2
Volume 32A. number 3 PHYSICS LETTERS 29 June 1970 MOBILITY AND DIFFUSION CONSTANT OF ll0Ag IN KBr SINGLE L. Bo HARRIS, J. R. HANSCOMB and J, L. SCHLEDERER School of Physics. Uttiversity of New SoMh Wales. Ketzsinglot/, N. S, W.. 2033 A/ish'alia Received 26 May 1970 CRYSTALS Activation enthalpy for mobility of ll0Ag in KBr single crystals between 260 ° and 400°C is 0.67 eV. equal to that for cation vacancy mobility. The corresponding activation enthalpy for diffusion is anomal- ously smaller. 0.5~ eV. Dislocations in alkali halide single crystals can be decorated at low temperatures by using an electric field I1,21; metal ions from electro- des migrate preferentially along the dislocation substructure. Such behaviour indicates inhomo- geneous charge transport, but in general there is not much experimental data available to con- firm or deny any suggestion that substructure can have a marked influence on conduction and diffusion: For example, silver readily decorates dislocations in KBr at 150°C I1, 2], but conduction and diffusion of silver in KBr have not as yet been compared with that of potassium. As part of a programme to obtain data in this field the pre- sent work reports on simultaneous measurements of mobility and diffusion constant of silver in the KBr lattice° The method used was that of Reding- ton [3] in which a radioactive isotope (ll0Ag) is driven by an electric field inot a crystal which is afterwards sectioned by microtome and ex- amined by scintillation counter° Use of electric fields up to several thousand volts per cm per- mitted measurements at relatively low tempera- tures (260°-450oc); this is in the extrinsic re- gion, where few studies of mobility and diffusion constant have been made. Tracer mobility t~ (plotted as tl T) and dif- fusion constant D are given in fig. 1 as a func- tion of inverse temperature l/T. Measurements were made on specimens from one single crystal pulled from the melt, and were found to be re- producible° The activation enthalpy for mobility of silver ions obtained from the least-squares plot of fig. 1 is 0.67 + 0.01 eV, though system- atic errors in the absolute magnitude of mobility may be larger° The activation enthalpy h v for cation vacancy mobility in KBr has been found from conductivity measurements to be 0.e65 eV [4] or 0.66 eV [5]; hence the silver ion migrates 1l~ 7 g u) d e 1,4 I03/T(°K) "1 14, 1-6 1"8 2"010-10 o i I i i i I , C /.00 300 250 400 300 250 °C I I ~_ I I 10"12 16 18 2-0 103/T( °K )'1 E lO -11 Fig, i. Temperature dependence of ~tTand D. Circles. left-hand and bottom scales: crosses, right-hand and top scales. in KBr at low temperatures by a vacancy me- chanism, exactly as it does in NaC1 at high temperatures (> 575°C) [6]. The values of diffusion constant D in fig. 1 are less accurate than those of mobility, but they clearly indicate a smaller activation enthalpy hD; a least-squares plot gives a value of 0,54 eVo Further, the Einstein relation p/D = (fkT)/e, where e is the charge on the ion and f a correla- tion factor of order of magnitude unity, is not obeyed. Experimental values of ~/D are smaller by factors which vary from 007 at 260°C to 0.14 at 400°C. Small values of t~/D can be explained either by association of cation vacancies with residual divalent impurities to form neutral com- plexes which contribute to thermal diffusion but not to motion under an electrical field, or by a 163

Mobility and diffusion constant of 110Ag in KBr single crystals

Embed Size (px)

Citation preview

Volume 32A. number 3 P H Y S I C S L E T T E R S 29 June 1970

M O B I L I T Y A N D D I F F U S I O N C O N S T A N T O F l l 0 A g I N K B r S I N G L E

L. Bo HARRIS, J . R. HANSCOMB and J , L. S C H L E D E R E R School of Physics . Uttiversity of New SoMh Wales. Ketzsinglot/, N. S, W.. 2033 A/ish'alia

Received 26 May 1970

C R Y S T A L S

Activation enthalpy for mobility of l l0Ag in KBr single crystals between 260 ° and 400°C is 0.67 eV. equal to that for cation vacancy mobility. The corresponding activation enthalpy for diffusion is anomal- ously smal ler . 0.5~ eV.

