24
MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR ELECTROMAGNETIC TRANSIENTS June 21st 2013 Hani SAAD Ph.D. student Director: Prof. J. Mahseredjian, École Polytechnique de Montréal, Canada Co-director: Prof. X. Guillaud, École Centrale de Lille, France Industrial partner : RTE-France Co-directors of project: S. Nguefeu and S. Dennetière

MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR ELECTROMAGNETIC TRANSIENTS

June 21st 2013

Hani SAAD

Ph.D. student

Director: Prof. J. Mahseredjian, École Polytechnique de Montréal, Canada

Co-director: Prof. X. Guillaud, École Centrale de Lille, France

Industrial partner : RTE-France

Co-directors of project: S. Nguefeu and S. Dennetière

Hello everybody, my name is Hani saad I am a phd student from the ecole polytechnique de montreal And my presentation focuses on modeling hvdc-mmc System for electromagnetic transients

Page 2: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

Plan:

1. Introduction

2. MMC topology overview

3. MMC models

4. Control system

5. HVDC-MMC model in EMTP-RV

2

Here is the plan of the presentation. I will first start witht a small introduction, than show overview of the MMC topology. After that, the differents type of models developped in emtp are presented. The control system strucuture is than presented, and the HVDC-MMC system model in emtp is than simulated and presented

Page 3: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

1. Introduction

3

VSC based HVDC transmission system is expanding rapidly.

The recent Modular Multilevel Converter (MMC) topology offers significant benefit compared to previous VSC technologies

Advantages of Modular Multilevel Converter (MMC):

• Low frequency modulation

• Lower transient peak voltages on IGBT, which will lead to a lower losses

• Very low THD, hence no need for High-pass filters or very small size

• Modular structure, scalable to different power and voltage levels

As may everybody know, Vsc-hvdc link are expanding rapidly due to several reasons as enviromental, decreasing cost of the power switchs, the ability to supply weak grid etc. The recent VSC type topology called MMC offers significant advantages compared to other previous topology as 2-3levels

Page 4: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

2. MMC topology overview

4

Idc

SM-1

SM-2

SM-N

SM-1

SM-2

SM-N

SM-1

SM-2

SM-N

SM-1

SM-2

SM-N

SM-1

SM-2

SM-N

SM-1

SM-2

SM-N

Vdc

Ls

Ls Ls Ls

Ls Ls

iua

ib

ic

va

iub iuc

ila ilb ilc

vb ia

vc

. . . . . . . .

.

. . . . . . . .

.

Arm At normal operation, S1 and S2 are complementary The sub-module consist of two states: Su->on and Sl->off Su->off and Sl->on

SM

aupv _

SM

alowv _

Sub-Module

C

Su

Sl

Su

Sl

On

On

On

On

Off

Off

Off

Off

ON State OFF State

On Off

Su

Sl

Su

Sl

Su

Sl

Page 5: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

3. MMC models

5

Depending on the type of study different type of modeling are presented:

• Model 1 – Model based on nonlinear IGBT models

• Model 2 – Model based on simplified switchable resistance

• Model 3 – Switching Function of Arm (SF-arm)

• Model 4 – Average Value Model of MMC (AVM-MMC)

. .

. . . .

Model 4 Model 3 Model 2 Model 1

Page 6: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

3. MMC models

6

Model 1 - Models based on nonlinear IGBT models

• In this case IGBT/diode are modeled by nonlinear resistor and an ideal switch.

p

n

g

C

g

p

n

S1

S2K2K1

+

RL

C

g

p

n

0 1000 2000 3000 4000

0.6

0.8

1

Current (A)

Voltage (

V)

Entered characteristic plot

Advantages: Very easy to achieve, it preserve the main structure of the IGBT The V-I curve of the IGBT/diode is modeled.

Inconvenient: Computation time is high

vc_400

vc_1

vc_2

p

n

g

C

g

p

n

S1

S2K2K1

+R

LC

p

n

g

C

g

p

n

S1

S2K2K1

+R

LC

p

n

g

C

g

p

n

S1

S2K2K1

+R

LC

p

n

g

C

g

p

n

S1

S2K2K1

+R

LC

p

n

g

C

g

p

n

S1

S2K2K1

+R

LC

p

n

g

C

g

p

n

S1

S2K2K1

+R

LC

p

g

n

Page 7: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

pos

ph

vc1

S1

S2

S3

S4

S5

S7

S8

S9

S10

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

vc10

vc2

vc9

vc8

vc7

vc6

vc5

vc4

vc3

Sub-module (SM)

V1

V0

S1S2

Vc

SM_12

Sub-module (SM)

V1

V0

S1S2

Vc

SM_13

Sub-module (SM)

V1

V0

S1S2

Vc

SM_14

Sub-module (SM)

V1

V0

S1S2

Vc

SM_15

Sub-module (SM)

