33
MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga (OCA, Obs. Turin) ESA Contract No. 14018/2000/F/TB

MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Embed Size (px)

Citation preview

Page 1: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES

A. Morbidelli (OCA)

R. Jedicke (Spacewatch)

W.F. Bottke (SWRI)

P. Michel (OCA)

P. Tanga (OCA, Obs. Turin)

ESA Contract No. 14018/2000/F/TB

Page 2: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

ASTEROIDS CAN ESCAPE FROM THE MAIN BELT AND BECOME NEOs

Page 3: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

By numerically integrating the dynamics of a large number of particles we can quantify the statistics of the orbital evolutions

Page 4: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

WE HAVE DEVELOPED A NEO DISTRIBUTION MODEL BY:

1. USING NUMERICAL INTEGRATIONS

2. CALIBRATING THE FREE PARAMETERS USING THE OBSERVATIONAL DATA

Our approach consists of 5 steps.

Page 5: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Step 1: Find “Primary” NEO Source Regions

Nu6

Each source produces NEOs with a distinctive orbital distribution

MCMC

OB 3:1

JFC

Page 6: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

PRINCIPLE:

The distribution of the residence times is equal to the steady-state orbital distribution of the NEOs coming from the considered source.

Step 1 (continued): Determine the orbital distribution of NEOs coming from each Source

Nu6

Page 7: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Step 2: Combine NEO Sources

IMC 3:1 Outer MB JFC

n u 6 IM C 3:1 O u ter M B JF Cs

C om b in e N E O S ou rcesR (a ,e,i)

Page 8: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Step 3: Create Model NEO Distribution

C om b in e N E O S ou rcesR (a ,e,i)

A b s. M ag. D is trib u tionN (H)

D eb iased N E O O rb its M odel (a ,e,i,H ) = R (a ,e,i) N (H )

We cannot compare our NEO model with data until we account for observational biases!

Page 9: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Step 4: Create Biased NEO Distribution

O b servation al B iasesB (a ,e,i,H)

D eb iased N E O O rb its M odel (a ,e,i,H)

" O b served " N EO D istrib u tionn (a ,e,i,H ) = B (a ,e,i,H ) M odel (a ,e ,i,H)

Combine NEO model with the probability than an object with given (a,e,i,H) with be discovered by Spacewatch.

Page 10: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Step 5: Compare Biased Model with NEO Data

O b servation al B iasesB (a ,e,i,H )

n u 6 IM C 3:1 O u ter M B JF Cs

C om b in e N E O S ou rcesR (a ,e,i)

A b s. M ag. D is trib u tionN (H)

D eb iased N E O O rb its M odel (a ,e,i,H )

" O b served " N EO D istrib u tionn (a ,e,i,H )

C om p are w ith S p acew atch N E O D atan (a ,e ,i,H ) = "K now n N E O s"?

Continue U

ntil “Best-F

it” Found

(4)

(3)

(1)

(2)

(5)

Page 11: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Comparison Between NEOs and Best-Fit Model

Source contributions

6 0.37 ± 0.08

IMC 0.25 ± 0.03

3:1 0.23 ± 0.08

Outer MB 0.08 ± 0.01

JFC 0.06 ± 0.04

Model fit to 138 Spacewatch NEOs

with H < 22

Page 12: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Debiased Orbital and Size Distribution of NEOs

There are ~ 970 NEOs with H < 18 and a < 7.4 AU.

~50% of them have been found so far.

60% come from the inner main belt (a < 2.5 AU).

Amor: 32%; Apollo: 62%; Aten:6%; IEO: 2%

Page 13: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

A SPECTRAL DISTRIBUTION MODEL

From the spectral distribution of the bodies in/close the 5 main NEO sources we compute the spectral distribution of NEOs as a function of their orbital distribution.

We estimate that:

1) the C/S ratio for an H-limited sample of the NEO population is 0.25 +/- 0.02

2) The C/S ratio for a size-limited sample of the NEO population is 0.87+/- 0.05

Page 14: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Using our NEO albedo distribution model we predict 834 bodies with D>1km, against 963 with H<18

Page 15: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

To obtain a mass distribution we assume, in agreement with recent determinations by flyby missions or satellite detections, that:

1) C-type NEOs have density 1.3 g/cm

2) S-type NEOs have density 2.7 g/cm

With this, we have all ingredients to estimate the frequency of NEO collisions with the Earth as a function of impact energy:

ENERGY

(MT)

AV. INT.

(Y) H D

(M)

COMPLET.

(%)

1,000 63,000 20.5 277 18

10,000 241,000 19.0 597

37

100,000 925,000 17.3 1287 49

3

3

Page 16: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

WE PREDICT 4X LESS IMPACTS THAN PREVIOUSLY ESTIMATED

Difference is likely due to an estimated smaller number of NEOs, different orbital distribution, improved bulk densities etc.

The « measured » formation rate of 4 km craters on the Moon is: 3.3+/-1.7x10 -14 km2/y; our NEO model predicts : 2.73x10-14km2/y

Page 17: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

NEO DISCOVERY STRATEGIES

How to achieve the Spageguard goal (90% of H<18 NEOs within 2008) and beyond (90% of H<20.5 NEOs)?

