12
H I G H - P O W E R E D R E S E A R C H F O R T H E R E A L W O R L D December 2011 Issue… 1 Modeling Current Transformer (CT) Saturation for Detailed Protection Studies 6 The Wound Rotor (WR) and Squirrel Cage (SQ) Induction Machine Models in the PSCAD ® Library 9 New PT Connections 11 Meet the Team! 12 PSCAD ® 2012 Training Sessions December 2011 The PSCAD ® Master Library contains a number of models that could be used for detailed protection system analysis. The most important of these models are the current transformer models. Current transformer saturation is associated with many protection problems encountered in power systems. CT saturation is a complex phenomenon and accurate modeling in a simulation environment is challenging. The models available in PSCAD ® are based on the advanced mathematical models proposed by Jiles and Atherton and commonly referred to as the ‘Jiles-Atherton theory of Ferromagnetic hysteresis.’ These developed models have been extensively tested with field recordings in collaborations with CT, relay and protection equipment vendors. This case is used to illustrate the effects of CT saturation. The key parameters that impact CT saturation are discussed in an effort to guide PSCAD ® users who may use this model for their simulations. General Theory The magnetic characteristic of the CT is shown in Figure 1 (hysteresis not shown). In the linear region, the CT will behave almost like an ideal ratio changer. That is, the CT secondary current is an identical but scaled down replica of the primary current. However, If the CT saturates, more current is required to magnetize the core and as a result the secondary current (I S) available as inputs to the relay may not be an identical scaled down replica of the actual primary current (IP). This can lead to protection issues and should be given due consideration. System Overview The AC system shown in Figure 2 consists of two 230 kV, 60 Hz Thevanin voltage sources, a 75 MVA load and three 230 kV transmission lines (125 km, 75 km and 200 km). A single phase (Phase A) to ground fault is applied between the first two transmission lines. Modeling Current Transformer (CT) Saturation for Detailed Protection Studies Dr. Dharshana Muthumuni, Lisa Ruchkall, and Dr. Rohitha Jayasinghe, Manitoba HVDC Research Centre Figure 1 IM–Flux curve

Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

  • Upload
    hadan

  • View
    248

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

H I G H - P O W E R E D R E S E A R C

H F

OR

TH

E R

EA

L W

OR

LD

December2011Issue…

1 ModelingCurrentTransformer(CT) SaturationforDetailedProtectionStudies

6 TheWoundRotor(WR)andSquirrel Cage(SQ)InductionMachineModels inthePSCAD®Library

9 NewPTConnections

11 MeettheTeam!

12 PSCAD®2012TrainingSessionsDecember 2011

ThePSCAD®MasterLibrarycontainsanumberofmodelsthatcouldbeusedfordetailedprotectionsystemanalysis. Themostimportantofthesemodelsarethecurrenttransformermodels.Currenttransformersaturationisassociatedwithmanyprotectionproblemsencounteredinpowersystems.CTsaturationisacomplexphenomenonandaccuratemodelinginasimulationenvironmentischallenging.ThemodelsavailableinPSCAD®arebasedontheadvancedmathematicalmodelsproposedbyJilesandAthertonandcommonlyreferredtoasthe

‘Jiles-AthertontheoryofFerromagnetichysteresis.’

ThesedevelopedmodelshavebeenextensivelytestedwithfieldrecordingsincollaborationswithCT,relayandprotectionequipmentvendors.

ThiscaseisusedtoillustratetheeffectsofCTsaturation.ThekeyparametersthatimpactCTsaturationarediscussedinanefforttoguidePSCAD®userswhomayusethismodelfortheirsimulations.

GeneralTheory ThemagneticcharacteristicoftheCTisshowninFigure1(hysteresisnotshown).Inthelinearregion,theCTwillbehavealmostlikeanidealratiochanger.Thatis,theCTsecondarycurrentisanidenticalbutscaleddownreplicaoftheprimarycurrent.However,IftheCTsaturates,morecurrentisrequiredtomagnetizethecoreandasaresultthesecondarycurrent(IS)availableasinputstotherelay

maynotbeanidenticalscaleddownreplicaoftheactualprimarycurrent(IP).Thiscanleadtoprotectionissuesandshouldbegivendueconsideration.

SystemOverview TheACsystemshowninFigure2consistsoftwo230kV,60HzThevaninvoltagesources,a75MVAloadandthree230kVtransmissionlines(125km,75kmand200km).Asinglephase(PhaseA)togroundfaultisappliedbetweenthefirsttwotransmissionlines.