V1

V0

S1S2

Vc

SM_16

Sub-module (SM)

V1

V0

S1S2

Vc

SM_17

Sub-module (SM)

V1

V0

S1S2

Vc

SM_18

Sub-module (SM)

V1

V0

S1S2

Vc

SM_19

Sub-module (SM)

V1

V0

S1S2

Vc

SM_20

S6

if S=0 --> [S1 S2] = [0 1]if S=1 --> [S1 S2] = [1 0]if S=2 --> [S1 S2] = [0 0]if S=3 --> [S1 S2] = [1 1]

Gate_signals

SS2S1

Sub-module (SM)

V1

V0

S1S2

Vc

SM_11

S6

S7

S8

S9S10

S5

S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM1

S6

S7

S8S9

S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM2

S6

S7S8

S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM3

S6S7

S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM4

S6

S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM5

S6

S7

S8

S9S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM6

S6

S7

S8

S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM7

S6

S7S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM8

S6S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM9

S6

S7

S8

S9

S10

S5

S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM10

S6

S7

S8S9

S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM11

S6

S7S8

S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM12

S6S7

S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM13

S6

S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM14

S6

S7

S8

S9S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM15

S6

S7

S8S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM16

S6

S7S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM17

S6S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM18

S6

S7

S8

S9S10

S5

S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM19

S6

S7

S8S9

S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM20

S6

S7S8

S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM40

S6S7

S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM41

S6

S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM42

S6

S7

S8

S9S10

S5

S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM43

S6

S7

S8S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM44

S6

S7S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM45

S6S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM46

S6

S7

S8

S9S10

S5

S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM47

S6

S7

S8S9

S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM48

S6

S7S8

S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM49

S6

S7

S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM50

S6

S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM51

S6

S7

S8

S9S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM52

S6

S7

S8S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM53

S6

S7

S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM54

S6S7

S8

S9

S10

S5

S4

S3

S2S1

vc10

vc1vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM55

S6

S7

S8

S9S10

S5

S4

S3

S2

S1

vc10

vc1

vc2

vc9

vc8

vc7

vc6vc5

vc4

vc3

10 SM

pos

ph

10SM56

S6

S7

S8S9

S10

S5S4

S3

S2

S1

vc10

vc1

vc2

vc9vc8

vc7

vc6

vc5vc4

vc3

10 SM

pos

ph

10SM57

S6

S7S8

S9

S10

S5

S4S3

S2

S1

vc10

vc1

vc2

vc9

vc8vc7

vc6

vc5

vc4vc3

10 SM

pos

ph

10SM58

S6S7

S8

S9

S10

S5

S4

S3S2

S1

vc10

vc1

vc2

vc9

vc8

vc7vc6

vc5

vc4

vc3

10 SM

pos

ph

10SM59

S201S202

S203

S204

S205S206

S207

S208

S209

S210S211

S212

S213

S214S215

S216

S217

S218

S219S220

S221

S222

S223S224

S225

S226

S227

S228S229

S230

S231

S232S233

S234

S235

S236

S237S238

S239

S240

