Modeling and Simulation of Cstr

Embed Size (px)

Citation preview

  • 8/9/2019 Modeling and Simulation of Cstr

    1/27

    MODELING AND SIMULATION OF CSTR

    using

    POLYMATH (Version 3.0.1)

    Prepared by : Ranparia Hitesh M.Guided By : Parsana Vyomesh M.

  • 8/9/2019 Modeling and Simulation of Cstr

    2/27

    What is a MODEL ?

    Aset of mathematical equations that allowsus to

    predict the behavior ofchemical process.

    CLASSIFICATIONOF MODELLinear / Non linearSteady state / Dynamic behavior Lumped parameter / Distributed parameter Discrete/Continuous

    Deterministic/Stochastic

    INTRODUCTION

  • 8/9/2019 Modeling and Simulation of Cstr

    3/27

    MODELING

    The activities leading to the construction of themodel will be referred to as modeling.

    Modelinginvolves:-

    For the design ofcontrollers forchemical process,

    modelingis a very critical step.

    It givessimple description of how the process reactsIt givessimple description of how the process reactsto variousinputs.to variousinputs.

    It is an abstraction which helps to avoid repetitiveIt is an abstraction which helps to avoid repetitive

    experimentation and observations.experimentation and observations.

    Much cheaper,safer and faster.Much cheaper,safer and faster.

    Mass balance

    Component balance Energy balance

  • 8/9/2019 Modeling and Simulation of Cstr

    4/27

    SIMULATION

    Asimulationis a mathematical model of theprocess which attempts to predict how the

    process would behave ifit wasconstructed.

    It predicts:

    the flow rate,composition, temp., pressureof the products.

    how much raw material is beingused.

    how much energy is beingconsumed.

  • 8/9/2019 Modeling and Simulation of Cstr

    5/27

    USE OF MATHMATICAL MODELUSE OF MATHMATICAL MODELRESEARCHANDDEVELOPMENT :RESEARCHANDDEVELOPMENT :--

    Determiningchemical kinetic mechanisms and parameters from laboratory orDeterminingchemical kinetic mechanisms and parameters from laboratory orpilotpilot--plant reaction data.plant reaction data.

    Exploring the effects of different operatingconditions for optimization and controlExploring the effects of different operatingconditions for optimization and controlstudiesstudies

    AidinginscaleAidinginscale--up calculations.up calculations.

    DESIGN:DESIGN:--

    Exploring the sizing and arrangement of processing equipment for dynamicExploring the sizing and arrangement of processing equipment for dynamicperformance.performance.

    Studying the interactions of various parts of the process, particularly whenStudying the interactions of various parts of the process, particularly whenmaterial recycle or heat integrationisused.material recycle or heat integrationisused.

    Evaluating alternative process and control structures and strategies.Evaluating alternative process and control structures and strategies.

    SimulatingstartSimulatingstart--up,shutdown, and emergency situations and procedures.up,shutdown, and emergency situations and procedures.

    PLANTOPERATION:PLANTOPERATION:--

    Troubleshootingcontrol and processing problems.Troubleshootingcontrol and processing problems.

    AidinginstartAidinginstart--up and operator training.up and operator training.

    Studying the effects of and the requirements for expansion projects.Studying the effects of and the requirements for expansion projects.

    Optimizing plan operation.Optimizing plan operation.

    It isusually much cheaper,safer, and faster to conduct the kinds ofstudies listedIt isusually much cheaper,safer, and faster to conduct the kinds ofstudies listedabove on a mathematical model than experimentally on an operatingunit.Thisisabove on a mathematical model than experimentally on an operatingunit.Thisis

    not to say that plant tests are not needednot to say that plant tests are not needed

  • 8/9/2019 Modeling and Simulation of Cstr

    6/27

    CONTINUOUS STIRRED TANK REACTORMODEL

    Dynamic behavior Lumped parameter Non isothermal Assume:-

    A simple first order ,irreversible, exothermicreaction A B takes place in the reactor, whichis turn cooled by a coolant that flows through a

    cooling jacket around the reactor.

