23
Mobile Device Visualization of Cloud Generated Terrain Viewsheds Chris Mangold College of Earth and Mineral Science Penn State University State College, PA [email protected] Advisor: Dr. Peter Guth

Mobile Device Visualization of Cloud Generated Terrain Viewsheds

  • Upload
    kaia

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

Mobile Device Visualization of Cloud Generated Terrain Viewsheds. Chris Mangold College of Earth and Mineral Science Penn State University State College, PA [email protected] Advisor: Dr. Peter Guth. Motivations . Mobile visualization of GIS data - PowerPoint PPT Presentation

Citation preview

Page 1: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Chris MangoldCollege of Earth and Mineral Science

Penn State UniversityState College, PA

[email protected]

Advisor: Dr. Peter Guth

Admin
•20 minutes per presentation (time includes presentation and discussion)
Page 2: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Motivations

Mobile visualization of GIS data

Products of Terrain DTM/DSM spatial analysis

Cloud GIS

Mobile

Augmented Reality (AR)

Rothera Point, Adelaide Island, Antarctica. Aster (v2) Global DEM overlay.

Page 3: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Augmented Reality (AR) in GIS

Location Intelligence (LI) Mobile Apps Point vector based

AR frameworks Next Generation 3-D model rendering Raster data based

Fai della Paganella Trento, Italy (Dalla Mura, 2012)

Libertytown, MD (layar,2014)

Yelp urban guide (Yelp,2014)

Page 4: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Least Observed Path (LOP) Application Concept

LI Mobile Application

Provides a navigation path to avoid detection

Renders AR geo-layer

Consumes Cloud generated observer viewsheds

Page 5: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP System Diagram - Work Flow Define LOP environment Request and consum observer viewshed results Geo-register result using devices sensors Generate and render AR geo-layer

Cloud hosted GIS

Page 6: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Cloud GIS

2 KM Radius RF Propagation IFSAR 5 M 1.7 KM Observer Viewshed IFSAR 5 M2.5 KM Slope Position ClassificationIFSAR 5 M

Computing Efficiencies Apache Hadoop MapReduce framework Virtualized commodity and clustered resources (GPUs)

Terrain spatial analysis web services REST APIs

(MrGeo, DigitalGlobe 2014)

Page 7: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application UI(Map View – Device Horizontal Orientation)

Map View OSMAnd open source framework Slippy map user interface Drop pin to identify observer locations WGS84 Web Mercator MBTiled base map

Page 8: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application UI(Augmented Curtain View – Device Vertical Orientation)

Augmented Curtain View Renders AR curtain layer Recalculated as device location updates POSE derived from orientation sensors Visibility probability color ramp indicator

Page 9: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

NED 1/3”NED 1”

Lidar – 1.0 MeterLidar 10 M Aggregate Generalization Lidar 3M Aggregate Generalization

Data source Elevation model

ASTER GDEM 1”(~30 meter resolution) DSM

Lidar 1 meter DSM

NED 1” (~30 meter resolution) DTM

NED 1/3” (~10 meter resolution) DTM

SRTM 3” (~90 meter resolution) DSM

Page 10: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Augmented Curtain Generation

AOI curtain base evaluation imageScale: 1 Pixel = 1 Meter

Scale received viewshed PNG images Geo-register and merge images

Create evaluation bitmap

Size bitmap to LOP evaluation AOI

Normalize and scale viewshed images

Geo-register images

Merge and clip images to AOI

Page 11: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Augmented Curtain Generation

Create AR curtain base

Array of 360 RGB values

Evaluate pixels within AOI

RGB values to determine visibility

Calculate azimuth to location

Track total and visible pixel

Calculate azimuth weighted valueVisualization of calculated AOI curtain base.

Page 12: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Augmented Curtain Generation

Render LOP geo-layer

Overlay on Android surface view

Determine screen orientation and size

Apply weighted visibility for each azimuth

Draw compass components

Page 13: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Augmented Curtain POSE

POSE

AR: integrating virtual data with real world

Enhance geo-register LOP curtain layer

Manage device inertia sensors

Magnetic

Gravity

Kalman filter

Smoother rendering

Page 14: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application Evaluation

Environment

Suburban office park setting

Droid Incredible

Target observation height 2 meters

LOP AOI 200 m diameter

LOP evaluation site.

LOP site looking north through alley.

Viewshed origin point looking west.

Page 15: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application Evaluation

Measure

Observer viewshed cloud request time

Time to render LOP augmented curtain

Detection of a LOP

LOP basemap with viewshed overlay.