S241S242

S243

S244

S245

S246S247

S248

S249

S250S251

S252

S253

S254

S255S256

S257

S258

S259S260

S261

S262

S263

S264S265

S266

S267

S268S269

S270

S271

S272

S273S274

S275

S276

S277S278

S279

S280

S281

S282S283

S284

S285

S286

S287

S288

S289

S290

S291S292

S293

S294

S295S296

S297

S298

S299

S300S301

S302

S303

S304S305

S306

S307

S308

S309S310

S311

S312

S313S314

S315

S316

S317

S318S319

S320

S321

S322S323

S324

S325

S326

S327S328

S329

S330

S331S332

S333

S334

S335

S336S337

S338

S339

S340S341

S342

S343

S344

S345S346

S347

S348

S349S350

S351

S352

S353

S354S355

S356

S357

S358

S359

S360

S361

S362

S363S364

S365

S366

S367S368

S369

S370

S371

S372S373

S374

S375

S376S377

S378

S379

S380

S381S382

S383

S384

S385S386

S387

S388

S389

S390S391

S392

S393

S394S395

S396

S397

S398

S399

S400

Vc201Vc202

Vc203

Vc204

Vc205Vc206

Vc207

Vc208

Vc209

Vc210Vc211

Vc212

Vc213

Vc214Vc215

Vc216

Vc217

Vc218

Vc219Vc220

Vc221

Vc222

Vc223Vc224

Vc225

Vc226

Vc227

Vc228Vc229

Vc230

Vc231

Vc232Vc233

Vc234

Vc235

Vc236

Vc237Vc238

Vc239

Vc240

Vc241Vc242

Vc243

Vc244

Vc245

Vc246Vc247

Vc248

Vc249

Vc250Vc251

Vc252

Vc253

Vc254

Vc255Vc256

Vc257

Vc258

Vc259Vc260

Vc261

Vc262

Vc263

Vc264Vc265

Vc266

Vc267

Vc268Vc269

Vc270

Vc271

Vc272

Vc273Vc274

Vc275

Vc276

Vc277Vc278

Vc279

Vc280

Vc281

Vc282Vc283

Vc284

Vc285

Vc286

Vc287

Vc288

Vc289

Vc290

Vc291Vc292

Vc293

Vc294

Vc295Vc296

Vc297

Vc298

Vc299

Vc300Vc301

Vc302

Vc303

Vc304Vc305

Vc306

Vc307

Vc308

Vc309Vc310

Vc311

Vc312

Vc313Vc314

Vc315

Vc316

Vc317

Vc318Vc319

Vc320

Vc321

Vc322Vc323

Vc324

Vc325

Vc326

Vc327Vc328

Vc329

Vc330

Vc331Vc332

Vc333

Vc334

Vc335

Vc336Vc337

Vc338

Vc339

Vc340Vc341

Vc342

Vc343

Vc344

Vc345Vc346

Vc347

Vc348

Vc349Vc350

Vc351

Vc352

Vc353

Vc354Vc355

Vc356

Vc357

Vc358

Vc359

Vc360

Vc361

Vc362

Vc363Vc364

Vc365

Vc366

Vc367Vc368

Vc369

Vc370

Vc371

Vc372Vc373

Vc374

Vc375

Vc376Vc377

Vc378

Vc379

Vc380

Vc381Vc382

Vc383

Vc384

Vc385Vc386

Vc387

Vc388

Vc389

Vc390Vc391

Vc392

Vc393

Vc394Vc395

Vc396

Vc397

Vc398

Vc399

Vc400

pos

ph

S1

S2

S3S4

S5

S6

S7S8

S9

S10

S11

S12S13

S14

S15

S16S17

S18

S19

S20

S21S22

S23

S24

S25S26

S27

S28

S29

S30S31

S32

S33

S34S35

S36

S37

S38

S39S40

S41

S42

S43S44

S45

S46

S47

S48

S49

S50

S51

S52S53

S54

S55

S56

S57S58

S59

S60

S61S62

S63

S64

S65

S66S67

S68

S69

S70S71

S72

S73

S74

S75S76

S77

S78

S79S80

S81

S82

S83

S84S85

S86

S87

S88S89

S90

S91

S92

S93S94

S95

S96

S97S98

S99

S100

S101

S102S103

S104

S105

S106S107

S108

S109

S110

S111S112

S113

S114

S115S116

S117

S118

S119

S120

S121

S122

S123

S124S125

S126

S127

S128

S129S130

S131

S132

S133S134

S135

S136

S137

S138S139

S140

S141

S142S143

S144

S145

S146

S147S148

S149

S150

S151

S152

S153

S154

S155

S156S157

S158

S159

S160S161

S162

S163

S164

S165S166

S167

S168

S169S170

S171

S172

S173

S174S175

S176

S177

S178S179

S180

S181

S182

S183S184

S185

S186

S187S188

S189

S190

S191

S192S193

S194

S195

S196S197

S198

S199

S200

S

Vc1

Vc2

Vc3Vc4

Vc5

Vc6

Vc7Vc8

Vc9

Vc10

Vc11

Vc12Vc13

Vc14

Vc15

Vc16Vc17

Vc18

Vc19

Vc20

Vc21Vc22

Vc23

Vc24

Vc25Vc26

Vc27

Vc28

Vc29

Vc30Vc31

Vc32

Vc33

Vc34Vc35

Vc36

Vc37

Vc38

Vc39Vc40

Vc41

Vc42

Vc43Vc44

Vc45

Vc46

Vc47

Vc48

Vc49

Vc50

Vc51

Vc52Vc53

Vc54

Vc55

Vc56

Vc57Vc58

Vc59

Vc60

Vc61Vc62

