23
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Modeling Metal Fatigue As a Key Step in PV Module Life Time Prediction NREL PVMRW Nick Bosco February 28 2012 NREL/PR-5200-54565

Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

  • Upload
    doquynh

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Modeling Metal Fatigue As a Key Step in PV Module Life Time Prediction

NREL PVMRWNick BoscoFebruary 28 2012NREL/PR-5200-54565

Page 2: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

2

outline

• Modeling metal fatigueo Time independent (case studies):

– Ribbon fatigue: wind loading– Ribbon fatigue: thermal loading

o Time dependent, solder fatigue

Page 3: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

3

ribbon fatigue: wind loading

prediction

Page 4: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

4

ribbon fatigue: wind loading

Assmus, M., S. Jack, et al. (2011). "Measurement and simulation of vibrations of PV‐modules induced by dynamic mechanical loads." Progress in Photovoltaics: Research and Applications 19(6): 688‐694.

low freq:3mm200/day

high freq:6 μm50 Hz

driving force

wind speed (m

/s)

Defle

ction (m

m)

Page 5: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

5

ribbon fatigue: wind loading

θ R

Lh

L+ΔL

low freq: 3 mm = 0.00107 %high freq:6 μm = 4.27e‐9 %  

Assumptions: Pinned connections Semicircular bending Glass‐Glass module No shear lag 1620x810 mm  

driving force

L L R

R h2 L

2

8h L

2sin 2

LL

Page 6: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

6

ribbon fatigue: wind loadingmechanism: fatigue experiment

load “cool” cycle

Grips fabricated to simulate ribbon attachment

Page 7: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

7

pl2

f 2N f c

el2

f

E2N f b

moderibbon fatigue: wind loading

strain amplitudes evaluated likely have a large plastic component

a longitudinal strain is imposed, but the ribbon is straining in bending

Page 8: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

8

ribbon fatigue: wind loadingmode

pl2

f 2N f cvibration due to wind loading will not result in ribbon fatigue within a module’s lifetime.

Page 9: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

9

ribbon fatiguefatigue experiment: off‐set

incorporating an un‐soldered length provides strain relief and longer lifetimes

ribbon constraint is a significant factor for these measurements 

Page 10: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

10

ribbon fatigue: thermal loading

prediction

Page 11: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

11

ribbon fatigue: thermal loading

prediction

Page 12: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

12

Tcell Tamb E exp a b WS E T1000

Tcell t 1 Tcell t Tcell t 1 1

ribbon fatigue: thermal loadingdriving force

cell temperature is evaluated in one‐minute intervals

Page 13: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

13

ribbon fatigue: thermal cycling

Meier, R., F. Kraemer, et al. (2010). Reliability of copper‐ribbons in photovoltaic modules under thermo‐mechanical loading. Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE.

A1 B1T B2T2

driving force

empirical relationship between temperature change and ribbon strain

Page 14: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

14

identify peaks extract ΔT

N f a

1 c

A1 B1T B2T2 D 1

N f ,ii

n

calculate strain calculate cycles to failure convert to damage

temperature history

mechanismribbon fatigue: thermal loading

Page 15: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

15

mode100% = failure

1yr

ribbon fatigue: thermal loading

20 yr lifetime

50 yr lifetime

ribbon fatigue due to thermal loading may cause failure within a module’s lifetime.

leaving an unsoldered length will extend the ribbon’s lifetime. 

Page 16: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

16

Page 17: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

17

creep‐fatigue

pl2

f 2N f c

dp

dt Aexp

QRT

sinh

s

1 m

sh

dp

Adtexp Q

RT

n

sinh1 dp

Adtexp Q

RT

m

s* s pl,eqAexp Q

RT

n

D Wpl dpl

Time independent

Time dependent

Deformation mechanism map. (After M. F. Ashby and D. R. H. Jones, Engineering Materials I: An Introduction to Their Properties and Applications, 2d ed., Butterworth‐ Heimann, 1996)

Page 18: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

18

simulations and analysis

-50

0

50

100

150

0 50 100 150 200 250 300 350

TCA-1TCA-2TCA-3

tem

pera

ture

(C)

time (minutes)

TCA‐1 TCA‐2 TCA‐3

Tmax C 85 110 65

Tmin C ‐40 ‐40 ‐40

tc (min) 100 100 100

td (min) 10 10 10

simulation results

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

FEM-TCA1FEM-TCA2FEM-TCA3C-M Es Ec

norm

ailz

ed d

amag

etime (minutes)

FEM : empirical relationships

Empirical relationships may be effective for relating the damage done by various ALT

Page 19: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

19

simulation

simulations and analysis

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

tem

pera

ture

(C)

time (minutes)

∆Tm

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80in

elas

tic s

train

ene

rgy/

cyc

le (P

a)cycles

Di

Df

results

FEM is required to simulate temperature changes due to weather

Page 20: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Comparison of accelerated testing with modeling to predict lifetime of CPV solder layers

2012 PV Module Reliability Workshop

Timothy J Silverman, Nick Bosco, Sarah Kurtz

Mar. 1 Afternoon II – Modeling of CPV Reliability Issues

Page 21: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

21

conclusions

• Modeling metal fatigue– Consider driving force and mechanism– Testing must represent service

• Cu ribbon fatigue– Wind loading is likely inconsequential– Thermal loading is significant

• May be mitigated by proper ribbon routing• Ribbon shape and constraints are important

• Solder fatigue– Time dependency complicates modeling– Empirical models may relate ALT, but not service

Page 22: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

22

Page 23: Modeling Metal Fatigue As a Key Step in PV Module Life ... · 2 outline • Modeling metal fatigue o Time independent (case studies): – Ribbon fatigue: wind loading – Ribbon fatigue:

23

Sample Text and Object Slide with Bar