• Characterization of existing major surveys (LINEAR)

• How to achieve the Spaceguard goal with a LINEAR-esque

strategy

•Space-based strategies

Page 18: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

We have constructed a pseudoLINEAR simulator, that simulates the average sky coverage of LINEAR and its average limiting magnitude V=18.5

QUALITY TEST I:

In 2 years LINEAR increased the detected population of the NEOs with H<18 from 273 to 449.

Our pseudoLINEAR simulator takes 2.14 years

Page 19: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

QUALITY TEST II:

The orbital-magnitude distribution of the first 469 NEOs with H<18 discovered by our pseudoLINEAR simulator mimics very well that of the 469 objects discovered so far by LINEAR and other surveys

Page 20: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

PROSPECTS FOR ACHIEVING THE SPACEGUARD GOAL WITH A GROUND BASED SURVEY

LINEAR

LSST?

Current completeness

Current time

Page 21: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

SPACE BASED SURVEYS

A space-based survey that duplicates the strategy of ground-based surveys will never be competitive in term of cost.

A space-based survey must take advantage of the location of the instrument in space by either:

•Observe at small solar elongation or,

•Search for NEOs from a point closer to the Sun than the Earth

Page 22: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

NEO sky density viewed from 1 AU

Page 23: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

Discovery efficiency of satellites with V=18.5 on NEOs with H<18

(Ideal situation with daily full sky coverage, except 45deg close to the Sun)

Page 24: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

WARNING: the fact that a space-based survey detects NEOs that are not visible from the ground, implies that one cannot count on ground-based recoveries for follow-up and orbital determination

Ground-based ecliptic coordinates of NEOs at the time of their discovery form a space observatory inside Venus’ orbit

A space-based survey must be able to do its own follow-up

Page 25: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS

• We have a model of the (a,e,i,H) NEO distribution

• We estimate 963 NEOs with H<18 and 855 with D>1km

• Our model predicts 4x less collisions than Shoemaker’s

• We predict one 1,000MT collision every 63 Kyear

• These collisions are caused in average by H ~ 20.5

• The Spaceguard goal should be extended to H=20.5 NEOs

Page 26: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS

• We have a model of the (a,e,i,H) NEO distribution

• We estimate 963 NEOs with H<18 and 855 with D>1km

• Our model predicts 4x less collisions than Shoemaker’s

• We predict one 1,000MT collision every 63 Kyear

• These collisions are caused in average by H ~ 20.5

• The Spaceguard goal should be extended to H=20.5 NEOs

Page 27: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS

• We have a model of the (a,e,i,H) NEO distribution

• We estimate 963 NEOs with H<18 and 855 with D>1km

• Our model predicts 4x less collisions than Shoemaker’s

• We predict one 1,000MT collision every 63 Kyear

• These collisions are caused in average by H ~ 20.5

• The Spaceguard goal should be extended to H=20.5 NEOs

Page 28: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS

• We have a model of the (a,e,i,H) NEO distribution

• We estimate 963 NEOs with H<18 and 855 with D>1km

• Our model predicts 4x less collisions than Shoemaker’s

• We predict one 1,000MT collision every 63 Kyear

• These collisions are caused in average by H ~ 20.5

• The Spaceguard goal should be extended to H=20.5 NEOs

Page 29: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS

• We have a model of the (a,e,i,H) NEO distribution

• We estimate 963 NEOs with H<18 and 855 with D>1km

• Our model predicts 4x less collisions than Shoemaker’s

• We predict one 1,000MT collision every 63 Kyear

• These collisions are caused in average by H ~ 20.5

• The Spaceguard goal should be extended to H=20.5 NEOs

Page 30: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS

• We have a model of the (a,e,i,H) NEO distribution

• We estimate 963 NEOs with H<18 and 855 with D>1km

• Our model predicts 4x less collisions than Shoemaker’s

• We predict one 1,000MT collision every 63 Kyear

• These collisions are caused in average by H ~ 20.5

• The Spaceguard goal should be extended to H=20.5 NEOs

Page 31: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS (2)

• To achieve a satisfactory completeness on the H<20.5 NEO population, ground based surveys should be pushed to V=24

• Spaced-based surveys can be effective only if– They observe at small solar elongation– They observe from a point placed a smaller

heliocentric distance than the Earth

• Space-based surveys must do their own follow-up work

Page 32: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS (2)

• To achieve a satisfactory completeness on the H<20.5 NEO population, ground based surveys should be pushed to V=24

• Spaced-based surveys can be effective only if– They observe at small solar elongation– They observe from a point placed a smaller

heliocentric distance than the Earth

• Space-based surveys must do their own follow-up work

Page 33: MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga

CONCLUSIONS (2)

• To achieve a satisfactory completeness on the H<20.5 NEO population, ground based surveys should be pushed to V=24

• Spaced-based surveys can be effective only if– They observe at small solar elongation– They observe from a point placed a smaller

heliocentric distance than the Earth

• Space-based surveys must do their own follow-up work