUUUAUGAUUAUCACUUUACUUAUGAGGGAGUAAUGUAUAUGCUUACUAUCGGUCUACUCACC

GCUCUAGGUCUAGCUGUAGGUGCAUCCUUUGGGAAGGCUUUAGGUGUAGCUGUAGGUUCCUACUUUACCGCUUGCAUCAUCAUAGGAAUCAUCAAAGGGGCACUACGCAAAUGAUGAAGCA

CUACGUUAUGCCAAUCCACACGUCCAACGGGGCAACCGUAUGUACACCUGAUGGGUUCGCAAUGAAACAACGAAUCGAACGCCUUAAGCGUGAACUCCGCAUUAACCGCAAGAUUAACAAGA

UAGGUUCCGGCUAUGACAGAACGCACUGAUGGCUUAAAGAAAGGUUAUAUGCCCAAUGGCACACUAUACGCUGCAAAUCGGCGAAUAGUGAGAACUUGGCGAGAGAACAACCUCGAACGCC

GCAAGGACAAGAGAGGGCGGCGUGGCAUAGACGAAAGGAAAAGGUUAAAGCCAAGAAACUCGCCGCACUUGAACAGGCACUAGCCAACACACUGAACGCUAUCUCAUAACGAACAUAAAGG

ACACAAUGCAAUGAACAUUACCGACAUCAUGAACGCUAUCGACGCAAUCAAAGCACUGCCAAUCUGUGAACUUGACAAGCGUCAAGGUAUGCUUAUCGACUUACUGGUCGAGAUGGUCAAC

AGCGAGACGUGUGAUGGCGAGCUAACCGAACUAAAUCAGGCACUUGAGCAUCAAGAUUGGUGGACUACCUUGAAGUGUCUCACGGCUGACGCAGGGUUCAAGAUGCUCGGUAAUGGUCACU

UCUCGGCUGCUUAUAGUCACCCGCUGCUACCUAACAGAGUGAUUAAGGUGGGCUUUAAGAAAGAGGAUUCAGGCGCAGCCUAUACCGCAUUCUGCCGCAUGUAUCAGGGUCGUCCUGGUAU

CCCUAACGUCUACGAUGUACAGCGCCACGCUGGAUGCUAUACGGUGGUACUUGACGCACUUAAGGAUUGCGAGCGUUUCAACAAUGAUGCCCAUUAUAAAUACGCUGAGAUUGCAAGCGAC

AUCAUUGAUUGCAAUUCGGAUGAGCAUGAUGAGUUAACUGGAUGGGAUGGUGAGUUUGUUGAAACUUGUAAACUAAUCCGCAAGUUCUUUGAGGGCAUCGCCUCAUUCGACAUGCAUAGCG

GGAACAUCAUGUUCUCAAAUGGAGACGUACCAUACAUCACCGACCCGGUAUCAUUCUCGCAGAAGAAAGACGGUGGCGCAUUCAGCAUCGACCCUGAGGAACUCAUCAAGGAAGUCGAGGA

AGUCGCACGACAGAAAGAAAUUGACCGCGCUAAGGCCCGUAAAGAACGUCACGAGGGGCGCUUAGAGGCACGCAGAUUCAAACGUCGCAACCGCAAGGCACGUAAAGCACACAAAGCUAAGC

GCGAAAGAAUGCUUGCUGCGUGGCGAUGGGCUGAACGUCAAGAACGGCGUAACCAUGAGGUAGCUGUAGAUGUACUAGGAAGAACCAAUAACGCUAUGCUCUGGGUCAACAUGUUCUCUGG

GGACUUUAAGGCGCUUGAGGAACGAAUCGCGCUGCACUGGCGUAAUGCUGACCGGAUGGCUAUCGCUAAUGGUCUUACGCUCAACAUUGAUAAGCAACUUGACGCAAUGUUAAUGGGCUGA

UAGUCUUAUCUUACAGGUCAUCUGCGGGUGGCCUGAAUAGGUACGAUUUACUAACUGGAAGAGGCACUAAAUGAACACGAUUAACAUCGCUAAGAACGACUUCUCUGACAUCGAACUGGCU

GCUAUCCCGUUCAACACUCUGGCUGACCAUUACGGUGAGCGUUUAGCUCGCGAACAGUUGGCCCUUGAGCAUGAGUCUUACGAGAUGGGUGAAGCACGCUUCCGCAAUCUCACAGUGUACGG

