27
Local friction of rough contact interfaces with rubbers using contact imaging approaches D.T. Nguyen, M.C. Audry, M. Trejo, C. Fretigny and A. Chateauminois Soft Matter Science and Engineering Laboratory - SIMM Ecole Supérieure de Physique et Chimie Industrielles (ESPCI), Paris, France E. Barthel & J .Teisseire Surface du Verre et Interfaces , CNRS – Saint Gobain, Aubervilliers A.Prevost & E. Wandersman Jean Perrin Laboratory (LJP), Université P. et M. Curie, Paris ICMCTF 2014 April 29th 2014 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 mm -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 mm 0.30 0.20 0.10 0.00 MPa (c)

mm 5 (c) Local friction of rough contact interfaces with › sites › › IMG › pdf › icmc… · PDMS rubber (surface marked) Glass lens R ≈ cm R Space resolution ~ 10 x 10

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Local friction of rough contact interfaces with rubbers using contact imaging approaches

    D.T. Nguyen, M.C. Audry, M. Trejo, C. Fretigny and A. ChateauminoisSoft Matter Science and Engineering Laboratory - SIMMEcole Supérieure de Physique et Chimie Industrielles (ESPCI), Paris, France

    E. Barthel & J .TeisseireSurface du Verre et Interfaces , CNRS – Saint Gobain, Aubervilliers

    A.Prevost & E. WandersmanJean Perrin Laboratory (LJP), Université P. et M. Curie, Paris

    ICMCTF 2014 April 29th 2014

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    -1.5

    -2.0

    -2.5

    mm

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

    mm

    0.30

    0.20

    0.10

    0.00

    MP

    a

    (c)

  • Steady state friction of dry multi-contact interfaces

    Real contact area ??

    • Frictional energy dissipation at micro-asperity scale

    • Surface geometry, contact mechanics

    t

    p

    Non linear material responseAdhesionViscoelasticity….

    v

    • Bulk plastic or viscoelastic dissipation

    • Interfacial dissipation

    Local friction law t(p) ??

    10-36

    10

    -34

    10-32

    10

    -30

    10-28

    10

    -26

    10-24

    10

    -22

    10-20

    Cs (m

    4)

    0.01 0.1 1 10 100 1000

    q (106 m

    -1)

    Roughness PSD

    Micro-contacts distribution

  • Displacement field measurements within contacts with rubber

    vImposed - normal load, P

    - velocity, v

    P

    1 mm

    uy

    ux

    Along sliding direction Perpendicular to sliding direction

    Surface displacements during steady state friction

    PDMS rubber(surface marked)

    Glass lensR ≈ cm

    R

    Space resolution ~ 10 x 10 µm2

  • Contact stresses : inversion of the displacement field

    Surface displacement Surface stresses

    Inversion???

    D.T. Nguyen, J Adhesion (2011)

    Lateral displacements

    Vertical displacement

    • Linear elasticity → Green’s tensor

    • Experimentally : large strains ! → Numerical inversion using FEM

    x

    y

    z

    uy ux

    Neo-Hokeanmaterial

    R

    uz

    d

    Incompressible materials, n=0.5

    contact strain

  • Contact stresses: single asperity contact

    Surface shear stressContact pressure

    R=9.3 mm, P=1.4 N, v=0.5 mm/s

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    -1.5

    -2.0

    -2.5

    mm

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

    mm

    0.4

    0.3

    0.2

    0.1

    0.0

    MP

    a

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    -1.5

    -2.0

    -2.5

    mm

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

    mm

    0.30

    0.20

    0.10

    0.00

    MP

    a

    Pressure independent shear stress

    PD

    MS

    dis

    pla

    ce

    men

    tSmooth Glass/PDMS contact

  • Contact stresses: rough multi-contact interface

    Contact pressure Shear stress

    Gaussian roughnessr.m.s roughness ~ 1 µm

    20µm

    Sand blasted glass lens

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    -1.5

    mm

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    mm

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    MP

    a

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    -1.5

    mm

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    mm

    0.4

    0.3

    0.2

    0.1

    0.0

    MP

    a

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    Shear

    str

    ess t

    (M

    Pa)

    -3 -2 -1 0 1 2 3

    Space coordinate x (mm)

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Conta

    ct pre

    ssure

    p (

    MP

    a)

    -3 -2 -1 0 1 2 3

    Space coordinate x (mm)

    Stress profiles at increasing applied normal load

  • Local friction law

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    Lo

    ca

    l fr

    ictio

    na

    l str

    ess t

    (M

    Pa)

    1.21.00.80.60.40.20.0

    Local contact pressure p (MPa)

    Non Amontons-Coulomb local friction law

    D.T Nguyen et al EPL (2014)

    • PDMS / self affine rough glass surface

    10-36

    10-35

    10-34

    10-33

    10-32

    10-31

    10-30

    10-29

    10-28

    10-27

    10-26

    10-25

    10-24

    10-23

    10-22

    C(q

    ) (m

    4)