ModelingCurrentTransformer(CT)SaturationforDetailedProtectionStudiesDr. Dharshana Muthumuni, Lisa Ruchkall, and Dr. Rohitha Jayasinghe, Manitoba HVDC Research Centre

Figure1 IM–Fluxcurve

Page 2: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

2   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

CurrentTransformerSaturation CTsaturationcanbeexplainedusingthesimplifiedequivalentcircuitshowninFigure3.

Inthelinearregionofoperation,magnetizingcurrent(IM1)isverysmallandhenceIP–IMisapproximatelyequaltoIP.ThusISwouldbeascaleddownversion(byafactorofN).IftheCTsaturates,themagnetizingcurrentincreases(IM2).Asaresult,onlyapartofIPisavailablefortransformationtothesecondary.Inthissimulationcase,afaultissimulatedonthetransmissionlineandtheCTisattheendoftheline(whereIabcismeasured).

Note:Figure4showshowtheCTmodelisusedinPSCAD®.Notealsothattheinputprimarycurrent(Iabc)isinkiloampsandthesecondarycurrent(Isabc)isinamps.TheCTsaremodeledas(independent)blocksanddonothavetobeconnectedtotheelectriccircuit.

ThisrepresentationisvalidsincetheCTisessentiallyashortcircuit(inseries)fromtheprimarypowersystemnetworkperspective.

KeyParametersImpactingCTSaturationThefollowingcanhaveasignificantimpactonCTsaturationandshouldbegivendueconsiderationinasimulationstudy:

1) DCoffsetintheprimarysidefaultcurrent.2)RemnantfluxontheCTpriortothefault(ifany).3)Secondarysideimpedanceincludingthoseof therelay,connectingwiresandCTsecondary impedance-thisparameterplaysamajorrolein thelevelofsaturationtheCTwillbesubjectedto.

Illustrativesimulationresultsarepresentedinthefollowingsectionstohighlightsomeofthekeypoints.

Figure2 ACsystemmodel

Figure3 SchematicrepresentationofCT(left)andthesimplifiedequivalentcircuit(right)

Figure4 CTPSCAD®implementation

Page 3: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

D E C E M B E R 2 0 1 1 3

Case1–Impact of DC offset in the primary fault current:ThepointonthevoltagewaveformattheinstantofthefaultdeterminestheleveloftheDCoffsetintheprimarycurrent.ThemaximumDCoffsetwilloccurwhenthefaultisappliedatavoltageminimum(t=0.49167s).TheresultsinFigure5aoccurwhentheDCoffsetissignificant.

Ascanbeseen,theDCoffsetcausestheflux(Figure5b)tobedrivendownandintosaturation.TheCThassaturatedafterabouttwocycles.ThereductionofthesecondarycurrentisevidentfromFigure5a.

ThesimulationresultsinFigure5bdemonstrateasituationwhenthereisnoDCoffset(faultisappliedatt=0.4876s,voltagemaximum).Ascanbeseen,theCTdoesnotgointosaturationandonlyasmallamountofmagnetizingcurrentisrequiredtomagnetizethecore.Therefore,thesecondarycurrentisanexactbutscaleddownreplicaoftheprimarycurrent.

InFigure5aalsonotetheremnantfluxintheCTcoreoncethefaultiscleared.EffectsofremnantfluxwillbediscussedinCase2.

Figure5a DCoffsetpresent Figure5b NoDCoffsetpresent

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200

-100

0

100

200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-1.00

-0.50

0.00

0.50

1.00

1.50

Flux

den

sity

(T)

B

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200 -150 -100 -50

050

100150200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-2.00

-1.50

-1.00

-0.50

0.00

0.50

Flux

den

sity

(T)

B

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200

-100

0

100

200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-1.00

-0.50

0.00

0.50

1.00

1.50

Flux

den

sity

(T)

B

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200 -150 -100 -50

050

100150200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-2.00

-1.50

-1.00

-0.50

0.00

0.50 Fl

ux d

ensi

ty (T

)B

Impact of DC offset in the primary fault current...