Vc63

Vc64

Vc65

Vc66Vc67

Vc68

Vc69

Vc70Vc71

Vc72

Vc73

Vc74

Vc75Vc76

Vc77

Vc78

Vc79Vc80

Vc81

Vc82

Vc83

Vc84Vc85

Vc86

Vc87

Vc88Vc89

Vc90

Vc91

Vc92

Vc93Vc94

Vc95

Vc96

Vc97Vc98

Vc99

Vc100

Vc101

Vc102Vc103

Vc104

Vc105

Vc106Vc107

Vc108

Vc109

Vc110

Vc111Vc112

Vc113

Vc114

Vc115Vc116

Vc117

Vc118

Vc119

Vc120

Vc121

Vc122

Vc123

Vc124Vc125

Vc126

Vc127

Vc128

Vc129Vc130

Vc131

Vc132

Vc133Vc134

Vc135

Vc136

Vc137

Vc138Vc139

Vc140

Vc141

Vc142Vc143

Vc144

Vc145

Vc146

Vc147Vc148

Vc149

Vc150

Vc151

Vc152

Vc153

Vc154

Vc155

Vc156Vc157

Vc158

Vc159

Vc160Vc161

Vc162

Vc163

Vc164

Vc165Vc166

Vc167

Vc168

Vc169Vc170

Vc171

Vc172

Vc173

Vc174Vc175

Vc176

Vc177

Vc178Vc179

Vc180

Vc181

Vc182

Vc183Vc184

Vc185

Vc186

Vc187Vc188

Vc189

Vc190

Vc191

Vc192Vc193

Vc194

Vc195

Vc196Vc197

Vc198

Vc199

Vc200

Vc

pos

ph

S Vc

7

MMC 401Levels

Capa.

Voltages

Gate

signals

Input Ouput

Current

Arms

Vc_up_BS_up_B

Vc_up_AS_up_AS_low_A Vc_low_A

S_up_C Vc_up_C

S_low_B Vc_low_B

S_low_C Vc_low_C

AC

i_up_A

P

i_up_B

i_up_C

N

i_low_C

i_low_B

i_low_A

MMC_401L

VSC-MMC 401 levels Model 1

Total IGBT/diode in the HVDC-MMC 401 Level system: 2(IGBT/SM)*400(SM/arms)*2(arms/phase)*3(phases)*2(converters) = 9 500 IGBTs/diodes

i(t)

iua

i(t)

ila

+L_

arm

1

#L

arm

#

+L_

arm

4

#L

arm

#

i_arm_pu i_arm_A

Base i_arm

i_arm_pu i_arm_A

Base i_arm

S Vc

pos

ph

400 SM

400SM _low_A

S Vc

pos

ph

400 SM

400SM _up_A

Vc _up_AS_up_A

S_low_AVc _low_A

AC

i_up_A

P

N

i_ low_Bi_ low_A

i(t)

iub

i(t)

iuc

i(t)

ilb

i(t)

ilc

+L_

arm

2

#L

arm

#

+L_

arm

3

#L

arm

#

i_arm_pu i_arm_A

Base i_armi_arm_pu i_arm_A

Base i_arm

i_arm_pu i_arm_A

Base i_arm

i_arm_pu i_arm_A

Base i_arm

+L_

arm

5

#L

arm

#

+L_

arm

6

#L

arm

#

S Vc

pos

ph

400 SM

400SM _up_B

S Vc

pos

ph

400 SM

400SM _up_C

S Vc

pos

ph

400 SM

400SM _low_B

S Vc

pos

ph

400 SM

400SM _low_C

Vc _up_BS_up_BS_up_C Vc _up_C

S_low_BVc _low_B

S_low_CVc _low_C

i_up_Bi_up_C

i_ low_C

c

b

a

AC

i_up_A

P

N

i_ low_Bi_ low_A

i_up_Bi_up_C

i_ low_C

3. MMC models

D

S

G

+

+R

LC

+

1M

nonlinear diode model

+

0 R

n1

p1p2

V1

V0

S2

+

#Cp#

!v

Cp

S1

Page 8: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

Rc

Vc_eq2

Rc

Vc_eq400

Rc

Vc_eq1

r1_1

r2_1

r1_2

r2_2

r2_400

r1_400

veq

varm

iarm

req

Advantages: Reduction of electrical nodes to 3 nodes, without loosing the variable information of each SM. Low computation time Inconvenient: The model is hard-coded, hence the user has no more access to SM circuits The V-I curve of IGBT/diode is not modeled

C vc_1

C vc_2

vc_400 C

_ _ _ _

1 1

( ) ( ) . ( ) ( )N N

arm SM eq i arm SM eq i

i i

v t r t i t v t T

_

_ _

2( ). 1( )( )

2( ) 1( ) )

2( )( ) ( ).

2( ) 1( )

c

SM eq

c

SM eq c eq

c

r t r t Rr t

r t r t R

r tv t T v t T

r t r t R

3. MMC models

8

Model 2 - Models based on simplified switchable resistance IGBT and diodes are represented by two-value resistors (Ron and Roff). A reduction is performed to reduce the number of electrical nodes that describe converter.

Page 9: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

9

MMC Model 2

i(t)

i(t)

i(t)

i(t)

i(t)

i(t)

+

#L

arm

#

+

#L

arm

#

+

#L

arm

#

+

#L

arm

#

V+

-

V+

-

i_up_A

P

i_up_Bi_up_C

i_low_A i_low_B

N

i_low_C

AC

+

#L

arm

#

+

#L

arm

#

S_up_B

S_up_A

Vc_up_A

Vc_up_B Vc_up_C

Vc_low_CVc_low_BVc_low_AS_low_A S_low_B S_low_C

S_up_C

.....

