34
Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut E. D. Veraart Imperial College London 2018 Workshop on Finance, Insurance, Probability and Statistics (FIPS 2018) King’s College London, 10-11 September 2018 1 / 26

Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

  • Upload
    others

  • View
    32

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Modeling, simulation and inference for multivariatetime series of counts using trawl processes

Almut E. D. VeraartImperial College London

2018 Workshop on Finance, Insurance, Probability and Statistics(FIPS 2018)

King’s College London, 10-11 September 2018

1 / 26

Page 2: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

IntroductionAim of the Project

ä Modelling multivariate time series of counts.

ä Count data: Non-negative and integer-valued, and often over-dispersed(i.e. variance > mean).

ä Various applications: Medical science, epidemiology, meteorology,network modelling, actuarial science, econometrics and finance.

Aim of the project

Develop continuous-time models for time series of counts that

à allows for a flexible autocorrelation structure;

à can deal with a variety of marginal distributions;

à allows for flexibility when modelling cross-correlations;

à is analytically tractable.

2 / 26

Page 3: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

IntroductionAim of the Project

ä Modelling multivariate time series of counts.

ä Count data: Non-negative and integer-valued, and often over-dispersed(i.e. variance > mean).

ä Various applications: Medical science, epidemiology, meteorology,network modelling, actuarial science, econometrics and finance.

Aim of the project

Develop continuous-time models for time series of counts that

à allows for a flexible autocorrelation structure;

à can deal with a variety of marginal distributions;

à allows for flexibility when modelling cross-correlations;

à is analytically tractable.

2 / 26

Page 4: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

IntroductionShort and Incomplete Review of the Literature

ä Overall, two predominant modelling approaches:

à Discrete autoregressive moving-average (DARMA) models introduced byJacobs & Lewis (1978a,b).

The advantage of such stationary processes is that their marginaldistribution can be of any kind. However, this comes at the cost that thedependence structure is generated by potentially long runs of constantvalues, which results in sample paths which are rather unrealistic in manyapplications (see McKenzie (2003)).

à Models obtained from thinning operations going back to the influential workof Steutel & van Harn (1979), e.g. INARMA. See also Zhu & Joe (2003) forrelated more recent work.

ä Key idea of this paper: Use trawling for modelling counts! – Nested withinthe framework of ambit fields (Barndorff-Nielsen & Schmiegel (2007)) andextends results by Barndorff-Nielsen, Pollard & Shephard (2012) andBarndorff-Nielsen, Lunde, Shephard & Veraart (2014).

3 / 26

Page 5: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

IntroductionShort and Incomplete Review of the Literature

ä Overall, two predominant modelling approaches:

à Discrete autoregressive moving-average (DARMA) models introduced byJacobs & Lewis (1978a,b).

The advantage of such stationary processes is that their marginaldistribution can be of any kind. However, this comes at the cost that thedependence structure is generated by potentially long runs of constantvalues, which results in sample paths which are rather unrealistic in manyapplications (see McKenzie (2003)).

à Models obtained from thinning operations going back to the influential workof Steutel & van Harn (1979), e.g. INARMA. See also Zhu & Joe (2003) forrelated more recent work.

ä Key idea of this paper: Use trawling for modelling counts! – Nested withinthe framework of ambit fields (Barndorff-Nielsen & Schmiegel (2007)) andextends results by Barndorff-Nielsen, Pollard & Shephard (2012) andBarndorff-Nielsen, Lunde, Shephard & Veraart (2014).

3 / 26

Page 6: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

IntroductionWhat is trawling...? A first ”definition”

“Trawling is a method of fishing that involves pulling a fishing net through thewater behind one or more boats. The net that is used for trawling is called atrawl.” (Wikipedia)

4 / 26

Page 7: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkInteger-valued, homogeneous Levy bases

ä Let N be a homogeneous Poisson random measure on Rn ×R2 withcompensator

E(N(dy,dx ,dt)) = ν(dy)dxdt ,

where ν is a Levy measure satisfying∫ ∞−∞ min(1, ||y||)ν(dy) < ∞.