Page 4: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

4   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Note:theB-HlooptrajectoryoftheCTduringthefaultisshowninFigure6.TheformationoftheminorB-HloopsandhysteresisareaccuratelymodeledbasedontheJiles-Athertontheoryofferromagnetichysteresis.SuchdetailedrepresentationsoftheCTbehaviorarenecessaryfordetailedprotectionsystemanalysis,suchas:

•CTresponseduringautoreclose•ProtectionschemeswithCTsoperatinginparallel –6CTsinparallelinathree-phasetransformer differentialscheme –3CTsinparallelinanearthfaultrelayscheme – CTconnectionsingeneratorprotections

Case2–Reclosing the line while the fault is still present (auto reclose):Inthefirstfaultevent,saturationhadtakenapproximatelytwocycles.Ifthelineisreclosedwhilethefaultisstillpresent,theCTmaysaturatemuchfasterduetothepresenceoftheremnantflux.ThisisdemonstratedinFigure7.Ascanbeseen,thesaturationoccursinapproximatelyhalfacycle,possiblybeforetherelayhadtimetorespond.

Figure7 Case2results

Figure6 B-Hlooptrajectory

Page 5: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

D E C E M B E R 2 0 1 1 5

Figure8 Case3results

Case3–Effect of the secondary impedance:TheCTsecondarysideburdenimpedancehasasignificantimpactonCTsaturation.InCase1,theburdenwassetto2.5Ω.TheresultsshowninFigure8wereobtainedbyreducingtheburdento0.5Ωinthesimulation.Ascanbeseenfromtheresults,thefluxisnotdrivendownasfar.ItalsotakesalongertimefortheCTtobecomesaturated(approximately6cycles).

Note:TheCTmodelusedintheexamplecaseisthatofasingleCToperatingindependentlyofanyotherCTsintheprotectionscheme.Ingeneral,aprotectionschememayhaveanumberofCTsoperatinginparallel.TheresponseofoneCTmayimpactthebehaviouroftheotherandthus,shouldbeappropriatelymodeled.ContactthePSCAD®TechnicalSupportTeamformoreinformationonspecificmodels.

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0

10.0 15.0

A

Ia_sec

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

kA

Iabc

-2.00

-1.50

-1.00

-0.50

0.00

Flu

x de

n

B

The response of one CT may impact the behaviour of the other and should be appropriately modeled…

Page 6: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

6   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L6   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Dr. Dharshana Muthumuni, Manitoba HVDC Research Centre

TheinductionmachinemodelsaretwoofthemostwidelyusedcomponentsfromthePSCAD®MasterLibrary. ThePSCAD®libraryhastwoinductionmotormodels:

1)Squirrelcageinductionmachinemodel representingadoublecagedesign–(SQ).2)Woundrotorinductionmachinemodel–(WR).

TheTechnicalSupportTeamreceivesquestionsfromourusersastowhichmodeltheyshouldusetorepresentasetofspecificdataprovidedbytheequipmentvendor.ThegoalofthistechnicalnoteistoprovidethenecessaryinformationtohelpPSCAD®userswhenfacedwithsuchquestions.

Mathematically,theSQcagemachinecanberepresentedbytheWRmachine.TheWRmodelcouldalsobeusedtorepresentadoublecageSQmachine.Thetwoexamplesbelowwilldescriberelevantdataentryconsiderationsandalsocompareresultsforvalidationpurposes.

Thesimplesimulationcaseshownbelowisusedtohighlightthekeypoints.ASQmachineandaWRmachinewithcomparableparameters(identicalratingsanddata)areconnectedtothesamesupplysource(60Hz,0.69kV).

Example1:Modelingasinglecageinductionmachine TheSQcagemachinemodelortheWRmachinemodelmaybeusedtorepresentasinglecage(SQ)machine(IM_study_01.pscx).

Theequivalentcircuitofadoublecagedesign(asimplementedinPSCAD®)squirrelcagemachineisshownbelowinFigure2.

Theequivalentcircuitofawoundrotormachinemodel(singlerotorwinding)isshowninFigure3.

TousetheSQcagemachinemodeltorepresentasinglecagemachine:

–Makethe‘secondcageresistance’(RC2)and the‘secondcageunsaturatedreactance’(XLC2) relativelylarge(comparedtotheotherleakage inductances/resistances).Inthiscase,thevalues usedareRC2 =5PUandXLC2 =5PU,whichismuch largerthanRC1 =0.0507PUandXMR =0.091PU.–GivetheSQcage‘rotorunsaturatedmutual reactance’(XMR)thesamevalueastheWR ‘rotorleakagereactance’(XLR).