SM1

SM2

SMi

Vci

Vc2

Vc1

MMC arm

Vc_tot

arm_upA

ParamsA=2,0,0,2,20,21,1,

ModelData=MMC_arm_DLLemtp_06112012,#Cp#, #Vc_init#, #Rlosses#, 1e4 ,20

.....

SM1

SM2

SMi

Vci

Vc2

Vc1

MMC arm

Vc_tot

arm_upB

ParamsA=2,0,0,2,20,21,1,

ModelData=MMC_arm_DLLemtp_06112012,#Cp#, #Vc_init#, #Rlosses#, 1e4 ,20

.....

SM1

SM2

SMi

Vci

Vc2

Vc1

MMC arm

Vc_tot

arm_upC

ParamsA=2,0,0,2,20,21,1,

ModelData=MMC_arm_DLLemtp_06112012,#Cp#, #Vc_init#, #Rlosses#, 1e4 ,20

.....

SM1

SM2

SMi

Vci

Vc2

Vc1

MMC arm

Vc_tot

arm_lowA

ParamsA=2,0,0,2,20,21,1,

ModelData=MMC_arm_DLLemtp_06112012,#Cp#, #Vc_init#, #Rlosses#, 1e4 ,20

.....

SM1

SM2

SMi

Vci

Vc2

Vc1

MMC arm

Vc_tot

arm_lowB

ParamsA=2,0,0,2,20,21,1,

ModelData=MMC_arm_DLLemtp_06112012,#Cp#, #Vc_init#, #Rlosses#, 1e4 ,20

.....

SM1

SM2

SMi

Vci

Vc2

Vc1

MMC arm

Vc_tot

arm_lowC

ParamsA=2,0,0,2,20,21,1,

ModelData=MMC_arm_DLLemtp_06112012,#Cp#, #Vc_init#, #Rlosses#, 1e4 ,20

scope

Vc_tot_upA

scope

Vc_tot_lowA

scope

Varm_lowA

scope

Varm_upA

a

c

DLL block

Fortran 95 code

3. MMC models

Capa.

Voltages

Gate

signals

Input Ouput

Current

Arms

Detailed Equivalent-Circuit-based Model (DECM)

MMC 401Levels

++

Vc_up_BS_up_B

Vc_up_AS_up_AS_low_A Vc_low_A

S_up_C Vc_up_C

S_low_B Vc_low_B

S_low_C Vc_low_C

AC

i_up_A

P

i_up_B

i_up_C

N

i_low_C

i_low_B

i_low_A

MMC_401L1

Page 10: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

Model 3 – Switching function of Arm • Each MMC arm are modeled as controlled current and voltage sources for ON/OFF states and

half diode bridge for Blocked state. • These models can be used to study harmonics generated and control system which account

for energy regulation of MMC-arm. • It suppose that Capacitor voltages balancing control operate correctly

Assuming that:

3. MMC models

10

+

-D

+

-

+

-

+

-

ns Xnsarmi

ONNR

ONNR

2D

1D

a) ON/OFF states

b) BLOCKED state

C

N

+

-

armi

+

-

armv

X

Ctoti

Ctotv

Ctotv

+

.

.

arm n C ON armtot

C n armtot

v s v NR i

i s i

1

N

i

in

S

sN

1 2...

CtotC C Ci

vv v v

N

where:

-> For ON state 1iS

0iS -> For OFF state

Page 11: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

11

MMC Model 3

DLL block

Fortran 95 code

3. MMC models

Switching function model of MMC arm

+

NP

AC

S_up_A

S_up_B

S_up_C

S_low_A

S_low_B

S_low_C

i_up_A

i_up_B

i_up_C

i_low_A

i_low_B

i_low_C

Vctot_up_A

Vctot_up_B

Vctot_up_C

Vctot_low_A

Vctot_low_B

Vctot_low_C

MMC_SF_arm

N

P

AC

S_up_CS_up_BS_up_A

i(t)

i_low_A i(t)

i_low_B

i(t)

i_low_C

i(t)

i_up_A

i(t)

i_up_B

i(t)