ACCUAAAGUUCCCCCAUAGGGGGUACCUAAAGCCCAGCCAAUCACCUAAAGUCAACCUUCGGUUGACCUUGAGGGUUCCCUAAUUGCAAGCGACAUCAUUGAUUGCAAUUCGGAUGAGCAUG

AUGAGUUAACUGGAUGGGAUGGUGAGUUUGUUGAAACUUGUAAACUAAUCCGCAAGUUCUUUGAGGGCAUCGCCUCAUUCGACAUGCAUAGCGGGAACAUCAUGUUCUCAAAUGGAGACGU

ACCAUACAUCACCGACCCGGUAUCAUUCUCGCAGAAGAAAGACGGUGGCGCAUUCAGCAUCGACCCUGAGGAACUCAUCAAGGAAGUCGAGGAAGUCGCACGACAGAAAGAAAUUGACCGCG

CUAAGGCCCGUAAAGAACGUCACGAGGGGCGCUUAGAGGCACGCAGAUUCAAACGUCGCAACCGCAAGGCACGUAAAGCACACAAAGCUAAGCGCGAAAGAAUGCUUGCUGCGUGGCGAUG

GGCUGAACGUCAAGAACGGCGUAACCAUGAGGUAGCUGUAGAUGUACUAGGAAGAACCAAUAACGCUAUGCUCUGGGUCAACAUGUUCUCUGGGGACUUUAAGGCGCUUGAGGAACGA

Page 11: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Genome design

Page 12: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

P M GL N3’ 5’

P M GN3’ 5’L

Why does wild-type VSV order its genes as

but not

?

Note: for 5 genes we have 120 gene-order permutations

Genome Design

Page 13: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

VSV regulates transcription bypartial termination between genes

Le

3'

N

100

P

75

M GTr

5'

LφP φM φLφG

56 42 2100

φ: extent of attenuation

Levels of synthesis: N > P > M > G > L

gene order influences gene expression level

Page 14: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

genomepol

polN anti-genome

M G

replicationtranscriptiontranslation

pol

M

virusG

virusvirus

virus

32

1

N

cell

Three decisions in VSV development

Makegenomes

Makeproteins

YESNO

[N] large?

Make proteins or genomes

YES

NO

[M] large?

Makevirus

Makegenomes

[pol]large? YES

NO

Make proteins

Page 15: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Key idea

Dynamics of virus ‘development’ depends onkinetics of information flow in host cell

Kinetics is nature’s way of preventing everything from happening all at once.

S.E. LeBlanc

Page 16: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Accounting for VSV nucleocapsid protein (N)

d(mRNAN )

dt= f4 (VSV ribonucleoprotein complex, VSV pol) ! f5 (degradation)

d(ProteinN )

dt= sources ! sinks

= f1(mRNAN , translation resources) ! f2 (degradation)

! f3(VSV full ! length RNA, ProteinN )

transcription

translation protein-RNAinteractions

Page 17: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Selected VSV and cell parameters

VSV polymerase elongation rate 3.7 nucleotides / sec Iverson & Rose, 1981Spacing between polymerases on RNA template 170 nucleotides Gao & Lenard, 1995Intergenic transcriptional attenuation Ball et al, 1999; Rose & Whitt 2001

Iverson & Rose, 1981; Gao & Lenard, 1995leader-N 0.0N-P 0.25P-M 0.25M-G 0.25G-L 0.95

Degradation ratesVSV mRNA 1.9 x 10-4 sec-1 Pennica et al, 1981protein N 3.5 x 10-5 sec-1 Knipe et al, 1977 protein P 1.4 x 10-6 sec-1 Canter & Perrault, 1996

protein M 1.5 x 10-4 sec-1 Knipe et al, 1977 protein G 5.7 x 10-5 sec-1 Knipe et al, 1977

protein L 1.2 x 10-5 sec-1 Canter & Perrault, 1996Proteins per virus particle N 1258 Thomas et al, 1985

P 466M 1826G 1205L 50

Ribosomes per cell 5 x 106 Bielka, 1982Ribosome elongation rate 6 amino acids / sec Spirin, 1986

Parameter Value ReferenceTranscription/replicationrates

Transcriptional regulation

Translation rate

Degradationrates

Virus particle stoichiometry

Page 18: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Tracks intracellular levels of all 13 viral species genomic and anti-genomic RNA mRNA, proteins nucleocapsid complexes viral progeny

140 differential equations 25 algebraic equations 45 parameters 3 estimated, 2 fit

Lim et alPLoS Comp. Bio. (2006)

Kinetic model for single-cycle growth of VSV

Page 19: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

12 VSV gene-order permutations have been made

Wertz et al, PNAS 1998Gene rearrangement attenuates expression and lethality of a non-segmented negative strandRNA virus.