TheWoundRotor(WR)andSquirrelCage(SQ)InductionMachineModelsinthePSCAD®Library

Figure1 Circuitdiagram(WR–top,SQcage–bottom)

Figure2 SQcage(doublecage)equivalentcircuit

Figure3 WRIM(singlewinding)equivalentcircuit

TIN1

0.0

0.0 I M

W

S

T Motor

RRL

S

TL

I M W

TIN2 X 2

W *

0.2 TIN1

0

0

Timed Breaker Logic

Open@t0 BRK

BRK

X 2 W2

* 0.2

TIN2

RS

RC1

XLS

XLC2

RC2

XMR

XM

RS XLS

XLR

RR

XM

Page 7: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

N O V E M B E R 2 0 0 9 7D E C E M B E R 2 0 1 1 7

Figure4showsthedataentryfortheSQcage(left)andWRmodels(right).Byusingequivalentvalues,bothmodelsshowcomparablebehaviour(Figure5)andrepresentasinglecagemachinedesign.

ThesimulationresultsshowninFigure5showthatthespeed(W–WR,W2–SQcage)andtorque(T–WR,T2–SQcage)ofbothmachinesareidentical.Thus,anyoneoftheinductionmachinemodelsmaybeusedtorepresentasinglecageinductionmachine.

Example2:Modelingadoublecageinductionmachine. TheWRmachinemodelcanbesetuptorepresentadoublecageSQcagemachine(IM_study_02.pscx).

IntheWRmodel,selectthe“No.ofRotorSquirrelCages=1”,asshowninFigure6.TheequivalentcircuitrepresentationisasinFigure7.

Figure4 SQcageandWRsetupconfiguration

Figure5 Simulationresults(IM_study_06_a.pscx)

Figure6 WRconfiguration

Simulation Results

time(s) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

1.10

PU

W W2

-0.10

0.80

PU

Te Te2

 

Figure7 WRIM(No.ofrotorsquirrelcages=1)equivalentcircuit

RS

RR

RLR

XLS

XLC1

RC1

XMR

XM

Page 8: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

8   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Figure8showsthedataentryfortheWRmodel.Withtheappropriatedata,theSQcageandWRmachinemodelswillgiveidenticalresults(Figure9).

Conclusions Ascanbeseenfromtheresults,aSQcageandWRmachinemodeldeliverequivalentresultswhenconfiguredproperly.Hence,aSQcagemachinemodelcanbeaccuratelyrepresentedusingaWRmachinemodel.PSCAD® users are encouraged to use the WRIM model due to its more conventional and straight forward parameter configuration.

PSCAD®Cases:IM_study_01.pscxandIM_study_02.pscx

Figure8 WRsetupconfiguration

Figure9 Simulationresults(IM_study_06_b.pscx)

A SQ cage and WR machine model deliver equivalent results when configured properly…

Page 9: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

D E C E M B E R 2 0 1 1 9

NewPTConnectionsDr. Namal Fernando, Manitoba Hydro

Background Generator and transformer protection upgrade at Seven Sisters generation station.Therearesixunitsandtheexistingelectromechanicalrelaysarebeingreplacedwithmulti-functionaldigitalrelays.Theprojectincludesreplacementoflineendpotentialtransformers;theexistingtwopotentialtransformers(i.e.opendeltawithphaseBgrounded)arebeingreplacedwiththreepotentialtransformers(groundedwye).Thereisonlyonesynchronizingsystemforallsixunits.Incomingvoltagereferenceislinevoltage;phaseABwithBatgroundpotential.

Problem Sincethenewdesignincludesthreepoten-tialtransformerswithneutralgrounded,wecouldnotconnectdirectlytotheexistingsynchronizersystem.TheexistingsystemisbasedonphaseBatgroundpotentialandcommontoalltheunits,whereastheunitswiththenewprotectiondesignwillhaveneutralpointgrounded(i.e.,forunitswithnewprotectiondesign,thephaseBisnolongeratgroundpotential).

Solution InstallanisolatingtransformerbetweenthelinevoltageABandtheincomingvoltageinputtothesynchronizersystem.

PSCAD®Application ItiswellknownthatPTsshouldbeconnectedincorrectphasesequence.Whilethecorrectconnectionscanbedeterminedthroughsimplehandcalculationsbyconstructingrelevantphasordiagrams(Figure1),thisisnotalwaysstraightforward.

Therearemanyinstanceswhereincorrectconnec-tionshavecausedunittrippingatthecommissioningandtestingstage.Thiscouldcreateaheadacheforallinvolvedandtheconsequencescanbesignificant.PSCAD®providesasimpleandefficientwaytoverifythenewconnections.WeusedasimplePSCAD®simulationcircuittoverifythatthePTconnectionscorrespondingtotherunningandincomingvoltagestothesynchronizerareconnectedproperly.