i_up_C

S_low_CS_low_BS_low_A

Vctot_up_A Vctot_up_B Vctot_up_C

Vctot_low_AVctot_low_B Vctot_low_C

V+

-

V+

-

+

SF-arm

Vpos

Vneg

s_arm Vc_tot_arm

arm_up_phA

+

SF-arm

Vpos

Vneg

s_arm Vc_tot_arm

arm_up_phB

mmc

+

SF-arm

Vpos

Vneg

s_arm Vc_tot_arm

arm_up_phC

mmc

+

SF-arm

Vpos

Vneg

s_arm Vc_tot_arm

arm_low_phA

+

SF-arm

Vpos

Vneg

s_arm Vc_tot_arm

arm_low_phB

+

SF-arm

Vpos

Vneg

s_arm Vc_tot_arm

arm_low_phC

+L

10

#L

arm

#

+L

16

#L

arm

#

+L

17

#L

arm

#

+L

18

#L

arm

#

+L

19

#L

arm

#

+L

20

#L

arm

#

scopeVarm_up_A

scopeVarm_low_A

a

c

Page 12: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

Model 4 – AVM (Average Value Model) • The AC and DC side characteristics are modeled as controlled current and voltage sources. • These models can be used to study harmonics generated by such converters. • AVM model suppose that internal variables of MMC (Capacitor voltages and current of each

arm) are controlled correctly

AC side: DC side:

𝑒𝑐𝑜𝑛𝑣𝑗 =𝐿𝑎𝑟𝑚2

𝑑𝑖𝑗

𝑑𝑡− 𝑣𝑗

𝑒𝑐𝑜𝑛𝑣𝑗 = 𝑣𝑟𝑒𝑓𝑗𝑉𝑑𝑐2

𝐼𝑑𝑐 =1

2 𝑣𝑟𝑒𝑓𝑗𝑗=𝑎,𝑏,𝑐

𝑖𝑗

𝑃𝐴𝐶 = 𝑃𝐷𝐶 𝑖 = 𝑎, 𝑏, 𝑐

3. MMC models

12

/ 2armL

convce

convbe

convae

av

bv

cv

refabcv

+

+

+

+

+

+

𝑒𝑐𝑜𝑛𝑣𝑗 = 𝑣𝑟𝑒𝑓𝑗 . 𝑉𝑑𝑐/2

dcI

refabcv

lossR armdcL

dcC dcV

+

+

+

+

1

2 𝑣𝑟𝑒𝑓𝑗 𝑖𝑗

Page 13: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

13

MMC Model 4

AVMMMC

+

NP

AC

varefvbrefvcref

Trip

AVM1

3. MMC models

AC

Pa

ge

Ia

Pa

ge

Ib

Pa

ge

Ic

PageVcrefPageVbrefPageVaref

AC_side

VacVdcVref

AC_side_phA

+

0/1e15

+

0/1e15

+

0/1e15

PageVc_tot PageVc_totPageVc_tot

AC_side

VacVdcVref

AC_side_phB

AC_side

VacVdcVref

AC_side_phC

N

P+

L1

#Larm_eq_DCside_AVM#

+

cI1

0/1e15

+C1

!v#C_eq_DCside_AVM# V

+

-Page Vc_tot

Trip

+

#R_eq_DCside_AVM#

R1

DC_side

Iac_phAIac_phBIac_phC

I_dcVref_phBVref_phA

Vref_phC

DCside1

PageIc

PageIa

PageIb

PageVcref

PageVbref

PageVaref

++

+L2

#L

arm

_e

q_

AC

sid

e_

AV

M#

+L3

#L

arm

_e

q_

AC

sid

e_

AV

M#

+L4

#L

arm

_e

q_

AC

sid

e_

AV

M#

i(t) Iac

a

b

c

Page 14: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

However the control system is much more complex Upper control (VSC control) Since MMC topology is a VSC type, the generic Outer/Inner Control can be used Lower control (MMC control) Controller related to the MMC topology, in order to control internal variables

14

+

+

X +

S R

2

P sin( ) P ( )

cos( ) ( )

S RR R

S R RR R R

V Vfct

X

V V VQ Q fct V

X

Basic idea: By linearizing the power equation, active and reactive power can be decoupled, thus: • Regulating the phase angle -> active power is controlled • Regulating the voltage amplitude -> reactive power is controlled

14

4. Control system

Page 15: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

15

Control system structure

Low

er level con

trol

Up

per

leve

l co

ntr

ol

DC

side

gate signal

Yg/∆

CBA

Outer Control

P/Q/Vdc

AC side

MMC

measurements

ˆabce

Inner Control

NLC

Modulation

CCSC

ˆ ˆet abc abc

SM SM

up lowv v

et abc abcup lows s

4. Control system

Page 16: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

+

SRC1

+

SRC2P1 P2

N2N1

Cable_70km1

MMC

monopolemodel1400 SM

VSC_1

MMC

monopolemodel1100 SM

VSC_2

16

HVDC link modeled in EMTP-RV

Equivalent source

VSC-MMC station

Underground cable

DC fault pole-to-pole

AC fault (3LT)

5. HVDC-MMC model in EMTP-RV

Pac control VDC control

NB: This test case is included in the examples folder of EMTP-RV 2.5

Page 17: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

17

5. HVDC-MMC model in EMTP-RV

Section related with Type of model and circuit configuration

Section related with electrical parameters of the MMC station

Section related with the start-up sequence if checked

Page 18: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

18

5. HVDC-MMC model in EMTP-RV

Section related with the control type

Section related with protection system

Page 19: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

Exported Mask,do not modify

Scope :