3'-N-P-M-G-L-5' (N1) Wild-type3'-P-N-M-G-L-5' (N2)3'-P-M-N-G-L-5' (N3)3'-P-M-G-N-L-5' (N4)

Ball et al, J. Virology 1999Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus

3'-N-P-G-M-L-5’ 3'-N-M-P-G-L-5’ 3'-N-M-G-P-L-5’ 3'-N-G-M-P-L-5'3'-N-G-P-M-L-5’

Flanagan et al, J. Virology 2000Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positionsaccelerates and enhances the protective immune response

3'-G-N-P-M-L-5' 3'-P-M-G-N-L-5' 3'-G-P-M-N-L-5’

Page 20: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

VSV growth is sensitive to position of N

-3-2-101234

0 5 10 15 20 25Time (hr)

log

(viru

s p

er c

ell)

N1N2

N3

N4

N1 > N2 > N3 > N4

Experiment

Lam et al, Biotech. Bioeng.2005

0

1000

2000

3000

4000

5000

6000

7000

Gene-shuffled VSV strain

Viru

s pe

r cel

l N2N1

N4N3 N1 > N2 > N3 > N4

Simulation of all 120 gene-order mutants

N1 (wild-type)

N2

N3

N4

Wertz et al, PNAS 1998

N P M G L

NP M G L

NP M G L

NP M G L

Kwang-il Lim

Page 21: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

VSV growth is sensitive to order of first and last gene

L

0

1000

2000

3000

4000

1 2 3 4 5Gene location

0

1000

2000

3000

4000

1 2 3 4 5Gene location

G

0

1000

2000

3000

4000M

1 2 3 4 5Gene location

1 2 3 4 5Gene location

0

1000

2000

3000

4000 P

0

1000

2000

3000

4000

Viru

s pe

r cel

l

1 2 3 4 5Gene location

N

N1

L5

Wild type = N P M G L Kwang-il Lim

Page 22: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Simulated wild-type growth is optimal in thepresence of regulated gene expression

regulated un-regulated(shut-off inter-gene attenuation)

wild type

wild type

Kwang-il Lim

Page 23: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Figure SA2

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

Time, hr

Vir

ion

pro

du

cti

on

(#/c

ell)

BHK

DBT

Viru

s pr

oduc

tion

(per

cel

l)

BHK cells

DBT cells

Virus production depends on environment (host cell)

Page 24: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Random

0

2000

4000

6000

8000

0 2000 4000 6000 8000

BHK

DBT

Optimality of wild-type is independent of host typeV

SV

gro

wth

on

DB

T

VSV growth on BHK

wild-typeWild-type virus

is a “generalist.”

Kwang-il Lim

2500 simulated VSV mutants with wild-type gene orderand randomized transcriptional attenuation

Page 25: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Where may virus models offer new perspectives?

Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004)

Transcriptome-proteome inference tools Metabolic Engineering (2000)

“Nature versus nurture” J. Bact. (2002), Biotech. Bioeng. (2004)

Genetic interactions (robustness versus plasticity, epistasis) Genetics (2002), Biophys. J (2005), IEE Systems Biology (2006)

Genome design PNAS (2000), PLoS Comp.Bio (2006)

Page 26: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

“Nature versus nurture”

(Effects of environment on virus growth)

Page 27: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Top-Down versus Bottom-UpModeling of Biological Systems

BehaviorSystem Output

Macro-scalePhenotype

Molecular partsSystem InputMicro-scaleGenotype

Bottom

TopTop-Down: Howdoes behaviordepend on parts?

“genetic approach”

Bottom-Up: Howdo parts affectbehavior?

“biochemistryapproach”

Page 28: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Virus Growth

[ ]102

- 104

Parentvirus

Host cell

Progenyviruses

Genotype (G)Environment (E)

Phenotype (P)

Bottom-Up Model: Calculate P, given G and E

Page 29: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

“Bottom-Up” model of virus (phage) growth

Endy, et al, Biotech. Bioeng. 1997

Endy, et al, PNAS 2000

KEY ASSUMPTIONGenotype(G) defines Phenotype(P)

P does not depend on environment(E)

GIVEN: virus genome & biochemistryCALCULATE: growth dynamics in cells

Bottom-Up model

Page 30: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Experiments show P dependence on EVirus growth depends on physiological state of host cell

host growth rate = 0.7 doublings/hr

1.0

1.2 1.7

minutes post infection

Viru

s p

er c

ell

You, et al

J. Bact., 2002

Page 31: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

How can cell environment affect virus growth?