Ea

D

0.155559 30

Figure1 Phasordiagram

Page 10: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

1 0   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L1 0   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

ThePSCAD®caseusedforthestudyisshowninthefigurebelow.Thesimulationisnotcomplex.However,wefindthistobeausefulengineeringapplication.TheschematicdiagramsareshowninFigures2and3.

TheimportantdataforthissimulationisjustthePTvoltage(turns)ratios.Otherdetails,suchassaturation,etc.arenotimportantforthisbasicanalysis.

Figure2 NewPTconnection

Figure3 OldPTconnection

Page 11: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

PUBLICATIONAGREEMENT#41197007RETURNUNDELIVERABLECANADIANADDRESSESTO

MANITOBAHVDCRESEARCHCENTRE211COMMERCEDRIVE

WINNIPEGMBR3P1A3CANADA

[email protected]

D E C E M B E R 2 0 1 1 1 1

JuanCarlosGarciaAlonso,P.Eng.Power System Simulation & Studies Engineer

JuanCarlos(JC)receivedhisElectricalEngineeringdegreefromtheNationalUniversityofColombia,Bogota,Colombiain1996andsubsequentlyreceivedhisM.Sc.degreefromtheUniversityofManitoba,Canada.HedesignedpowertransformerswithPauwelsTransformersinWinnipegandin2006joinedtheMHRC.JCparticipatesinvariousengineeringserviceprojectsintheareasofinsulationcoordination,VSCs,protectionandsuperconductivemagneticdevices,amongothers.HismainfocusduringthisperiodhasbeenwritingnewmodelsformagneticsimulationwithPSCAD®.

JCcanbefoundenjoyinghisfavouriteoutdooractivities,suchasrockclimbing,canoeingandhiking.

ArashDarbandiEngineering Application Specialist

ArashreceivedhisElectricalEngineeringdegreefromtheUniversityofManitoba,Canadain2010andiscurrentlypursuinghisM.Sc.atthesameuniversity.Inhisshorttimeherewithus,ArashhasimprovedthelinefeaturesoftwareofourIceVisionsystemanddevelopedanewalgorithmtoimprovetheexistingsoftware.ArashassistedwiththeLineFaultLocator(LFL)productbydevelopingnewfactoryacceptancetestsfortheLFL,improvingsoftwarequal-ityandperformance.Arashiscurrentlyinvolvedwiththebatteryre-purposingresearchprojectdevelopingapowerelectronicgridinterconnectionandareactivepowerstudy.Heisalsoperformingreactivepowerstudiesindifferentplants,aswellasprovidingrecommendationstoclientstoimprovetheirsystemperformance.

Arashenjoysahealthyandactivelifestyle,volunteeringwiththeUniversityofManitobaSatelliteteamastheirTechnicalCoordinator,andtravellinginternationallytoexperiencecultureandcuisine.

Manitoba HVDC Research Centre

MeettheTeam!

TheManitobaHVDCResearchCentrepridesitselfonitsexcellentcustomersupportandservice.Oursuccessisadirectresultofourclientfocusedefforts.Wearecommittedtoprovidingourclientswiththebestpossiblesupporttoensureoptimumsuccesswithourproductsandservices.“MeettheTeam”willbearegularlypublishedadditiontothePulseNewslettertointroduceourexperiencedteammembers.ThispublicationfeaturesJuanCarlosGarciaAlonsoandArashDarbandi;justafewofthedynamicstaffmemberswearefortunatetohaveattheManitobaHVDCResearchCentre(MHRC).

Page 12: Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer (CT) Saturation for Detailed ... actual primary current (I P). This can lead to protection

Puls

eis

dis

trib

ute

df

ree

of

char

ge

and

isp

ost

ede

lect

ron

ical

lya

tww

w.h

vdc.

caI

fyo

uw

ou

ldli

ket

or

ecei

vea

co

py

ofP

uls

e,p

leas

ese

nd

us

ane

mai

lto

info

@h

vdc.

caA

rtic

les

and

su

bm

issi

on

sad

dre

ssin

gt

he

use

of

PSC

AD

®in

th

ere

alw

orl

da

rea

lway

sw

elco

me.

©20

11M

anit

ob

aH

VD

CR

esea

rch

Cen

tre,

ad

ivis

ion

of

Man

ito

ba

Hyd

roIn

tern

atio

nal

Ltd

.Pr

inte

din

Can

ada

ExpandingKnowledgeThefollowingcoursesareavailable,aswellascustom training courses–[email protected].