  • 8/9/2019 Modeling and Simulation of Cstr

    7/27

    V , CA ,T

    Tj , Vj

    Fi, CAi,

    Ti

    FJ, TJi

    FJ, TJ

    F, CA, T

    Temp.Controller

    Level

    Controller

    CONTINUOUS STIRRED TANK REACTOR (non isothermal)

  • 8/9/2019 Modeling and Simulation of Cstr

    8/27

    ASSUMPTION

    1.First order irreversible exothermic reaction.

    2.Liquid density is constant, i =

    3.Negligible heat losses

    4.The volume of water in the jacket VJ is constant

    5.Temperature everywhere in the jacket is TJ

    6.Overall heat transfer coefficient U is constant

    7. Fluid specific heat capacities are constant

  • 8/9/2019 Modeling and Simulation of Cstr

    9/27

    Fi*i - F* = d(*V) / dt

    Rate of mass Rate of mass = Rate of change offow in flow out mass within system

    but , i =

    THE MASS BALANCE

    Rate of flow of Rate of flow of Rate of disappearance = Rate of change of AA in A out of A due to reaction inside the tank

    CAi*Fi - CA*F - r*V = d(CA*V) / dt

    Assuming a constant amount of material in the reactor , we find that

    Fi*i = F* ,but i = Fi = F & V is constant & k = k0*e

    (-E / R*T)

    F*(CAi CA) / V k0*e

    (-E / R*T)

    *CA = d(CA) / dt - - - - - 2

    Fi - F = dV/dt - - - - - 1

    THE COMPONENT BALANCE

    2

  • 8/9/2019 Modeling and Simulation of Cstr

    10/27

    Rate of flow Rate of flow Rate at which energy Heat transfer = Rate of change ofof energy of energy is generated due to rate liquid energyinto out of chemical reaction

    CSTR CSTR

    [Fi*i*Cpi*(Ti Tref)] [ F**Cp*(T - Tref)]+[-k*CA*V*(H)]-Q = d(*Cp*V* T)/dt

    The heat transfer between the process at temperature T and thecooling water at temperature Tj is described by

    an overall heat transfer coefficient.Q = U*AH*(T Tj) - - - - -

    Now, Fi =F & i = & Cp ,V = constant[F*(Ti T) / V] + [H*k0*e

    (-E / R*T)*CA/*Cp] [ Q/*Cp*V] =d(T) / dt - - 3

    Same for JACKETED energy balance

    REACTOR ENERGY BALANCE

    Fj*(Tji Tj) / V + U*AH*(T Tj) / j*Cj*Vj =d(Tj) / dt - - - 4

    i

  • 8/9/2019 Modeling and Simulation of Cstr

    11/27

    A proportional level controller is assumed to change the outflowas the volume in the tank rises or falls: the higher the volume,the larger the outflow. The outflow is shut off completely whenthe volume drops to a minimum value Vmin.

    F=Kv*(V-Vmin) ---- iiA second controller manipulates the flow rate of cooling water

    to the jacket, Fj , in direct proportion to the temperature in the reactor.Fj=Fj -Kc*(T

    set-T) ---- iii

    Steadystate values: Initial Values:

    F =40f t3/h V0 =48f t3CAi = 0.5 lb*mol A/ft

    3 CA0 = 0.245 lb*mol A/ft3

    Fj =49.9 ft3/h T0 = 600 R

    DATA:- Ti =530 R Tj0 = 594.59 RParameter values:

    Vj = 3.85 ft3

    k0 = 7.08 * 1010

    h-1

    E = 30000 Btu/lb*mol R = 1.99 Btu/lb*mol*RU = 150 Btu/h*ft2*R AH = 250 ft

    2

    Tji = 530 R H = -30000 Btu/lb*molCp = 0.75 Btu/lbm*R Cj = 1.0 Btu/lbm*R = 5 0 l bm/ft

    3 j = 62.3 lbm/ft3

    kc =4( f t3/h)/ R Tset = 600 R

  • 8/9/2019 Modeling and Simulation of Cstr

    12/27

    By equations 1to4 and i to iii

    PROGRAMING OF CSTRPOLYMATH (VER. -3.01)