Top-Downcorrelations linking cellresources and cell growth

Bremer & Dennis (1996)E. coli and Salmonella:Cell. and Mol. Bio., 2nd Ed.

Bottom-Upmodel of virus growth

Endy, et al,Biotech. Bioeng. (1997)

Cell growthrate

Virus growthdynamics

Cell Environment

RNA polymeraselevel and elongation rate

Ribosomelevel and elongation rate

DNA contentAmino acid pool size

NTP pool sizeCell volume

Page 32: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Hybrid Top-Down—Bottom-Up ModelAccounts for genetics AND environment on virus growth phenotype

host growth rate = 0.7 doublings/hr

1.0

1.2 1.7

minutes post infection

Viru

s pe

r ce

ll

eclipse time

Riserate

You, et al.J. Bact., 2002

Hybrid model

Page 33: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Hybrid model captures trendsin rise rate and eclipse time

host growth rate (doublings/hour)

T7 p

arti

cles

/min

min

utes

rise rate eclipse time

Hybrid model

Hybrid model

one-parameteradjustment

Page 34: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Model highlights effects of hostenvironmental factors on virus growth

host growthrate =1.5 hr-1

You, et alJ. Bact. 2002

Virus growth is most sensitive to host protein synthesis resources.

Page 35: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

1 virus particle per cell

Page 36: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Generate and isolate single cells infectedby single virus particles

P M G LN3’ 5’

P M G LN3’ 5’GFP

VSV (wild type)

VSV-GFP

MOI 0.01

Infect BHK cells with VSV-GFP at MOI 0.01, isolate single cells

infected by single virus particles,measure their virus production.

Page 37: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Real cells produce broad distribution of virus yields

0.05

0.15

0.10

0.2010

~500

501~

1000

1001

~150

0

1501

~200

0

2001

~250

0

2501

~300

0

3001

~350

0

3501

~400

0

4001

~450

0

4501

~500

0

5001

~550

0

5501

~600

0

6001

~650

0

6501

~700

0

7000

~750

0

>750

0

0

Yield of virus progeny per cell

frequ

ency

192 cells collected134 cells produce detectable virus

Why is the distribution of virus production so broad?

Page 38: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

To what extent is the diversity genetic?

0.05

0.15

0.10

0.2010

~500

501~

1000

1001

~150

0

1501

~200

0

2001

~250

0

2501

~300

0

3001

~350

0

3501

~400

0

4001

~450

0

4501

~500

0

5001

~550

0

5501

~600

0

6001

~650

0

6501

~700

0

7000

~750

0

>750

0

0

Yield of virus progeny per cell

frequ

ency

134 cellsLow (n=7)

High (n=8)

mean2600

High-yield isolates: yields = 2600±200Low-yield isolates: yields = 2600±200 (n=5),

1100 and 1600

→ Genetic variation accounts for only 2-of-15 of selected extreme-yield cells.

Page 39: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

To what extent is the diversity environmental?Infection experiments on synchronized cells

Early S Late S G0G1 G2M

Arrest cells at G1/S with aphidicolinRelease arrest, confirm cell cycle progression

Infect synchronized cellsFit model

model

Page 40: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

3250 virus per cell

1370 virus per cell

3340 virus per cell

8680 virus per cell

To what extent is the diversity environmental?Infection experiments on synchronized cells

Yield diversity may reflect effects of host-cell cycle

Page 41: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Low-level virus yields remain a mystery

0.05

0.15

0.10

0.2010

~500

501~

1000

1001

~150

0

1501

~200

0

2001

~250

0

2501

~300

0

3001

~350

0

3501

~400

0

4001

~450

0

4501

~500

0

5001

~550

0

5501

~600

0

6001

~650

0

6501

~700

0

7000

~750

0

>750

0

0

Yield of virus progeny per cell

frequ

ency

Cell cycle can account for virus yields

?