ä Assume that N is positive integer-valued, i.e. ν is concentrated on N.

ä Then we define an Nn-valued, homogeneous Levy basis on R2 in termsof the Poisson random measure as

L(dx ,dt) = (L(1)(dx ,ds), . . . ,L(n)(dx ,ds))′ =∫ ∞

−∞yN(dy,dx ,dt). (1)

ä The Levy basis L is infinitely divisible with cumulant function

CL(dx ,dt)(θ)..= log(E(exp(iθL(dx ,dt))) =

∫R

(eiθy − 1

)ν(dy)dxdt

= CL′(θ)dxdt , where L′ is the Levy seed.

5 / 26

Page 8: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkInteger-valued, homogeneous Levy bases: The cross-correlation

ä From Feller (1968), we know that any non-degenerate distribution on Nn

is infinitely divisible if and only if it can be expressed as a discretecompound Poisson distribution.

ä A random vector with infinitely divisible distribution on Nn always hasnon-negatively correlated components.

ä We model the Levy seed by an n-dimensional compound Poissonprocess given by

L′t =Nt

∑j=1

Zj ,

where N = (Nt )t≥0 is an homogeneous Poisson process of rate v > 0and the (Zj )j∈N form a sequence of i.i.d. random variables independentof N and which have no atom in 0, i.e. not all components aresimultaneously equal to zero, more precisely, P(Zj = 0) = 0 for all j .

6 / 26

Page 9: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkDefinition of a Trawl

Definition 1A trawl for the i th component is a Borel set A(i) ⊂ R× (−∞,0] such thatLeb(A(i)) < ∞. Then, we set

A(i)t = A(i) + (0, t), i ∈ {1, . . . ,n}.

ä Typically, we choose A(i) to be of the form

A(i) = {(x , s) : s ≤ 0, 0 ≤ x ≤ d (i)(s)}, (2)

where d (i) : (−∞,0] 7→ R is a cont. and Leb(A(i)) < ∞.

ä Then A(i)t = A(i) + (0, t) = {(x , s) : s ≤ t , 0 ≤ x ≤ d (i)(s− t)}.

ä If d (i) is also monotonically non-decreasing, then A(i) is a monotonictrawl.

7 / 26

Page 10: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkDefinition of a Trawl

Definition 1A trawl for the i th component is a Borel set A(i) ⊂ R× (−∞,0] such thatLeb(A(i)) < ∞. Then, we set

A(i)t = A(i) + (0, t), i ∈ {1, . . . ,n}.

ä Typically, we choose A(i) to be of the form

A(i) = {(x , s) : s ≤ 0, 0 ≤ x ≤ d (i)(s)}, (2)

where d (i) : (−∞,0] 7→ R is a cont. and Leb(A(i)) < ∞.

ä Then A(i)t = A(i) + (0, t) = {(x , s) : s ≤ t , 0 ≤ x ≤ d (i)(s− t)}.

ä If d (i) is also monotonically non-decreasing, then A(i) is a monotonictrawl.

7 / 26

Page 11: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkDefinition of a Trawl Process

Definition 2We define an n-dimensional stationary integer-valued trawl (IVT) process(Yt )t≥0 by Yt = (L(1)(A(1)

t ), . . . ,L(n)(A(n)t ))′,

à whereL(i)(A(i)

t ) =∫

R×RIA(i) (x , s− t)L(i)(dx ,ds), i ∈ {1, . . . ,n}.

à L is the n-dimensional integer-valued, homogeneous Levy basis on R2 (see (1)).

à A(i)t = A(i) + (0, t) with A(i) ⊂ R× (−∞,0] and Leb(A(i)) < ∞ is the trawl.

ä Wolpert & Taqqu (2005) study a subclass of general (univariate) trawl processes(not necessarily restricted to IV) under the name “up-stairs” representation,“random measure of a moving geometric figure in a higher-dimensional space”

ä Wolpert & Brown (2011) study so-called “random measure processes” which alsofall into the (univariate) trawling framework.