D i s l o c a t i o n s in a l k a l i ha l ide s ing l e c r y s t a l s can be d e c o r a t e d at low t e m p e r a t u r e s by u s ing an e l e c t r i c f i e l d I1,21; m e t a l ions f r o m e l e c t r o - des m i g r a t e p r e f e r e n t i a l l y a long the d i s l o c a t i o n s u b s t r u c t u r e . Such b e h a v i o u r i n d i c a t e s i n h o m o - geneous c h a r g e t r a n s p o r t , but in g e n e r a l t h e r e i s not m u c h e x p e r i m e n t a l da t a a v a i l a b l e to con- f i r m o r deny any s u g g e s t i o n that s u b s t r u c t u r e can have a m a r k e d in f luence on conduc t ion and d i f fus ion: F o r e x a m p l e , s i l v e r r e a d i l y d e c o r a t e s d i s l o c a t i o n s in K B r at 150°C I1, 2], but conduc t ion and d i f fus ion of s i l v e r in K B r have not a s ye t b e e n c o m p a r e d with that of p o t a s s i u m . As p a r t of a p r o g r a m m e to ob ta in da ta in th i s f i e ld the p r e - s en t w o r k r e p o r t s on s i m u l t a n e o u s m e a s u r e m e n t s of m o b i l i t y and d i f fus ion cons t an t of s i l v e r in the K B r la t t ice° The m e t h o d u s e d was that of Red ing - ton [3] in wh ich a r a d i o a c t i v e i so tope ( l l 0 A g ) is d r i v e n by an e l e c t r i c f i e l d inot a c r y s t a l which is a f t e r w a r d s s e c t i o n e d by m i c r o t o m e and e x - a m i n e d by s c i n t i l l a t i o n counte r° Use of e l e c t r i c f i e l d s up to s e v e r a l t housand vo l t s p e r cm p e r - m i t t e d m e a s u r e m e n t s at r e l a t i v e l y low t e m p e r a - t u r e s ( 2 6 0 ° - 4 5 0 o c ) ; th is i s in the e x t r i n s i c r e - gion, w h e r e few s tud i e s of m o b i l i t y and d i f fus ion cons t an t have b e e n made .

T r a c e r m o b i l i t y t~ (p lo t ted as tl T) and d i f - fus ion cons t an t D a r e g iven in f ig. 1 as a func - t ion of i n v e r s e t e m p e r a t u r e l / T . M e a s u r e m e n t s w e r e m a d e on s p e c i m e n s f r o m one s ing l e c r y s t a l p u l l e d f r o m the m e l t , and w e r e found to be r e - p roduc ib l e ° The a c t i v a t i o n en tha lpy fo r m o b i l i t y of s i l v e r i ons ob ta ined f r o m the l e a s t - s q u a r e s p lo t of f ig. 1 i s 0.67 + 0.01 eV, though s y s t e m - a t i c e r r o r s in the a b s o l u t e m a g n i t u d e of m o b i l i t y m a y be l a r g e r ° The a c t i v a t i o n en tha lpy h v fo r ca t ion v a c a n c y m o b i l i t y in K B r has b e e n found f r o m c o n d u c t i v i t y m e a s u r e m e n t s to be 0.e65 eV [4] o r 0.66 eV [5]; hence the s i l v e r ion m i g r a t e s

1l~ 7

g u)

d e

1,4

I03/T(°K) "1 14, 1 -6 1"8 2 " 0 1 0 - 1 0

o i I i i i I , C /.00 300 250

400 300 250 °C I I ~ _ I I 10"12

16 18 2-0 103/T( °K )'1

E

lO -11

Fig, i. Temperature dependence of ~tTand D. Circles. left-hand and bottom scales: crosses, right-hand and

top scales.

in K B r at low t e m p e r a t u r e s by a v a c a n c y m e - c h a n i s m , e x a c t l y as i t does in NaC1 at h igh t e m p e r a t u r e s (> 575°C) [6].

The v a l u e s of d i f fus ion cons t an t D in fig. 1 a r e l e s s a c c u r a t e than those of mob i l i t y , but they c l e a r l y ind ica t e a s m a l l e r a c t i v a t i o n en tha lpy hD; a l e a s t - s q u a r e s plot g i v e s a va lue of 0,54 eVo F u r t h e r , the E i n s t e i n r e l a t i o n p/D = (fkT)/e, w h e r e e is the c h a r g e on the ion and f a c o r r e l a - t ion f a c t o r of o r d e r of m a g n i t u d e unity, i s not obeyed. E x p e r i m e n t a l v a l u e s of ~/D a r e s m a l l e r by f a c t o r s which v a r y f r o m 0 0 7 at 260°C to 0.14 at 400°C. S m a l l v a l u e s of t~/D can be e x p l a i n e d e i t h e r by a s s o c i a t i o n of ca t ion v a c a n c i e s wi th r e s i d u a l d iva l en t i m p u r i t i e s to f o r m n e u t r a l c o m - p l e x e s which c o n t r i b u t e to t h e r m a l d i f fus ion but not to mo t ion u n d e r an e l e c t r i c a l f ie ld , o r by a

163

Volume 32A. number 3 P H Y S I C S L E T T E R S 29 June 1970

s m a l l c o r r e l a t i o n f a c t o r f f o r the s i l v e r i m p u r i t y iota S i m i l a r l y , the s m a l l e r v a l u e of h D m u s t r e - s u l t e i t h e r f r o m e n h a n c e d e a s e of m o t i o n of n e u - t r a l c o m p ! e x e s t h r o u g h the l a t t i c e , o r f r o m s o m e l o w - e n e r g y m e c h a n i s m p e c u l i a r to the s i l v e r i m - p u r i t y ion, p e r h a p s a s s o c i a t e d w i th s u b s t r u c t u r e .