    0.01 0.1 1 10 100

    q (106 m

    -1)

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    Ph

    (1

    /µm

    )

    3210-1-2-3

    Asperity Height (µm)

    Roughness PSDNormal load from 0.05 N to 17 N

    H=0.7

  • -0.8 -0.4 0.0 0.4 0.8

    0.250.00

    MPa

    -0.8 -0.4 0.0 0.4 0.8

    mm

    0.200.100.00

    MPa

    0.8

    0.4

    0.0

    -0.4

    -0.8

    mm

    -0.8 -0.4 0.0 0.4 0.8

    0.200.100.00

    MPa

    Spatial fluctuations in the shear stress at low contact pressures

    P = 0.05 N P = 0.2 N P = 0.5 N

    Stress fluctuations over length scales of the order of a few tens of micrometers

    Local changes in the contact stress distribution induced by details of the topography of the rough lens

  • Gaussian vs non Gaussian surface roughness

    20µm

    20µm

    9

    0.1

    2

    3

    4

    5

    6

    7

    Lo

    ca

    l sh

    ea

    r str

    ess t

    (M

    Pa

    )

    6 7 8 9

    0.12 3 4 5 6 7 8 9

    1

    Local contact pressure p (MPa)

    1

    0.61

    1

    0.67

    Sand blasting

    Sand blasting + etching

    Height distribution

    Local friction law

    • PDMS rubber

  • Additional roughnesses...

    Same roughness power spectrum density

    Different height distributions

    30µm30µm

    Ph(1/µm)

    h (µm)h (µm)

    Ph(1/µm)

    Sol-gel Replica‘Cups’ ‘Bumps’

  • Cusps vs bumbs: local friction law

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    Shear

    str

    ess[M

    Pa]

    0.350.300.250.200.150.100.050.00

    Contact pressure [MPa]

    All the topographical information relevant to friction is not embedded in the PSD

  • t

    p

    Characteristic frequency w ~ v / a

    v

    a

    • Velocity and pressure dependence of the real contact area ?

    • Viscoelastic losses at micro-asperity scale ?

    E*(w)

    Friction of rubbers with rough surfaces: the role of viscoelastic losses

    Multicontact interface

    Single asperity contact

    Log w

    Log

    Mo

    du

    lus

    E’

    E’’

    Viscoelastic modulus

  • Local friction of viscoelastic rubbers with randomly rough surfaces

    1 mm

    Torsional contacts

    Linear sliding

    A. Chateauminois et al Phys Rev E 81 (2010)

    10-36

    10-34

    10-32

    10-30

    10-28

    10-26

    10-24

    10-22

    10-20

    Cs (m

    4)

    0.01 0.1 1 10 100 1000

    q (106 m

    -1)

    6

    810

    5

    2

    4

    6

    810

    6

    2

    4

    Mo

    du

    lus (

    Pa

    )

    10-2

    10-1

    100

    101

    102

    103

    104

    Frequency (Hz)

    Epoxy rubber Tg = - 42°C

    G’

    G”

    Bulk viscoelastic dissipation at contact scale !

    Sand blasted glass surface

    rms roughness µm

  • Torsional contact : displacement & stress field

    0.35

    0.30

    0.25

    0.20

    0.15

    0.10

    0.05

    0.00

    Sh

    ea

    r st

    ress

    t

    (MP

    a)

    2.01.51.00.50.0

    Radial coordinate (mm)

    Indentation depth (µm) 60 100 140

    0.25

    0.20

    0.15

    0.10

    0.05

    0.00

    Azim

    uth

    al d

    ispla

    ce

    me

    nt

    u(

    mm

    )

    2.01.51.00.50.0

    Radial coordinate (mm)

    1.2

    0.8

    0.4

    0.0

    -0.4

    -0.8

    -1.2

    mm

    -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

    mm

    0.20

    0.15

    0.10

    0.05

    0.00

    mm

    Azimuthal displacement u

    Frictional shear stress

    r

    velocity

    pressure

    Inve

    rsio

    n

  • Light transmission through rough multi-contact interfaces

    Light transmitted through the interface more efficientlywhen only one interface is present

    Dieterich et al. Pageoph,143 (1994)

    Static indentation experiments

    Transmitted light intensity I(x,y) Proportion of area in contact A/Ao(x,y)

    Incre

    asin

    gco

    nta

    ct lo

    ad

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Norm

    aliz

    ed

    inte

    nsity

    2.52.01.51.00.50.0

    Radial coordinate r (mm)

    14

    12

    10

    8

    6

    4

    2

    0No

    rma

    lize

    din

    ten

    sity

    / p

    m(M

    Pa

    -1)

    1.21.00.80.60.40.20.0

    Non dimensional radial coordinate r/a

    1 pixel = 5.1 µm

  • Velocity dependence of the shear stress

    Angular velocity Transmitted light intensity

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0N

    orm

    aliz

    ed

    in

    ten

    sity

    2.01.51.00.50.0

    Radial coordinate (mm)

    Angular velocity (deg s-1

    )

    0.01 0.03 0.1 0.3 1

    0.30

    0.25

    0.20

    0.15

    0.10

    0.05

    0.00

    Sh

    ea

    r st

    ress

    t

    (MP

    a)

    2.01.51.00.50.0

    Radial coordinate (mm)

    Angular velocity (deg s-1

    ) 0.01 0.03 0.1 0.3 1

    Dependence of the shear stress on the actual contact area :

    ???