    %Disturbance is step change in CA at time zero from 0.5 to 0.55%

    d(V)/d(t)=40-F

    d(C)/d(t)=(F*(0.55-C))/V-k*C

    d(T)/d(t)=(F*(530-T))/V+(30000*k*C)/37.5-Q/37.5/Vd(Tj)/d(t)=(Fj*(530-Tj))/3.85+Q/240

    F=40-10*(48-V)

    k=7.08*10^10*exp(-30000/1.99/T)

    Fj=49.9-4*(600-T)Q=150*250*(T-Tj)

    t(0)=0,V(0)=48,C(0)=0.245,T(0)=600,Tj(0)=594.59

    t(f)= 6

  • 8/9/2019 Modeling and Simulation of Cstr

    13/27

    tt VV CC TT TjTj FF FjFj QQ

    00 4848 0.2450.245 600.000600.000 594.590594.590 40.0040.00 49.90049.900 202875.00202875.00

    0.150.15 4848 0.2500.250 600.197600.197 594.775594.775 40.0040.00 50.68750.687 203297.48203297.48

    0.30.3 4848 0.2540.254 600.699600.699 594.957594.957 40.0040.00 52.69552.695 215309.24215309.24

    0.450.45 4848 0.2560.256 601.249601.249 595.312595.312 40.0040.00 54.89854.898 222662.46222662.46

    0.60.6 4848 0.2570.257 601.756601.756 595.517595.517 40.0040.00 56.92656.926 233972.47233972.47

    0.750.75 4848 0.2580.258 602.134602.134 595.765595.765 40.0040.00 58.43758.437 238859.74238859.74

    0.90.9 4848 0.2570.257 602.392602.392 595.855595.855 40.0040.00 59.46759.467 245122.52245122.52

    1.051.05 4848 0.2570.257 602.523602.523 595.962595.962 40.0040.00 59.99359.993 246033.87246033.87

    1.21.2 4848 0.2560.256 602.575602.575 595.957595.957 40.0040.00 60.20060.200 248157.91248157.91

    1.351.35 4848 0.2560.256 602.564602.564 595.981595.981 40.0040.00 60.15660.156 246864.43246864.43

    1.51.5 4848 0.2560.256 602.532602.532 595.940595.940 40.0040.00 60.02660.026 247173.40247173.40

    1.651.65 4848 0.2560.256 602.486602.486 595.938595.938 40.0040.00 59.84559.845 245552.23245552.23

    1.81.8 4848 0.2560.256 602.450602.450 595.901595.901 40.0040.00 59.70159.701 245581.50245581.50

    1.951.95 4848 0.2560.256 602.420602.420 595.902595.902 40.0040.00 59.58159.581 244446.69244446.69

    2.12.1 4848 0.2560.256 602.404602.404 595.880595.880 40.0040.00 59.51759.517 244671.09244671.09

    R

    ESU

    LT

    S

  • 8/9/2019 Modeling and Simulation of Cstr

    14/27

    tt VV CC TT TjTj FF FjFj QQ

    2.252.25 4848 0.2560.256 602.394602.394 595.886595.886 40.0040.00 59.47759.477 244053.25244053.25

    2.42.4 4848 0.2560.256 602.393602.393 595.875595.875 40.0040.00 59.47259.472 244418.25244418.25

    2.552.55 4848 0.2560.256 602.394602.394 595.884595.884 40.0040.00 59.47459.474 244099.96244099.96

    2.72.7 4848 0.2560.256 602.398602.398 595.879595.879 40.0040.00 59.49059.490 244458.74244458.74

    2.852.85 4848 0.2560.256 602.400602.400 595.887595.887 40.0040.00 59.50159.501 244261.51244261.51

    33 4848 0.2560.256 602.404602.404 595.883595.883 40.0040.00 59.51559.515 244537.67244537.67

    3.153.15 4848 0.2560.256 602.405602.405 595.888595.888 40.0040.00 59.52159.521 244380.66244380.66

    3.33.3 4848 0.2560.256 602.407602.407 595.885595.885 40.0040.00 59.52859.528 244569.34244569.34

    3.453.45 4848 0.2560.256 602.407602.407 595.889595.889 40.0040.00 59.52859.528 244434.21244434.21

