Mod_1_smart_mat_lec_4.pdf

Embed Size (px)

Citation preview

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    1/23

    Module 1: Overview of Smart

    Materials

    Bishakh Bhattacharya and Naciketa Tiwari

    Indian Institute of Technology, Kanpur

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    2/23

    :

    Magnetostrictive Smart Materials-

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    3/23

    The Constitutive Relationship

    -

    Sensors Developed using Terfenol-D

    Magnetostrictive Composites

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    4/23

    Const. Eqn. of Magnetostrictive

    Material

    Joule Effect: S1 = 1/Ep + dmHVillary Effect: B = dm 1 + H-stress, S-strain, B - magnetic

    ,

    - ermeabilit d - ma netostrictiveconstant

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    5/23

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    6/23

    (a)Demagnetized State (b) Partial Magnetization

    c rrevers e oma n agne za on ec n ca a ura on

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    7/23

    -

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    8/23

    Pre-load springs and permanent magnets are

    used to put the piston in the zero-position anda so o re uce ys eres s. e energz ng coaround the rod is used to activate the Terfenol-

    .

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    9/23

    c(t) = S( + o) + d G i(t) + K e-t/C i2 (t) dt

    - strain, S- compliance modulus, - stress,

    o pre-stress, magneto-mec ancaconstant, G control parameter, i(t) control current, - equivalent thermal

    parametric constant

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    10/23

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    11/23

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    12/23

    Two approaches are taken to develop such

    (a)Development of particulate composite:

    er eno - partc es o mcron to su -micron size is dispersed in a suitableresin and cured to form sensors

    as magnetostrictive (MS) sensors.

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    13/23

    Ma netostrictive Dela Line MDL Senso

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    14/23

    onsttutve e atons p

    H(x,t) = f(x) I(t) = 1/((a2 + x2) I(t)(H) = s (1-e-H ), >02

    H applied pulsed magnetic f ield, I(t) - applied

    , -

    conductor and MDL, s - saturation -

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    15/23

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    16/23

    Future of Magnetostricve Materials?

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    17/23

    Ferromagnetic Shape Memory Alloy

    Material NiMnGa alloy

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    18/23

    Strain induced in FSMA

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    19/23

    Magnetostrictive

    Nanocomposite

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    20/23

    Magnetostrictive

    Nanocomposite

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    21/23

    Comparison of Free-Strain between

    a Micron-level particulate composite

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    22/23

    M. Anjanappa and Y. Wu, Magnetostrictive particulate,

    Smart Materials and Structures, 6, pp. 393-402, 1997.

    . . , . . , . . . . ,

    A magnetoelastic model for magnetostrictive sensors,Proceedings of ACTIVE 99, Vol. 2, pp. 1193-1204,December 02-04 1999.

    Mcknight, G. and Carman G.P., Oriented Terfenol-DComposites, Material Transactions, Vol.43 No.5 (2002)pp.1008-1014

  • 7/29/2019 Mod_1_smart_mat_lec_4.pdf

    23/23

    END OF LECTURE 4