AC1 2

-30

Exported Mask

1/1

Converter_Tfos

p

n

+

Sta

r_p

oin

t_re

acto

r

4k,6

50

0

Page i_up_A

Page i_low_A

Page i_up_B

Page i_low_B

Page i_up_C

Page i_low_C

Page Vc_up_C

Page Vc_up_B

Page Vc_up_A

Page Vc_low_C

Page Vc_low_B

Page Vc_low_A

PageS_up_A

PageS_low_A

PageS_up_BPageS_low_B

PageS_up_C

PageS_low_C

Page Vdc

Page

V_

Se

co

nd

ary

_T

ran

sfo

Page

I_S

eco

nd

ary

_T

ran

sfo

Page

V_

Prim

ary

_T

ran

sfo

Page

I_P

rim

ary

_T

ran

sfo

+

1000

Pa

ge

AC

_B

RK

Pa

ge

Co

nve

rte

r_B

RK

Page Idc

v i

Secondary2

v i

Primary2

V+

-

i(t)

+

AC_BRK

+

AC_convertor_BRK

MMC 21Levels

Capa.

Voltages

Gate

signals

Input Ouput

Current

Arms

i_up_A

P

i_up_B

i_up_C

i_low_A

i_low_B

N

i_low_C

AC

S_up_B

S_up_A Vc_up_A

Vc_up_B

Vc_up_CVc_low_C

Vc_low_B

Vc_low_AS_low_A

S_low_B

S_low_CS_up_C

MMC_21L1

Va_ref

Vb_ref

Vc_ref

Page Vabc_ref

Page S_up_A

Page S_low_A

Page S_up_B

Page S_low_B

Page S_up_CPage S_low_C

PageVc_up_C

PageVc_up_B

PageVc_up_A

PageVc_low_C

PageVc_low_B

PageVc_low_A

Pagei_up_A

Pagei_low_A

Pagei_up_B

Pagei_low_B

Pagei_up_C

Pagei_low_C

Lower Level Control

Gate

signals

Capa.

Voltages

Current

Arms

Va_refVb_refVc_ref

Vc_low_AVc_up_A

Vc_up_B

S_up_A

Vc_low_B

Vc_up_C S_up_CVc_low_C S_low_C

S_up_BS_low_B

S_low_A

theta

i_up_C

i_up_B

i_low_C

i_low_B

i_up_Ai_low_A

MMC_control

Lower_Level_Ctrl1

Pa

ge

blo

ck_

MM

CSMprotection

B1 B2B3 B4

B5 B6B7 B8

B9 B10B11 B12

order

SM_protection

scope

I_circular_phA

f(u)1

2

(u[1]+u[2])/2

PageVdc

scope

Vref_phA

PageV_Secondary_Transfo

PageI_Secondary_Transfo

PageV_Primary_Transfo

PageI_Primary_Transfoia

vava

ia

scope

V�_Primary_ph

scope

I�_Primary_phA

scope

V�_Secondary_phA

scope

I�_Secondary_phA

PageVdc scope

VdcPageV_Primary_Transfo

PageI_Primary_Transfo

PageV_Secondary_Transfo

PageI_Secondary_Transfo

PageVabc_ref

Va_ref

Vb_ref

Vc_ref

Page P_meas

Page Q_measPageP_meas

PageQ_meas

scope

P_meas

scope

Q_meas

PageIdc

Page Converter_BRK

Page AC_BRK

Page block_MMC

#base_dc_Irated#

#base_ac_Vrated#

#base_ac_Irated#

#base_dc_Vrated#

Start-up sequenceand Protection system

converter_BRK

AC_BRKIdc

block_MMC

Start_up_Protect1

PageConverter_BRK

PageAC_BRK

Pageblock_MMC

scope

Converter_BRK

scope

block_MMC

scope

I_circular_phA

Pagei_up_A

Pagei_low_A Iarm in pu oi

Idc in pu oiPageIdc scope

Idc

Vdc in pui o

PageVc_up_A

PageVc_low_A

Vc1

Vc20

scope

Vc1_up_phA

scope

Vc20_up_phA

Vc1

Vc20

scope

Vc1_low_phA

scope

Vc20_low_phA

Iarm in pu oi

1

#base_Vcapa_SM#

1

#base_Vcapa_SM#

1

#base_Vcapa_SM#

1

#base_Vcapa_SM#

scope

AC_BRK

Upper Level Control

V_Secondary_Transfo

I_Secondary_Transfo

Vabc_ref

V_Primary_Transfo

I_Primary_Transfo

Vdc_measVdc

theta

P_measQ_meas

Upper_Level_Ctrl

AC_Converter

19

MMC model 1 to 4 Power Transformer

Acquisition system Control and Protection System

DC side AC side

Subsystem structure of the VSC-MMC station

5. HVDC-MMC model in EMTP-RV

Page 20: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

20

5. HVDC-MMC model in EMTP-RV

MMC model comparisons under AC fault Simulation configuration: MMC-401Level (N = 400SMs/arm) Time-Step = 10us Three-phase to ground fault of 200ms after 1sec of simulation