FundamentalsofPSCAD®andApplicationsIncludesdiscussionofACtransients,faultandprotection,transformersaturation,windenergy,FACTS,distributedgeneration,andpowerqualitywithpracticalexamples. Duration: 3 Days

AdvancedTopicsinPSCAD®SimulationIncludescustomcomponentdesign,analysisofspecificsimulationmodels,HVDC/FACTS,distributedgeneration,machines,powerquality,etc. Duration: 2–4 Days

HVDCTheory&ControlsFundamentalsofHVDCTechnologyandapplicationsincludingcontrols,modelingandadvancedtopics. Duration: 4–5 Days

ACSwitchingStudyApplicationsinPSCAD®Fundamentalsofswitchingtransients,modelingissuesofpowersystemequipment,straycapacitances/inductances,surgearresterenergyrequirements,batchmodeprocessingandrelevantstandards,directconversionofPSS/EfilestoPSCAD®. Duration: 2–3 Days

DistributedGeneration&PowerQualityIncludeswindenergysystemmodeling,integrationtothegrid,powerqualityissues,andotherDGmethodssuchassolarPV,smalldieselplants,fuelcells. Duration: 3 Days

LightningCoordination&FastFrontStudiesSubstationmodelingforafastfrontstudy,representingstationequipment,straycapacitances,relevantstandards,transmissiontowermodelforflash-overstudies,surgearresterrepresentationanddata. Duration: 2 Days

MachineModelingincludingSRRInvestigationandApplicationsTopicsincludemachineequations,exciters,governors,etc.,initializationofthemachineanditscontrolstoaspecificloadflow.AlsodiscussedaretypicalapplicationsandSSRstudieswithseriescompensatedlinesasthebasecase. Duration: 2 Days

ModelingandApplicationofFACTSDevicesFundamentalsofsolid-stateFACTSsystems.Systemmodeling,controlsystemmodeling,convertermodeling,andsystemimpactstudies. Duration: 2–3 Days

TransmissionLines&ApplicationsinPSCAD®

Modelingoftransmissionlinesintypicalpowersystemstudies.Historyandfundamentalsoftransmissionlinemodeling,discussiononmodels,suchasPhase,Modal,BergeronandPIintermsofaccuracy,typicalapplications,limitations,etc.,examplecasesanddiscussionontranspo-sition,standardconductors,treatmentsofgroundwire,cross-bondingofcables,etc. Duration: 3 Days

WindPowerModelingandSimulationusingPSCAD®

Includeswindmodels,aero-dynamicmodels,machines,softstartinganddoublyfedconnections,crowbarprotection,lowvoltageridethroughcapability. Duration: 3 Days

ConnectwithUs!January11–13,20122012PSCAD®andRTDSAsiaConferencewww.nayakpower.comBangalore,India

January18–22,2012Elecrama–2012www.elecrama.com/elecrama2012/index.aspxMumbai,India

January24–26,2012DistribuTECHConference&Exhibitionwww.distributech.com/index.htmlSanAntonio,Texas,USA|Booth#4541

March27–30,20122012PSCADEuropeanUserGroupMeetingtraining@pscad.comCastelldefels,Spain

June3–6,2012AWEAWindpower2012Conference&Exhibitionwww.windpowerexpo.orgAtlanta,Georgia,USA|Booth#7513

August27–31,2012CIGRESession44andTechnicalExhibitionwww.cigre.org/gb/events/sessions.aspParis,France

Moreeventsareplanned!Pleaseseewww.pscad.comformoreinformation.

PSCAD® Training Sessions

Hereareafewofthetrainingcoursescurrentlyscheduled.Additionalopportunitieswillbeaddedperiodically,sopleaseseewww.pscad.comformoreinformationaboutcourseavailability.

April17–19,2012FundamentalsofPSCAD®andApplications

May15–17,2012HVDCTheoryandControls

September11–13,2012FundamentalsofPSCAD®andApplications

September18–20,2012WindPowerModeling&SimulationusingPSCAD®

November27–29,2012HVDCTheoryandControls

AlltrainingcoursesmentionedaboveareheldattheManitobaHVDCResearchCentreInc.Winnipeg,Manitoba,[email protected] www.pscad.com

PleasevisitNayakCorporation'swebsitewww.nayakcorp.comforcoursesintheUSA.

For more information on dates, contact [email protected] today!