33
A.U.Th. Alexios Lekidis Department of Informatics, Aristotle University of Thessaloniki 2st International Workshop on Methods and Tools for Rigorous System Design (MeTRiD) Prague, Czech Republic 06 April, 2019 Model-based energy characterization of IoT system design aspects 1

Model-based energy characterization of IoT system design aspects · 2019. 4. 8. · 2) Methods for energy characterization of the IoT design aspects • Parameters impacting design

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • A.U.Th.

    Alexios LekidisDepartment of Informatics, Aristotle University of

    Thessaloniki

    2st International Workshop on Methods and Tools for Rigorous System Design (MeTRiD)

    Prague, Czech Republic06 April, 2019

    Model-based energy characterization of IoT system design aspects

    1

  • A.U.Th. 2

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 3

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 4

    What is really IoT?

    BuildingAutomation

    ConnectedvehiclesFuturegrid Healthcare

    Industry4.0Homeautomation

    IoT

  • A.U.Th. 5

    IoTHeterogeneity

    Scalability

    Lightweighthardware

    Automation

    ReliabilityDynamicity Latency

    sensitive

    IoT application characteristics

    Low-cost

  • A.U.Th. 6

    Application example: Connected vehicles

  • A.U.Th. 7

    IoT cyber-security: Mirai botnet threat Gaining control

    Launching Denial of Service attacks

    Vulnerable RSU

    Victim

    Controlled IoT devices

    Malware loader Server

  • A.U.Th. 8

    IoT cyber-security: Vulnerabilities

  • A.U.Th. 9

    Security vs lifetime

    Applications

    Systemlibraries

    Operatingsystem

    Library calls System

    calls

    Drivers

    System calls

    Hardware

    Security 0

    50

    100

    150

    200

    250

    300

    350

    400

    Low Medium High

    Life

    time

    (day

    s)

    Security

    Ø  Challenge: Provide security mechanisms that have minimal impact on do not:

    1)  Energy consumption 2)  IoT device performance

  • A.U.Th.

    Previous work [Metrid 2018]

    Open directions: 1) Parameters centered around connectivity aspects 2) Feedback for enhancements to the application designer?

    •  Characterization of scenarios impacting the energy consumption in different modes:

    •  Idle device waiting for events (LPM)

    •  Calculations/data processing (CPU)

    •  Data transmission (Tx) •  Data reception (Rx)

    •  Valid bounds for energy consumption and battery lifetime through an energy-aware model

  • A.U.Th. 11

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 12

    Proposed method: Phase 1

  • A.U.Th.

    •  BIPmodelsforeveryleveloftheIoTarchitecturewithtwolayers:–  RESTfulApplicationModel(RESTmoduleallocatedtoeverynode)–  ContikiKernelModel(ContikiOS,protocolstack)

    Modeling IoT systems in BIP [Wiley SPE, 2018]

  • A.U.Th. 14

    Energy parameter categories

    Energyparameters

    Connectivity DataProcessing Security

    [Metrid2018]

  • A.U.Th. 15

    • Parametersinfluencingtransmit/receivefunctionalitiesderiveintheirmajorityfromthenetworkstack

    • GroupingaccordingtothelayersoftheContikistacktheybelong

    •  MAClayer•  Applicationlayer•  Physicallayer

    Energy parameters: Connectivity [Metrid 2018]

  • A.U.Th. 16

    Energy parameters: Data processing MemorymanagementinIoTdevices:•  Numberofprocessedresources

    •  RoutingprotocolusedforroutingthedatatoCloudservers(i.e.reducingrequiredmemory)

  • A.U.Th. 17

    Energy parameters: Data processing MemorymanagementinIoTdevices:•  Numberofprocessedresources

    •  RoutingprotocolusedforroutingthedatatoCloudservers(i.e.reducingrequiredmemory)

    •  Memoryblockmanagementusingtwotechniques:

    •  Heapmemoryallocationthroughmalloc

    •  Dynamicblockallocationthroughmmem

  • A.U.Th. 18

    Energy parameters: Security AspectsforportingsecuritymechanismstoIoTdevices:•  Securitylevelrequiredbythesystemrequirements(authentication/authorization,encryptionorboth)

    •  SecurityprotocolindicatingthemechanismusedforsecuredataexchangeintheIoTapplication

    •  Sessionkeysizeindicatingthelengthofthekeyusedforencryption/decryptionofpackets

  • A.U.Th. 19

    Energy model

    ρ1

    λTx

    ρ2

  • A.U.Th. 20

    Model calibration

    Generalized Pareto with: κ = 0.40227; σ =1.6739; µ = 35.105 parameters

  • A.U.Th. 21

    Proposed method: Phase 2

  • A.U.Th.