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4-2

-1

0

1

2

curr

ent

(pu)

time (s)

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

-1

-0.5

0

0.5

1

voltage (

pu)

time (s)

Model 1, 2 and 3

Model 1, 2, 3 and 4

Model 4

ai

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4-2

-1

0

1

2

curr

ent

(pu)

time (s)

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

-1

-0.5

0

0.5

1

voltage (

pu)

time (s)

Model 1, 2 and 3

Model 1, 2, 3 and 4

Model 4

av

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4-1.5

-1

-0.5

0

0.5

curr

ent

(pu)

time (s)

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.40.95

1

1.05

1.1

1.15

voltage (

pu)

time (s)

Model 4

Model 1, 2 and 3

Model 4

Model 3Model 1 and 2

dcI

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4-1.5

-1

-0.5

0

0.5

curr

ent

(pu)

time (s)

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.40.95

1

1.05

1.1

1.15voltage (

pu)

time (s)

Model 4

Model 1, 2 and 3

Model 4

Model 1 and 2 Model 3

dcV

MMC-2 phase A current: MMC-2 phase A voltage:

MMC-2 dc current: MMC-2 dc voltage:

Page 21: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

21

5. HVDC-MMC model in EMTP-RV

MMC model comparison under DC fault Simulation configuration: MMC-401Level (N = 400SMs/arm) Time-Step = 10us Permanent Pole-to-pole DC fault at 1.9sec of simulation

1.85 1.9 1.95 2-5

0

5

curr

ent

(pu

)

time (s)

1.85 1.9 1.95 20

5

10

curr

ent

(pu

)

time (s)

Model 4

Model 1, 2 and 3

Model 4

Model 1, 2 and 3ai

1.85 1.9 1.95 2-5

0

5

curr

ent

(pu)

time (s)

1.85 1.9 1.95 20

5

10

curr

ent

(pu)

time (s)

Model 4

Model 1, 2 and 3

Model 1, 2 and 3

Model 4

Zoomed

dcI

1.898 1.9 1.902 1.904 1.9060

2

4

6

8cu

rren

t (p

u)

time (s)

1.898 1.9 1.902 1.904 1.9060

2

4

6

8

curr

ent

(pu)

time (s)

Model 1, 2 and 3

Model 4

dcI

MMC-1 ac current: MMC-1 dc current:

Zoomed MMC-1 dc current:

Page 22: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

22

Computation performances • 401-levels MMC based HVDC link was tested for 1sec simulation. • The simulation time is compared for all models • The best computing performance is given by Model 4

5. HVDC-MMC model in EMTP-RV

Model Time step

(μs)

Computation time (s) in function of SMs/arm

20 50 100 400

# 1 10 258 822 2,106 13,459

# 2 10 37 65 114 441

# 3 10 18 18 18 18

# 4 10 15 15 15 15

# 4 100 2 2 2 2

Page 23: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

6. References

23

• Saad H., Dennetière S., Mahseredjian J., Delaru P., Guillaud X., Peralta J., Nguefeu S., “Modular multilevel converter models for electromagnetic transients,” submitted to IEEE Trans. on Power Delivery, TPWRD-00396-2013

• Saad H., Dufour C, Dennetière S., Mahseredjian J., Nguefeu S., “Real Time simulation of MMCs using the

State-Space Nodal Approach,” accepted in IPST 2013, International Power System Transient Conference

• Saad, H.; Peralta, J.; Dennetiere, S.; Mahseredjian, J.; Jatskevich, J. and al, "Dynamic Averaged and Simplified Models for MMC-Based HVDC Transmission Systems," Power Delivery, IEEE Transactions on , vol.PP, no.99, pp.1,10

• Peralta J., Saad H., Dennetiere S., Mahseredjian J., Nguefeu S. "Detailed and Averaged Models for a 401-

Level MMC–HVDC System," Power Delivery, IEEE Transactions on, vol. 27, no. 3, pp. 1501-1508, July 2012

• Peralta J., Saad H., Dennetiere, S., Mahseredjian, J., "Dynamic performance of average-value models for multi-terminal VSC-HVDC systems," Power and Energy Society General Meeting, 2012 IEEE, pp. 1-8, 22-26 July 2012

Page 24: MODELING OF HVDC-MMC TRANSMISSION SYSTEM FOR

24

Questions?