V a l u e s of D in fig~ 1 a p p e a r l a r g e when c o m - p a r e d wi th e x t r a p o l a t e d D v a l u e s f o r d i f f u s i o n of K + in K B r a t 450°C and a b o v e 17]. T h i s s u g g e s t s t h a t the s i l v e r ion, due to i t s r e l a t i v e l y l a r g e p o - l a r i s a b i l i t y , o s c i l l a t e s m o r e r a p i d l y on a K B r l a t t i c e s i t e t h a n the h o s t c a t i on ; the s a m e b e h a v - i o u r h a s p r e v i o u s l y b e e n o b s e r v e d f o r s i l v e r in

NaC1 a t h igh t e m p e r a t u r e s 16 I¢ F u r t h e r w o r k on t h i s s u b j e c t i s in p r o g r e s s .

References [1] L .B. Harr is . Appl. Phys. Le t te r s 13 (1968) 154. [21 L. B. Harr i s , J. Appl. Phys . . to be published. [3] R.W. Redington. Phys. Rev. 87 (1952) 1066. [4] J. Rolfe. Canadian J. Phys. 42 (1964) 2195. [5] J .N.Maycock . J. Appl. Phys. 35 (1964) 1512. [6] M. Chelma. Compt. Rend. 238 (1954) 82. [7l J , F . Laurent and J. Bernard . J. Phys. Chem. Solids

'3 (1957) 7.

O R B I T A L M & G N E T I S M I N T H E T I G H T - B I N D I N G L I M I T

M . SHIMIZU a n d Y TAKAHASHI Deparlmenl qf Applied Physics. Nagoya UMt,ersily. Nagoya. Japan

Received 25 April 1970

Orbital magnet ic suscept ibi l i ty is calculated in the t ight-binding limit for sc. bec, and fcc s t ruc tu re s for a s ingle-band model. It is shown that this suscept ibi l i ty somet imes becomes paramagnet ic .

T h e g e n e r a l and e x a c t r e s u l t of the m a g n e t i c s u s c e p t i b i l i t y due to o r b i t a l m o t i o n of e l e c t r o n s in a m e t a l w i t h i n the l i m i t s of the B l o c h m o d e l w a s o b t a i n e d by H e b b o r n a n d S o n d h e i m e r I1 I. T h e i r r e s u l t w a s c o n v e n i e n t l y w r i t t e n a s the s u m of fou r t e r m s . X = XI+X2+X3+X4 , ( e q s . ( 5 3 ) - (56) in [11)~ H e r e , Xl i s the s u m of the L a n d a u - P e i e r l s t e r m XLp a n d a new t e r m . a s g i v e n by

e 2 .ie2Em~2Ern ~2Em 2

3{ PEme3Em + ~ Erne3 Em){ ~ f (Em)dk ' (1)

w h e r e E m i s the e i g e n v a l u e of the m t h s u b - b a n d , fog m) t he F e r m i d i s t r i b u t i o n func t i on , and the i n t e g r a t i o n w i t h r e s p e c t to the w a v e v e c t o r k e x - t e n d s o v e r the f u n d a m e n t a l B r i l l o u i n zone . X2, X3, and )(4 a r e e x p r e s s e d in t e r m s of not on ly

164

the e n e r g y d e r i v a t i v e s bu t a l s o d e r i v a t i v e s of the p e r i o d i c p a r t of the B l o c h f u n c t i o n w i t h r e - s p e c t to k and c o - o r d i n a t e s .

In the t i g h t - b i n d i n g a p p r o x i m a t i o n of a s i n g l e band . ×1 of (1) i s n u m e r i c a l l y c a l c u l a t e d a s a f u n c t i o n of n, t he n u m b e r of e l e c t r o n s p e r a t o m , f o r s i m p l e cub ic , fcc , and b c c s t r u c t u r e s ° T h e E m in t h i s a p p r o x i m a t i o n fo r sc , fcc , and bcc s t r u c t u r e s a r e g iven , r e s p e c t i v e l y , by

1 2 + 2 + 2 _1 + -~w(cx Cv Cz), -~w(cxcv CvCz +C~Cx), -½ w c.vc vc z , w h e r e C i = cos½ dk i with i = x , y , a n d z, a i s the l a t t i c e c o n s t a n t , a n d W i s the b a n d width . F o r the c o n v e n i e n c e of n u m e r i c a l c a l c u l a t i o n s the c a l c u l a t i o n s of ×1 h a v e b e e n c u r r i e d out a t f i n i t e t e m p e r a t u r e s , and i t i s found t h a t the r e s u l t s a r e a l m o s t c o n s t a n t a b o v e the t e m p e r a t u r e T = 3 × 10 -3 W/k a n d t h e r e a r e s m a l l t e m p e r a t u r e v a r i a t i o n s a t l o w e r t e m p e r a - t u r e s * . T h e n u m e r i c a l r e s u l t s of X L p a n d Xl a t T = 8.2 × 10 -3 w/k f o r sc , fee , a n d b e e s t r u c - t u r e s a r e s h o w n in fig° l a , w h e r e b r o k e n c u r v e s

* Details are shown in ref. [2] and will be published e lsewhere .