Page 42: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Chemical Kinetics Becomes “Noisy” for SmallNumbers of Reacting Molecules

First-order series reaction: A → B → C k1 k2

time

A

B

C

[A]0= 1 mM

[B]0= [C]0= 0

Deterministic

time

NANC

NB

NA= 100 molecules

NB= NC= 0

Stochastic

Con

cent

ratio

n,

mM

N

From Chemical Reactor Analysis and Design FundamentalsRawlings and Ekerdt, 2002

Page 43: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Core Reaction Network for the Growth of Virus

Virus Progeny

Initiation of virus growth by a viral genome (N = 1 molecule)

Page 44: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Hybrid stochastic-deterministic modeling enablessimultaneous tracking of relevant intermediates

Time (h)

(-)RNA

N mRNA

L mRNA

N protein

L protein

100

104

0 9

deterministic

stochastic

Every simulation run produces a unique trajectory

Page 45: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Tracking of rapidly fluctuating speciescreates computational challenges

Time (h)

(-)RNA

N mRNA

L mRNA

N protein

L protein

100

104

0 9

deterministic

stochastic

N protein is rapidlymade and consumed

VSV genomic RNA

Fully encapsidated VSV genomic RNA

Encapsidation: consumes N protein

VSV genomic RNA

N proteinmRNA (N)

Translation: makes N protein

See posterRishi Srivastava

Page 46: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Simulations suggest structure inviral genomic populations

Number of VSV genomes

N = 1000 infection simulations

Number of VSV genomes

mRNA (L) at 1.5 hours

Page 47: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Stochastic gene expression may affect yield distribution

0.05

0.15

0.10

0.2010

~500

501~

1000

1001

~150

0

1501

~200

0

2001

~250

0

2501

~300

0

3001

~350

0

3501

~400

0

4001

~450

0

4501

~500

0

5001

~550

0

5501

~600

0

6001

~650

0

6501

~700

0

7000

~750

0

>750

0

0

Yield of virus progeny per cell

frequ

ency

Cell cycle can account for virus yields

Stochastic processes?

Page 48: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

What happens when virus growth couples with virus movement?

Infections spread!

Page 49: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

0 h 0.1 h 0.5 h 1 h 5 h 10 h

0 h 10 h 25 h 40 h

0.001

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25

Time (h)

Viru

s pr

ogen

y pe

r cel

l0123456789

0 20 40 60 80 100 120

Time (h)D

ista

nce

(mm

)

1.8 mm /day

virus

cell

Pandemic in a Petri Dish

Micro-scale growth and spread of viruses

“plaque growth”

Page 50: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Micro-scale virus growth and spread in focal infections

Expose cell monolayer to localized virusAgar Agar

Allow virus adsorption and entry into cells

Virus infection propagates over multipleinfection cycles

virus

cell

Page 51: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

96 hr

48 hr

18 hr

Micro-scale infection spreadFo

cal

Radi

us

Vesicular Stomatitis Virus (VSV)on BHK cellsFix and stain VSV-G. Image andmeasure.

1 mm

Page 52: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Virus-spread depends on cell type

0

2

4

6

8

0 20 40 60 80 100 120 140 160

time (h)

radi

us (m

m)

VSV on BHK cells

Infe

ctio

n ra

dius

[mm

]

Time [hr]

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160

Infe

ctio

n ra

dius

[mm

]

Time [hr]

Focal Spread

radi

us (m

m)

time (h)

VSV on DBT cells

Page 53: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Cell-cell communication may affect infection spread

Interferons

Cells

Virus

dsRNA

Proteins

dsRNA

MxRNasePKRNOS

MxRNasePKRNOS

Proteins

Page 54: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Interferon signaling limits virus spread in DBT cells

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Irad

ius

(mm

)nfe

ctio

nra

dius

[mm

]

Time [hr]

100 U AIFN

Control

Focal Spread

time (h)

100 U Anti-IFN

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Infe

ctio

n ra

dius

[mm

]

Time [hr]

100 U IFN

Control

50 U IFN

Focal Spread

Irad

ius

(mm

)nfe

ctio

nra

dius

[mm

]

time (h)

100 U IFN

50 U Anti-IFN

Inhibition of signalingenhances spread

Enhancement of signalinginhibits spread

Page 55: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Agar Agar

virus

cell

How might cell-cell signaling depend on virus dose?