    Energy aspect monitoring: Connectivity

    ca:Thelifetimeofadeviceisgreaterthan1week

  • A.U.Th.

    Energy aspect monitoring: Security

    cb:processingtimeofsecurityoperations<60%oftheoveralldutycycle

  • A.U.Th. 24

    1)  IntroductiontotheIoTdesignaspects2)  MethodsforenergycharacterizationoftheIoT

    designaspects•  Parametersimpactingdesignaspects•  Energyaspectmonitoring

    3)  Casestudy:AspectmonitoringinanIntelligentTransportSystem•  Applicationoftheproposedmethod•  Energyestimationsbasedonsystemrequirements

    4)  Conclusionandongoingwork

    Outline

  • A.U.Th. 25

    ITS Application Aim: Environmental condition awareness to different parts of a city according to ETSI EN 302 637-2/3

  • A.U.Th. 26

    Dynamicattribute(applicabletoeachvehicle/RSU) Value

    Speed xx(km/h)

    SpeedLimit xx(km/h)

    Location longitude,latitude

    AccelerationControl brakePedalEngaged,gasPedalEngaged,emergencyBrakeEngaged,collisionWarningEngaged,accEngaged,cruiseControlEngaged,speedLimiterEngaged

    Laneposition offTheRoad,hardShoulder,outermostDrivingLane,secondLaneFromOutside

    DriveDirection Forward/Backward

    WeatherCondition Unavailable,fog,smoke,heavySnowfall,heavyRain,heavyHail,lowSunGlare,sandstorms,swarmsOfInsects

    Such attributes change between zones

    ITS parameters (ETSI EN 302 637-2/3)

  • A.U.Th. 27

    ITS Application deployment Implementation of a lightweight security library that includes:

    •  TLS •  DTLS •  IPSec

  • A.U.Th. 28

    ITS Application deployment RPL routes can be monitored through the router or the Zoul client:

  • A.U.Th. 29

    ITS Application: Energy measurements

    •  Obtained using powertrace

    •  Energy measurements for: •  Zoul servers •  Zoul client •  Orion border router

    •  Current and voltage values obtained from the device datasheet

    Energy measurements in different modes

  • A.U.Th. 30

    Actual vs estimated energy

    256 key size + authentication scheme 128 key size

  • A.U.Th. 31

    •  ΝovelmethodforestimatingtheenergycostforIoTdesignaspects

    •  Energymonitoringthroughmodelconditionsthatallowto:–  Verifyifthesystemrequirementsaremet–  Facilitateapplicationdesignbyestimatingthedesignaspects

    underwhichtheyaremet•  Case-study:IntelligentTransportSystem(ITS)providingclimate

    conditiondatatopassingvehicles•  Requirementsforstrongsecuritymechanismscontradictwith

    devicelifetime•  Alternativeestimationsforsecuritymechanismstomeetmodel

    conditionsfordevicelifetime

    Conclusions

  • A.U.Th. 32

    Perspectives

    •  Methodlimitation:requiresextensivetestsforallthecombinationsofIoTdesignaspectsforeachIoTapplication•  Solution:Identifytherelevantdesignaspectsofthe

    applicationandtargetonlythose•  Automatearchitecturalchangesbasedonestimation

    feedback•  Large-scaletestbedtodemonstratethescalabilityof

    theproposedmethod•  Sophisticatedattackstotesttheefficiencyofthe

    securitylibraries

  • ARISTOTLE UNIVERSITY OF THESSALONIKI

    Thank you for your attention. Questions?

    Further info: [email protected]