    3.63.6 4848 0.2560.256 602.408602.408 595.886595.886 40.0040.00 59.53059.530 244560.25244560.25

    3.753.75 4848 0.2560.256 602.407602.407 595.888595.888 40.0040.00 59.52859.528 244449.20244449.20

    3.93.9 4848 0.2560.256 602.407602.407 595.886595.886 40.0040.00 59.52859.528 244537.41244537.41

    4.054.05 4848 0.2560.256 602.407602.407 595.888595.888 40.0040.00 59.52659.526 244452.10244452.10

  • 8/9/2019 Modeling and Simulation of Cstr

    15/27

  • 8/9/2019 Modeling and Simulation of Cstr

    16/27

    Temp. V/S Time

    594.500

    595.000

    595.500

    596.000

    596.500

    0 2 4 6 8

    Time

    Tj

  • 8/9/2019 Modeling and Simulation of Cstr

    17/27

  • 8/9/2019 Modeling and Simulation of Cstr

    18/27

    Heat V/S Time

    0.00

    50000.00

    100000.00

    150000.00200000.00

    250000.00

    300000.00

    0 2 4 6 8

    Time

    Q

    Heat transferrate V/S Time

  • 8/9/2019 Modeling and Simulation of Cstr

    19/27

    Now for : +20%CA0, KC=2.5

    0.22

    0.23

    0.24

    0.25

    0.26

    0.27

    0 2 4 6 8

    Co

    .C

  • 8/9/2019 Modeling and Simulation of Cstr

    20/27

    0

    10

    20

    30

    40

    50

    60

    0 2 4 6 8

    Time

    Vol.(V)

    598

    600

    602

    604606

    608

    610

    612

    614

    616

    0 2 4 6 8

    Tim e

    Tem

    p(T)

  • 8/9/2019 Modeling and Simulation of Cstr

    21/27

    594

    596

    598

    600

    602

    604

    606

    0 2 4 6 8

    Time

    Temp(Tj)

    0

    10

    20

    30

    40

    50

    0 2 4 6 8

    Time

    Flowrate(F)

  • 8/9/2019 Modeling and Simulation of Cstr

    22/27

    0

    20

    40

    60

    80

    100

    0 2 4 6 8

    Time

    Flowr

    ate(Fj)

    0

    100000

    200000

    300000

    400000

    500000

    0 2 4 6 8

    Time

    Hea

    t(Q)

  • 8/9/2019 Modeling and Simulation of Cstr

    23/27

    Now for:- +20%F0, Kc=4

    0.24

    0.245

    0.25

    0.255

    0.26

    0.2650.27

    0.275

    0.28

    0 2 4 6 8

    o

    c

  • 8/9/2019 Modeling and Simulation of Cstr

    24/27

    47.8

    48

    48.2

    48.4

    48.6

    48.8

    49

    0 2 4 6 8

    Time

    Vol

    .(V)

    599

    600

    601

    602

    603

    604

    605

    0 2 4 6 8

    Time

    Tem

    p.(

    T)

  • 8/9/2019 Modeling and Simulation of Cstr

    25/27

    594

    594.5

    595

    595.5

    596

    596.5

    597

    0 2 4 6 8

    Time

    Tem

    p.(

    Tj)

    0

    10

    20

    30

    40

    50

    60

    0 2 4 6 8

    Time

    Flowr

    ate(F)

  • 8/9/2019 Modeling and Simulation of Cstr

    26/27

    0

    10

    20

    30

    40

    50

    60

    70

    0 2 4 6 8

    Time

    Flowra

    te(Fj)

    0

    50000

    100000

    150000

    200000

    250000

    300000

    0 2 4 6 8

    Tim e

    Heat(

    Q)

  • 8/9/2019 Modeling and Simulation of Cstr

    27/27

    REFERENCES

    1. Continuous stirred tank reactor modelsDr. M.J.WillisDept. of chemical & Process engineering,University of Newcastle.

    2. Process Modeling, Simulation & Control for chemicalengineers.William L. Luyben. (second edition).

    3. Chemical process controlGeorge Stephanopoulos.

    4. Process dynamics Modeling, Analysis, and simulationB. Wayne Bequette.