8 / 26

Page 12: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkDefinition of a Trawl Process

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

9 / 26

Page 13: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkDefinition of a Trawl Process

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

9 / 26

Page 14: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical frameworkDefinition of a Trawl Process

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

10 11 12 13 14 15 16 17 18 190

5

10

15

9 / 26

Page 15: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

ExamplesNegative Binomial exponential-trawl process

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 / 26

Page 16: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

ExamplesNegative Binomial exponential-trawl process

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 / 26

Page 17: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

ExamplesNegative Binomial exponential-trawl process

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

10 / 26

Page 18: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Some key properties of IVT processesCumulants

ä The IVT process is stationary and infinitely divisible.ä The IVT process is mixing⇒ weakly mixing⇒ ergodic.ä The cumulant function of a trawl process is given by

CY (i)

t(θ) = C

L(i)(A(i)t(θ) = Leb(A(i))CL′(i)(θ),

à I.e. to any infinitely divisible integer-valued law π, say, there exists astationary integer-valued trawl process having π as its one-dimensionalmarginal law.

ä The covariance between two (possibly shifted) components 1 ≤ i ≤ j ≤ nfor t ,h ≥ 0 is given by

Cov(

L(i)(A(i)t ),L(j)(A(j)

t+h))= Leb

(A(i) ∩ A(j)

h

)(∫R

∫R

yiyj ν(i,j)(dyi ,dyj )

),

Cor (L(i)(A(i)t ),L(i)(A(i)

t+h)) =Leb(A(i) ∩ A(i)

h )

Leb(A(i)).

11 / 26

Page 19: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Multivariate law of the Levy seedPoisson mixtures

ä The law of L′ is of discrete compound Poisson type by construction.

ä Use Poisson mixtures based on random additive effect models, seeBarndorff-Nielsen et al. (1992).

ä Consider random variables X1, . . . ,Xn and Z1, . . . ,Zn, such that,conditionally on {Z1, . . . ,Zn}, the X1, . . . ,Xn are independent andPoisson distributed with means given by the {Z1, . . . ,Zn}.

ä Model the joint distribution of the {Z1, . . . ,Zn} by a so-called additiveeffect model as follows:

Zi = αiU + Vi , i = 1, . . . ,n,

where the random variables U,V1, . . . ,Vn are independent and theα1, . . . , αn are nonnegative parameters.

ä We have explicit formulas for the joint law of (X1, . . . ,Xn) and

E(Xi ) = αi E(U) + E(Vi ), i = 1, . . . ,n,Cov(Xi ,Xj ) = αi αj Var(U), if i 6= j .

12 / 26

Page 20: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Theoretical resultsRepresentation as compound Poisson distribution and as a multivariatenegative binomial distribution

ä The Poisson mixture model of random-additive-effect type can berepresented as a compound Poisson distribution

ä If U and Vis follow suitable Gamma distributions, then negative binomialmarginal law can be achieved allowing for

à 1) independence,

à 2) complete dependence, or

à 3) dependence with additional independent factors between thecomponents.

ä Recall that the (multivariate) negative binomial distribution can berepresented as a compound Poisson distribution with (multivariate)logarithmic jump size distribution.

ä The representation result is used in the simulation algorithm for themultivariate trawl process.

13 / 26

Page 21: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Key properties of IVT processesOverview

Flexible marginal distributions:

ä Poisson trawl process;

ä Negative binomial trawl process;

ä other compound Poisson distributions.

Various choices of the trawl function:

ä Superpositions of exponential trawls: d (i)(z) =∫ ∞

0 eλz π(i)(dλ), for z ≤ 0, for aprobability measure π(i) on (0,∞).

ä Possibility of allowing for long memory.

14 / 26

Page 22: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Key properties of IVT processesOverview

Flexible marginal distributions:

ä Poisson trawl process;

ä Negative binomial trawl process;

ä other compound Poisson distributions.

