10
Lecture 13: Remote Estimation of the Temperature and Size of an Unresolved Object in Space Part III: Bayesian Problem Formulation

Mod13_Part3 of Probability and Statistics

Embed Size (px)

DESCRIPTION

Remote Estimation of the Temperature and Size. This is part 3.

Citation preview

Page 1: Mod13_Part3 of Probability and Statistics

Lecture 13: Remote Estimation of the Temperature and Size of an Unresolved Object in

Space

Part III: Bayesian Problem Formulation

Page 2: Mod13_Part3 of Probability and Statistics

Up-Front Simplification 1

1 1 1 1 2

22 2 2 2 2

;

;

Jr s n s

rJ

r s n sr

= + =

= + =

Recall  the  measurement  model  

Since  the  range  r  is  known  to  the  sensor,  one  can  alterna6vely  consider  formula6ng  the  problem  in  terms  of  the  radiances  of  the  source.    Simply  mul6ply  both  of  the  above  equa6ons  by  r2  to  obtain:  ' 21 1 1 1 1

' 22 2 2 2 2

( , )

( , )

r J r n J T A m

r J r n J T A m

ε

ε

= + = +

= + = +

Since  n1  and  n2  are  both  distributed  N(0,σ2),  mul6plying  them  by  the  constant  r2  means  that  m1~N(0,r2σ2)  and  m2~N(0,r2σ2)  

Page 3: Mod13_Part3 of Probability and Statistics

Up-Front Simplification

Prac6cally,  this  simply  means  that  one  mul6plies  sensor  measurements  by  r2  before  proceeding  which  is  what  is  now  assumed  from  here  forward.  

' 21 1 1 1 1

' 22 2 2 2 2

( , )

( , )

r J r n J T A m

r J r n J T A m

ε

ε

= + = +

= + = +

This  transforma6on  simplifies  the  problem  by  working  directly  in  target  radiance  space  vs.  the  sensor  measurements  (irradiances):  

Page 4: Mod13_Part3 of Probability and Statistics

Bayes’ Theorem Now  re-­‐assign  the  variables  r1  and  r2  to  now  correspond  to  the  transformed  noisy  sensor  measurements.    The  Bayesian  determina6on  of  object  temperature  and  emissive-­‐area  is  given  by:  

1 21 2

1 2

1 2

1 2

( , | , )( , | , ) ( , )

( , )( , ) ( , | , )

( , ) ( , | , )

p r r T Ap T A r r p T A

p r rp T A p r r T A

p T A p r r T A d AdT

εε ε

ε ε

ε ε ε

=

=∫

Page 5: Mod13_Part3 of Probability and Statistics

Bayes’ Theorem

1 21 2

1 2

1 2

1 2

( , | , )( , | , ) ( , )

( , )( , ) ( , | , )

( , ) ( , | , )

p r r T Ap T A r r p T A

p r rp T A p r r T A

p T A p r r T A d AdT

εε ε

ε ε

ε ε ε

=

=∫

Note  that  the  integral  normaliza6on  factor  in  the  denominator  can  be  evaluated  given  knowledge  of  the  prior  probability  and  likelihood  func6on  in  the  numerator.    We  will  evaluate  the  normaliza6on  factor  using  Monte  Carlo  Integra6on.  

Page 6: Mod13_Part3 of Probability and Statistics

A Priori Probabilities

( ) ( )1 1

( , )u l u l

p TT T A A

εε ε

=− −

g

For  sake  of  both  simplicity  and  our  state  of  ignorance  (uncertainty)  of  the  object  temperature  T  and  emissive-­‐area  εA  are  both  uniform  and  given  by  

where  Tu  and  Tl  are  the  upper  and  lower  limits  on  possible  temperatures  T  and  emissive-­‐areas  εAl  and  εAu  .  

Page 7: Mod13_Part3 of Probability and Statistics

Likelihood Probability

1 2 1 2( , | , ) ( | , ) ( | , )p r r T p r T p r Tε ε ε=

 The  likelihood  or  measurement  probability  describes  the  probability  distribu6on  of  measurements  r1  and  r2  condi6oned  on  a  given  state-­‐of-­‐nature  which  in  this  case  is  the  object  emissive-­‐area  εA  and  temperature  T.    This  probability  is  dominated  by  the  nature  of  the  noise  effect  of  the  non-­‐ideal  sensor.        In  this  case  this  probability  is  given  by      What  assump6on  was  made  that  jus6fies  the  factoriza6on  above?    

Page 8: Mod13_Part3 of Probability and Statistics

Likelihood Probabilities

( )222

( , )1 1( | , ) exp

22i i

i

r J T Ap r T A

εε

σπσ

⎡ ⎤−= −⎢ ⎥

⎢ ⎥⎣ ⎦

J  

The  noisey  radiance  measurement  are  Gaussian  with  mean  J  about  which  fluctua6ons  occur.    Note  the  dependency  of  Ji  on  temperature  T  and  emissive-­‐area  εA  which  in  turn  are  determined  by  the  a  priori  probabili6es  on  these  parameters.  

Page 9: Mod13_Part3 of Probability and Statistics

Complete Bayesian Formulation

[ ] [ ]( ) ( )2 2

1 1 2 21 2 2 2 2

1 2

( , ) ( , )1 1 1 1 1 1( , | , ) exp exp

( , ) 2 2 2u l u l

r J T A r J T Ap T A r r

T T A A p r rε ε

εε ε πσ σ σ

⎡ ⎤ ⎡ ⎤− −= − −⎢ ⎥ ⎢ ⎥

− − ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

The  complete  Bayesian  formula6on  for  es6ma6ng  temperature  and  emissive-­‐areas  from  noisey  measurements  is  given  below.  

Remember  that  the  MAP  es6mator  means  finding  the  T  and  εA  that  maximize  the  a  posteriori  probability  p(T,εA)  or  equivalent,  log  p(T,εA).    Taking  the  logarithm  of  the  above  and  elimina6ng  terms  that  are  no  func6onally  dependent  on  T  and  εA  means  solving  

( ) ( )2 21 1 2 2

1 2 2 2,

( , ) ( , )1 1argmax log ( , )

2 2T A

r J T A r J T Ap r r

ε

ε ε

σ σ

⎡ ⎤− −− − −⎢ ⎥⎢ ⎥⎣ ⎦

Page 10: Mod13_Part3 of Probability and Statistics

Part IV: Homework and MATLAB Code Overview

Next: