15
Modeling • Use math to describe the operation of the plant, including sensors and actuators • Capture how variables relate to each other • Pay close attention to how input affects output • Use appropriate level of abstraction vs details • Many types of physical systems share the same math model focus on models

Modeling

Embed Size (px)

DESCRIPTION

Modeling. Use math to describe the operation of the plant, including sensors and actuators Capture how variables relate to each other Pay close attention to how input affects output Use appropriate level of abstraction vs details - PowerPoint PPT Presentation

Citation preview

Page 1: Modeling

Modeling• Use math to describe the operation of the

plant, including sensors and actuators

• Capture how variables relate to each other

• Pay close attention to how input affects output

• Use appropriate level of abstraction vs details

• Many types of physical systems share the same math model focus on models

Page 2: Modeling

Modeling Guidlines• Focus on important variables

• Use reasonable approximations

• Write mathematical equations from physical laws, don’t invent your own

• Eliminate intermediate variables

• Obtain o.d.e. involving input/output variables I/O model

• Or obtain 1st order o.d.e. state space

• Get I/O transfer function

Page 3: Modeling

• Circuit: KCL: (i into a node) = 0

KVL: (v along a loop) = 0

RLC: v=Ri, v=Ldi/dt, i=Cdv/dt

• Linear motion: Newton: ma = F

Hooke’s law: Fs = Kx

damping: Fd = Cx_dot

• Angular motion: Euler: J=K

Cdot

Common Physical Laws

Page 4: Modeling

More Physical Laws

Lagrange Principle:

where

kinetic energy potential energy

: -th generalized coordinate

: generalized force along

Conservation of Energy:

C

ii i

i

i i

tot in out loss

d L Lu

dt q q

L K P

q i

u q

dE P P P

dt

onservation of Matter: tot in out

dM Q Q

dt

Page 5: Modeling

Electric Circuits

Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

impedance admittance

Page 6: Modeling

RLC network

dt

tdiL

)()(tRi

dttiC

)(1

)()(1

)()(

tvdttiC

tRidt

tdiLKVL:

Page 7: Modeling

2

2

C C

2C C

C2

2C C C

C2

2

( ) 1( ) ( ) ( )

q(t) i(t)dt

( ) ( ) 1( ) ( )

v , q(t) Cv ( )

v ( ) v ( )v ( ) ( )

V ( ) V ( ) V ( ) ( )

1V ( ) 1

( )( ) 1

di tL Ri t i t dt v tdt C

as

d q t dq tL R q t v tdt dt C

output t

d t d tLC RC t v t

dt dt

LCs s RCs s s V s

s LCG sRV s LCs RCs s sL

1LC

Or start in s-domain and solve for TF directly

Page 8: Modeling

Ideal Op amp:

Vin=0

Iin=0

Zi

Zf

Gain = inf

1

22 2 1 1

11 2 2

11

1( )( ) 1

( ) ( ) 11

fo

i

sCZ s Rv s R sRC

v s Z s R sR CsC

R

Page 9: Modeling

Mesh analysis

Mesh 1 Mesh 2

Page 10: Modeling

01

)()(

01

2

)(

1

221

211

12222

2111

ICs

RLsLsI

sVLsIILsR

LsIICs

IRLsI

mesh

sVLsILsIIR

mesh

Sum of impedance around mesh 1

Sum of impedance around mesh 2

Sum of impedance common to two meshes

Sum of applied voltages around the mesh

Write equations around the meshes

Page 11: Modeling

)(0

)(

'

0

)(1

1

2

2

1

2

1

sLsVLs

sVLsR

I

RulesCramer

sV

I

I

CsRLsLs

LsLsR

Determinant

Page 12: Modeling

1212

21

2

2

1212

21

322

21

221

)(

)(

)(

1

1

RsLCRRsRRLC

sVLCsI

Cs

RsLCRRsRRLC

Cs

CsLCsRLCsLsR

LsCs

RLsLsR

Page 13: Modeling

Kirchhoff current law at these two nodes

i1i3

i2

i1 - i2 - i3=0

i4

i3 - i4 =0

Nodal analysis

Page 14: Modeling

0)()(

)()()()/1(

/1 ,/1

0)()(

)(

vas marked node At the

0)()()()()(

vas marked node At the

22

1221

2211

2

C

21

L

sVCsGsVG

GsVsVGsVLsGG

RGRG

R

sVsVsCsV

R

sVsV

Ls

sV

R

sVsV

CL

CL

LCC

CLLL

conductance

Kirchhoff current law

Page 15: Modeling

LCGsLC

CLGGsGG

CGsG

sV

sV

LCGsCGLCGGGsGG

CGsG

sV

sV

CsGCGsLsGG

CGsG

sV

sV

GCsGLsGG

GGsVsV

GCsGLsGG

G

GsVLsGG

sV

GsV

sV

sV

CsGG

GLsGG

C

C

C

C

C

C

L

/

/

)(

)(

///1/

/

)(

)(

///1

/

)(

)(

/1

)()(

/1

0

)(/1

)(

0

)(

)(

)(/1

2212

21

21

22

22212

21

21

22221

21

22221

21

22221

2

121

1

22

221

Sum of admittance at each node

Admittance between node i and node j

Sum of injected current into each node