Page 16: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application Evaluation

NED1” and other bare earth returns Performance response times < 0.5 seconds No detected LOP

Page 17: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application Evaluation

Lidar 10m Performance response times < 0.5 seconds Contiguous LOP path between 29.0o - 39.0o

Page 18: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application Evaluation

Lidar 3 m Performance response times < 0.5 seconds Contiguous LOP path between 34.0o - 40.0o

Page 19: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

LOP Application Evaluation

Lidar 1 m Performance response times < 0.5 seconds Broad low LOP probability area (25.0o - 45.0o) Distinct LOP sections between 26.0o - 37.0o

Page 20: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Conclusions

LOP, demonstrates geo-visualization of Cloud generated viewsheds

Add outlier filtering algorithms for 1 m Lidar Small LOP AOIs show no performance penalty

Page 21: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Future directions

Evaluate LOP with larger spatial extents

Optimize rendering algorithms

Add depth projection to LOP curtain

Investigate edge detection

Evaluate porting application to Google Glass

Page 22: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Questions

LOP, demonstrates geo-visualization of terrain based raster data

Add outlier filtering algorithms for 1 m Lidar Small LOP AOIs show no performance penalty

Page 23: Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Sources

1. Apache, 2013, ApacheTM Hadoop: http://hadoop.apache.org/, last accessed 19 Feb 2014.2. Amazon, 2014, Amazon web services – Amazon EC2: http://aws.amazon.com/ec2/, last accessed 19 Feb 2014.3. Baboud, Lionel. M. Cadik, E. Eisenmann and H.P. Seidel, 2011. Automatic photo-to-terrain alignment for the annotation of mountain pictures, IEEE Conference on

Computer Vision and Pattern Recognition, pp. 41-484. Dalla Mura, M., M. Zanin, C.Andreatta and P.Chippendale, 2012a. Augmented reality: Fusing the real and synthetic worlds, IEEE International Geosciences and Remote

Sensing Symposium, (8):170-173.5. Dalla Mura, M., and P.Chippendale, 2012b. Real-World DEM Harmonization through Photo Re-Projection, IEEE International Symposium on Geoscience and Remote

Sensing, 2012. (7): pp 428-4306. DigitalGlobe, 2014, DigitalGlobe – Defense & Intelligence http://www.digitalglobe.com/Industries/defense%26intelligence#overview, last accessed 17 Feb 2014.7. Fielding R.T., 2000. Architectural Styles and the Design of Network-based Software Architectures, University of California, Irvine, 2000

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm , last accessed 17 Feb 2014.8. GeoTools, 2014, GeoTools - The Open Source Java GIS Toolkit: http://www.geotools.org/, last accessed 17 Feb 2014.9. Google, 2014, GLASS: http://www.google.com/glass/start/, last accessed 17 Feb 2014.10. JKalman, 2013, JKalman http://sourceforge.net/projects/jkalman/, last accessed 17 Feb 2014.11. layar, LAYAR SDK: https://www.layar.com/developers/, last accessed 17 Feb 2014.12. Mapbox, 2013a, TileMill: https://www.mapbox.com/tilemill/, last accessed 17 Feb 2014.13. Mapbox, 2013, MBTiles tileset format: https://github.com/mapbox/mbtiles-spec, last accessed 19 Feb 2014.14. NASA, 2014a, ASTER: http://asterweb.jpl.nasa.gov/, last accessed 19 Feb 2014.15. NASA, 2014b, SRTM: http://www2.jpl.nasa.gov/srtm, last accessed 19 Feb 2014.16. OsmAnd, 2014, OsmAnd – Map & Navigation: http://osmand.net/ , last accessed 17 Feb 2014.17. Noguera, J.M., C. Ogayar and R. Joan-Arinyo, 2013. A scalable architecture for 3D map navigation on mobile devices, Personal and Ubiquitous Computing, 17(7): pp. 1487-

1502.18. Porzi, L., E. Ricci, TA. Ciarfuglia, and M. Zanin, 2012. Visual-inertial tracking on Android for augmented reality applications, IEEE Workshop on Environmental Energy and

Structural Monitoring Systems,(8):35-41.19. Rosenberg, J., and A. Mateos, 2011. The Cloud at Your Service, Manning, Greenwich, pp 146-146.20. Yelp, 2014, Yelp http://www.yelp.com, last accessed 17, Feb 2014.21. USGS, 2013, The USGS Store – Map Locator & Downloader: https://store.usgs.gov/b2c_usgs/usgs/maplocator, last accessed 20, Dec 2013.22. USGS, 2014, National Elevation Dataset: http://ned.usgs.gov/, Last accessed 17, Feb 2014.23. Wikitude, Wikitude SDK: http://www.wikitude.com/products/wikitude-sdk/, last accessed 17 Feb 2014.24. William and Mary, 2014, Virginia lidar: http://www.wm.edu/as/cga/VALIDAR/ , last accessed 08 Feb 2014.