Various choices of the trawl function:

ä Superpositions of exponential trawls: d (i)(z) =∫ ∞

0 eλz π(i)(dλ), for z ≤ 0, for aprobability measure π(i) on (0,∞).

ä Possibility of allowing for long memory.

14 / 26

Page 23: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Inference(Generalised) Method of Moments

ä Use a (generalised) method of moments in a two-stageequation-by-equation approach to estimate the marginal parameters first,followed by the dependence parameters.

ä Step 1a) Use the acf r (i)(h) = Leb(A(i)∩A(i)h )

Leb(A(i))to infer the trawl parameters.

ä Step 1b) Use the cumulant function CY (i)

t(θ) = Leb(A(i))CL′(i)(θ) to infer

the marginal parameters of the Levy basis.

ä Step 2a) Compute Leb(A(i) ∩ A(j)) for i 6= j .

ä Step 2b) Use the cross-covariance function

Cov(

L(i)(A(i)t ),L(j)(A(j)

t ))= Leb

(A(i) ∩ A(j)

)(∫R

∫R

yiyj ν(i,j)(dyi ,dyj )

)to infer the dependence parameters.

15 / 26

Page 24: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Empirical illustrationHigh frequency financial data from LOBSTER

ä Study high frequency limit order book data from LOBSTER.

ä We picked the Apple data for August 8, 2017: Start at 11:00am, end at12:00 (noon).

ä We analyse the joint behaviour of the number of newly submitted andfully deleted limit orders over 5s intervals (720 observations in total).

ä We fit a bivariate trawl model with double exponential trawl function andbivariate negative binomial law.

ä Summary statistic:

Min 1st Quartile Median Mean 3rd Quartile MaxNo. of submissions 0.00 19.00 44.00 53.46 74.25 290.00No. of cancellations 0.00 22.00 38.00 46.77 63.00 243.00

16 / 26

Page 25: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Number of limit order submissions and deletionsTime series, acf and crosscorrelation

0 100 200 300 400 500 600 700

050

100

150

200

250

300

Interval

Cou

nts

0 100 200 300 400 500 600 700

050

100

150

200

250

300

Interval

Cou

nts

0 20 40 60 80 100

−0.

10−

0.05

0.00

0.05

0.10

0.15

0.20

Lag

AC

F

0 20 40 60 80 100

−0.

050.

000.

050.

100.

150.

200.

25

Lag

AC

F

−100 −50 0 50 100

0.0

0.2

0.4

0.6

0.8

Lag

AC

F

17 / 26

Page 26: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Number of limit order submissions and deletionsHistograms: submissions (right), full cancellations (top)

TS

2

0 50 100 150 200

050

100

150

200

250

Counts

1 2 4 8

1632

050

100

150

200

0 50 100 150

18 / 26

Page 27: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Empirical illustrationFitted trawl (sum of two exponentials) to number of submissions and deletions

0 20 40 60 80 100

−0.

10−

0.05

0.00

0.05

0.10

0.15

0.20

Lags

AC

F

0 20 40 60 80 100

−0.

050.

000.

050.

100.

150.

200.

25

Lags

AC

F

19 / 26

Page 28: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Empirical illustrationFitted bivariate negative binomial marginal fit (to number of submissions anddeletions)

0 50 100 150 200 250 300

0.00

00.

002

0.00

40.

006

0.00

80.

010

0.01

2

0 50 100 150 200 250 300

050

100

150

200

250

300

350

Neg

ativ

e B

inom

ial

0 50 100 150 200 250

0.00

00.

005

0.01

00.