Focal infection enables control ofMultiplicity of Infection

MOI =number of added virus particles

number of initially accessible cells

Page 56: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

MOI 0.01

MOI 0.1

MOI 1

MOI 1000

8

1000 Time Post-Infection (h)

Infe

ctio

n R

adiu

s (m

m)

Infe

ctio

n R

adiu

s (m

m)

8

Time Post-Infection (h) 100

Extent of infection spread depends on virus dose

Low virus dose

Low activationof cell defenses

Infectionspreads

High virus dose

High activationof cell defenses

Infectionstops

Duca, et alBiotech. Prog. 2001

Page 57: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Virus infection can activateanti-viral host responses

OAS

PKR

ISRE

IRF-E

NF-!BPRDIFN-"

PRD-LEIFN-# IRF-7

IRF-3IRF-7

IRF-7IRF-3

VIRUS

dsRNA

kinase

GASIRF-1

protein synthesis

P P

IFN-#IFN-"

IFN receptors on other cells

Jak/STAT

AAFISGF-3

IRF-1

iNOS

intracellular

extracellular

IFN-#

IFN-"

-+

Page 58: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

New measures of virus growth by flow-enhanced infection spread

Page 59: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Agar overlay inhibits infection spread

Most virus progeny in spreading infections do not find new host cells

0. 00010. 0010. 010. 1

110

1001000

10000100000

100000010000000

100000000

0 5 10 15 20 25 30

theore

tical

maxim

um

Infection spread(observed)

Are

a of

cel

l dea

th (m

m)

Time post-infection (h)

Opportunity ?

Page 60: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Fluid-flow enhances spread of infections initiated bysingle virus particles

CometsLiquid overlay(flow)

PlaquesAgar overlay(no flow)

1 cm

Virus Particles

Virus: VSVHost: BHK cells

Page 61: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Anti-viral drug inhibits flow-enhanced infection spread

0 µg/ml 1 µg/ml 2 µg/ml 4 µg/ml 8 µg/ml

Drug (5-fluoro-uracil)

Page 62: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Summary

Models of virus intracellular networks enable prediction of virus growth. → suggest optimality and robustness of wild-type virus

Single-cell measures of virus growth exhibit broad distribution. → stochastic gene expression may contribute to observed diversity

Dynamics of infection spread can depend on activation of host defenses. → cell-cell communication affects infection spread

Fluid flows enhance the spread of virus infections in culture. → platform for measurement of distributions of virus growth.

Page 63: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Virus Infections Span Multiple Scales

Molecular andCell Biology

viruscell Tissue

Biology

Clinical Sciences

Epidemiology

Page 64: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Acknowledgements

Co-workers modeling: Eric Haseltine, Sebastian Hensel, Tobias Lang, Kwang-il Lim, Rishi Srivastava, Lingchong Youexperiments: Karen Duca, Vy Lam, Patrick Suthers, Kristen Thompson, Ying Zhu

Colleagues Tom Kurtz Mathematics, UW-MadisonJim Rawlings Chemical and Biological EngineeringGreg Rempala Mathematics, U. LouisvilleSean Whelan Medical School, Harvard (VSV-GFP)

Support NSF-FRG Stochastic models for intracellular reaction networks

NIH Phased Research Innovation Award DAAD German Academic Exchange NLM Computation and Informatics in Biology and

and Medicine (UW-Madison) UW-Madison Graduate School

Page 65: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

µchannels

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Predicted cell seedingdensity (cells / mm2)

Mea

sure

d ce

ll se

edin

g de

nsity

(cel

ls /

mm

2 )

Seed 1-micron fluorescent beads in6-well plate with 2 ml water. Monitor fluorescence near wall

Seed known number of cells into well or micro-channel. Compare measured with predicted cell density.

Micro-channel

Well

Flows in conventional culture wells createspatial heterogeneity

Page 66: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

0

10

20

30

40

50

0 8 16 24 32 40 48 56 64

Drug (!g/ml)

Cell-d

eath

sig

nal

0

20

40

60

80

100

Pla

qu

e c

ou

nt

(b) (c)

3×106

3×105

3×104

3×103

3×102

3×10(d)(e)

0

2

4

6

8

µl PFU

0

2

4

8

16

32

64

Drug(µg/ml)

10 mm

Top view

Side view

32 mm2

mm8 mm

500 µm

250 µm

(a)

Page 67: Models and Measures of Virus Growth and Infection Spread · Anti-viral strategies Antimicrob. Agents Chemo. (2000, 2004) Transcriptome-proteome inference toolsMetabolic Engineering

Take-home points of this talk

1. What factors impact virus yield from infected cells?

Multiplicity of infection (MOI)

1 virus particle per cellVirus yields span 104 reflecting variation in viral genetics,

host-cell state and other factors.

multiple virus particles per cellDefective virus-like particles co-infect cells and reduce

virus yields in a dose-dependent manner.

2. How might we more sensitively measure virus infectivity?

Use fluid flows to enhance spread and imagingto measure the resulting cytopathology