  • 60

    100

    140 Smooth contact

    Real contact area: density of micro-contactsAverage shear stress within micro-asperity contacts

    Interface dissipation predominates over bulk viscoelastic dissipation

    M. Trejo Phys Rev E (2013)

    Pressure and velocity dependence of the frictional shear stress

  • Unsteady state friction:

    Stick-slip motions within patterned glass/PDMS contacts

  • Stiction of patterned glass surfaces : stick-slip motions

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    Late

    ral fo

    rce (

    N)

    3.02.52.01.51.00.50.0

    Displacement (mm)

    v = 50 µm/s

    Sol-gel process, Saint Gobain

    300

    200

    100

    0

    [nm

    ]

    86420[µm]

    1.6 µm

    360 n

    m

    M.-C. Audry EPJE (2012)

    Patterned glass lenses

  • 2

    1

    0

    Frictio

    n fo

    rce

    (N

    )

    403020100

    Time (s)

    Q=3°

    Q=10°

    Q=11.5°

    Q=23.5°

    Friction traces vs ridges orientation

    Q

    Critical angle for the occurrence of stick slip Qc ~ 11°

    v = 20 µm/s

    Stick-slip generated by localized stress fluctuations

  • Friction traces : velocity dependence

    2.8

    2.6

    2.4

    2.2

    2.0

    1.8

    La

    tera

    lfo

    rce (

    N)

    2.8

    2.6

    2.4

    2.2

    2.0

    1.80.50.40.30.20.10.0

    Imposed displacement (mm)

    2.5

    2.0

    1.5

    1.0

    0.5

    v = 1 mm s-1

    v = 2 mm s-1

    v = 5 µm s-1

    0.1

    1

    10

    100

    Stick-s

    lip f

    requ

    en

    cy

    (Hz)

    0.01 0.1 1

    Sliding velocity (mm/s)

    Characteristic length: l= v/F ~ 70 µm

  • Stiction with patterned lenses

    • Surface velocity field

    Crack-like precursors to friction

  • 3.0

    2.0

    1.0

    0.0

    mm

    / s

    (a) (b) (c) (d)

    Late

    ralfo

    rce (

    N)

    Imposed displacement (mm)

    Established stick-slip regime : low velocity regime

    • ‘Slip phase’ - v=5 µm s-1

    A B C D

    80

    60

    40

    20

    0

    654321

    Position (mm)

    Dis

    pla

    ce

    ment (

    x 1

    0-3

    mm

    )

    Crack propagation

    AB

    C

    D

    Slip velocity field

    Displacement profile

    Crack velocity ~ 100 mm s-1

    Sid

    ing d

    irection

    d slip ~ 70 µm d slip

  • • Surface velocity field - v =0.5 mm s-1

    Established stick-slip regime : high velocity regime

  • (a)

    3.0

    2.0

    1.0

    0.0

    mm

    / s

    (b) (c) (d)

    Stick slip regimes : high velocity

    Slip velocity field

    Displacement profile

    A B C D

    80

    60

    40

    20

    0

    Dis

    pla

    ce

    ment (x

    10

    -3m

    m)

    654321Position (mm)

    AB

    C

    D

    Crack velocity ~ 100 mm s-1

    d slip ~ 70 µm

    d slip

  • Stick-slip as a crack-like motion

    vc

    ds

    Mode III

    vc & ds independent on the driving velocity

    • ds ≈ cst → Stick slip frequency linearly related to the driving velocity

    Parameters setting the slip length ?? How do the surfaces re-stick ??

    • Vc ≈ cst → Fracture energy Gc?

    Threshold stress for crack nucleation >> Threshold stress for quasi-static crack propagation

    Reduced velocity dependence of Gc due to the interplay with friction ?

    • Typical propagation time:

    Low velocity :

    High velocity:

    v < vc < VRayleigh

  • Conclusion /Outlook

    with A. Prevost and E. Wandersman, Paris Univ

    M. Chaudhury, Leighigh University

    Ongoing work: friction of model randomly rough surfaces

    Local friction law from displacement field measurements

    Multi-contact interface with rigid randomly rough surface

    Non linear local friction lawRelevance of spectral description of surface topography ?Contribution of viscoelasticity to friction

    Crack-like precursors to friction during stick slip regime

    0.5

    0.4

    0.3

    0.2

    0.1

    0.0

    Loca

    l sh

    ea

    r str

    ess [

    MP

    a]

    1.00.80.60.40.20.0

    Local contact pressure [MPa]

    Elastic coupling between micro-asperity contacts ????

    (c)