015

0 50 100 150 200 250

050

100

150

200

Neg

ativ

e B

inom

ial

20 / 26

Page 29: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Empirical illustrationFitted bivariate negative binomial: Bivariate histogram assessment

Cancellations

Sub

mis

sion

s

[0,5) [20,25) [40,45) [60,65) [80,85) [105,110) [135,140) [165,170) [195,200) [225,230) [255,260) [285,290)

[0,5

)[3

0,35

)[6

5,70

)[1

05,1

10)

[150

,155

)[1

95,2

00)

[240

,245

)[2

85,2

90)

diff

−10 −8 −6 −4 −2 0 2 4 6 8

10 12 14 16

21 / 26

Page 30: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Main contributions

ä New continuous-time framework for modelling multivariate stationary,serially correlated count data.

ä Two key components:à Integer-valued, homogeneous Levy basis: Generates random point pattern

and determines marginal distribution and cross-sectional dependence.à Trawl: Thins the point pattern and determines the autocorrelation structure.

ä Simulation algorithm & parameter estimation of IVT processes withmonotonic trawl.

ä Simulation studies reveal good performance of (generalised) method ofmoments and quasi-maximum-likelihood methods for parameterestimation.

ä Empirical application to high frequency financial data.

22 / 26

Page 31: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

You want to know more...?!

ä Preprint: Available on my website (article forthcoming in the Journal ofMultivariate Analysis).

ä New R package trawl available on CRAN.

ä Many more details in our new book:

23 / 26

Page 32: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Bibliography I

Barndorff-Nielsen, O. E., Blæsild, P., & Seshadri, V. (1992). Multivariatedistributions with generalized inverse Gaussian marginals, and associatedPoisson mixtures. The Canadian Journal of Statistics. La RevueCanadienne de Statistique, 20(2), 109–120.

Barndorff-Nielsen, O. E., Lunde, A., Shephard, N., & Veraart, A. E. D. (2014).Integer-valued trawl processes: A class of stationary infinitely divisibleprocesses. Scandinavian Journal of Statistics, 41, 693–724.

Barndorff-Nielsen, O. E., Pollard, D. G., & Shephard, N. (2012).Integer-valued Levy processes and low latency financial econometrics.Quantitative Finance, 12(4), 587–605.

Barndorff-Nielsen, O. E. & Schmiegel, J. (2007). Ambit processes: withapplications to turbulence and cancer growth. In F. Benth, G. Di Nunno, T.Lindstrøm, B. Øksendal, & T. Zhang (Eds.), Stochastic Analysis andApplications: The Abel Symposium 2005 (pp. 93–124). Heidelberg:Springer.

24 / 26

Page 33: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Bibliography II

Jacobs, P. A. & Lewis, P. A. W. (1978a). Discrete time series generated bymixtures. I. Correlational and runs properties. Journal of the RoyalStatistical Society. Series B. Methodological, 40(1), 94–105.

Jacobs, P. A. & Lewis, P. A. W. (1978b). Discrete time series generated bymixtures. II. Asymptotic properties. Journal of the Royal Statistical Society.Series B. Methodological, 40(2), 222–228.

McKenzie, E. (2003). Discrete variate time series. In Stochastic processes:modelling and simulation, volume 21 of Handbook of Statistics (pp.573–606). Amsterdam: North-Holland.

Steutel, F. W. & van Harn, K. (1979). Discrete analogues ofself-decomposability and stability. The Annals of Probability, 7(5), 893–899.

Veraart, A. E. D. (2015). Modelling multivariate serially correlated count datain continuous time. In preparation.

Wolpert, R. L. & Brown, L. D. (2011). Stationary infinitely-divisible Markovprocesses with non-negative integer values. Working paper, April 2011.

25 / 26

Page 34: Modeling, simulation and inference for multivariate …ajacquie/FIPS2018/Slides...Modeling, simulation and inference for multivariate time series of counts using trawl processes Almut

Bibliography III

Wolpert, R. L. & Taqqu, M. S. (2005). Fractional Ornstein–Uhlenbeck Levyprocesses and the Telecom process: Upstairs and downstairs. SignalProcessing, 85, 1523–1545.

Zhu, R. & Joe, H. (2003). A new type of discrete self-decomposability and itsapplication to continuous-time Markov processes for modeling count datatime series. Stochastic Models, 19(2), 235–254.

26 / 26