32
1 Determination of Mitigation Solutions Barry Mather Ph.D. National Renewable Energy Laboratory Golden, CO 1 Panel: Solar PV on Distribution Circuits Importance of PV Impact Studies Modelbased studies are used to inform the cost of PV interconnection Majority of PV is installed on distribution 1 Outcome of studies (i.e. $$ needed to interconnect) makes or breaks many PV projects Scope of the studies heavily influences the mitigation cost if allowable impact is surpassed 2 PV impact studies are intrinsically intertwined to mitigation studies 1 Palmintier et al., “Emerging Issues and Challenges in Integrating Solar with the Distribution System.” NREL Tech. Report TP-5D00-65331, May, 2016.

Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

1

Determination of Mitigation Solutions

Barry Mather Ph.D.

National Renewable Energy Laboratory

Golden, CO

1

Panel: Solar PV on Distribution Circuits 

Importance of PV Impact Studies

• Model‐based studies are used to inform the cost of PV interconnection

– Majority of PV is installed on distribution1

– Outcome of studies (i.e. $$ needed to interconnect) makes or breaks many PV projects

– Scope of the studies heavily influences the mitigation cost if allowable impact is surpassed

2

PV impact studies are intrinsically intertwined to mitigation studies

1Palmintier et al., “Emerging Issues and Challenges in Integrating Solar with the Distribution System.” NREL Tech. Report TP-5D00-65331, May, 2016.

Page 2: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

2

NREL/SCE Hi‐Pen PV Project

• Impetus – SCE installing 500 MW of distribution‐connected utility scale solar

• Focus – impact and mitigation of 1‐5 MW PV systems

• Goal – easing the interconnection concerns of utilities faced with utility‐scale distribution‐connected PV systems

3

5 MW Fixed-Tilt Ground-Mount System near Porterville, CA

2 MW Warehouse Roof Mounted PV System near Fontana, CA

Using salient points in time…

• When determining PV mitigation measures how can we approach the model‐based PV mitigation analysis to get a reliable output with minimal input?

• 1 year of quasi‐static time‐series analysis

– 30M to 500k static solutions – 60hrs to 1hr

• Can we look at a few salient points in time (or important days) and get 80% of the value?

4

Page 3: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

3

PV Impact/Mit. Study Approach• Impacts assessed:

– Voltage step change

– Controller movement

– Fault/protection

• Additional analysis:– Variability analysis

– Impact mitigation options/settings

• Salient time points:– Maximum load time point

– Minimum load time point

– Maximum PV generation time point

– Maximum ratio of PV generation to load

– Maximum difference between PV generation and load

5

See: B. Mather, et. al “NREL/SCE High-Penetration PV Integration Project: Annual Report FY 13,” NREL Technical Report TP-5D00-61269, 2014.

Voltage Step Change Analysis Approach

• For each salient operating point:

– Model PV at 100% rated, solve

– Lock controlled elements and reduce PV to 0% (100% loss), solve

– Measure voltage step change, unlock controlled elements, solve

– Lock controlled elements and increase PV to 100% rated, solve

– Measure voltage step again (100% return)

6

Page 4: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

4

A Look at Mitigation Techniques/Settings

7

Taking Study Results to the Field

PCC voltage impact mitigation was 3% p.u. – matching expectations

8

Page 5: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

5

Mitigation Studies at Higher Pen

9

Cap Switching 

2.8 Volt

See: D. Cheng et al. “Photovoltaic (PV) Impact Assessment for Very High Penetration Levels,” IEEE Jour.of PV, pp. 295-300, Jan. 2016,

High‐Pen PV Integration HandbookDeveloped under the auspices of the NREL/SCE Hi‐Pen PV Integration Project Specifically for Distribution Engineers

Chapter 4 focuses on mitigation options

Available at:http://www.nrel.gov/docs/fy16osti/63114.pdf

10

Page 6: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

6

Thank you for your attention.

11

Contact:

Barry Mather Ph.D.

National Renewable Energy Laboratory

[email protected]

(303)‐275‐4378

Page 7: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

1

The Impacts of DERs on Long-Term System PlanningBenjamin LeeSouthern California EdisonGrid [email protected]

1

• 50,000 sq. miles

• SCE serves 14 million customers and 5 million meters

• SCE consist of 4 operational zones

• 900 Substations

• 5,000 Transmission/Distribution circuits

• 110,000 Circuit Miles

• 1.6 million Transmission/Distribution poles

• 720,000 Substation/Transmission/Distribution Transformers

• 700,000 Street Lights

Discuss the impacts of DERs on System Planning and Grid Operations and SCE’s plan to leverage technology to address it

Presentation Objective and SCE Introduction

Page 8: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

2

3CONFIDENTIAL – INTERNAL USE ONLY

NEM Portfolio

Battery/Energy Storage Biomass

Solar Thermal Fuel Cell

Hydro PV Solar

Wind Hybrid

94%SOLAR

0

10000

20000

30000

40000

50000

60000

70000

80000

NEM

NEM

# of Projects

# of MW

As of March 2015

~1100 MW

~75,000+ Projects

Page 9: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

3

DER Integration is Significantly Impacting SCE’s Long‐Term System Planning

5

• Impact of DERs on Long-Term System Planning– Interconnection Process– Forecasting – System Analysis– Optimal Grid Solutions

• DERs are driving Integrated Planning and Operations• Overview of SCE’s Grid Modernization Software Roadmap• Summary

Forecast

System Analysis

Optimal Grid 

Solutions

System Planning Objectives 

1. Analyze and incorporate customer initiated load 

and generation Interconnections

2. Perform a consistent and integrated load, DER, 

and generation Forecast

3. Perform a risk‐based, integrated System Analysis across organizations

4. Develop Optimal Grid Solutions (including evaluating utilizing DERs and traditional infrastructure projects)

Grid Solutions

Interconnections

Facilitate

Page 10: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

4

Customer facing tools are required to facilitate the Interconnection Process

7

Grid Interconnection Processing Tool

CONFIDENTIAL – INTERNAL USE ONLY

• Streamlined Interconnection– Software tools are required to facilitate

the interconnection process

• Technical Analysis– Streamlined technical analysis using

power system modeling tools– Integration Capacity Analysis

• Enhanced Customer Experience– Provide information and status to SCE Customers regarding potential and current

interconnection Requests

Inputs•Distribution Circuit Models•Load and Voltage Data•Existing Generation

Integration Capacity Analysis•Iterative nodal analysis of the distribution system to determine the amount of DERs that can be interconnected within the ICA Limitation Categories

Outputs•Integration Capacity for DERs that injectenergy into the grid (Gen IC)

•Integration Capacity for DERs that draw energy from the grid (Load IC)

Thermal LimitsLoading exceeding equipment rating

Power Quality StandardsVoltage outside of SCE Rule 2

Protection LimitsBreaker reach reduction

ICA Limitation Categories

Integration Capacity Analysis (ICA) allows customers to identify low impact areas to interconnect

• The ICA quantifies the amount of DERs that can be interconnected on each node1 across the distribution system within thermal, voltage, and protection system limits

– ICA answers the question, “How much generation can I install on this line section without triggering distribution system upgrades?”

• SCE used the Interconnection Study Process as the foundation of its ICA Methodology development

– ICA can streamline the DER interconnection process by simplifying the ISP, supplemental review, and elimination of some Fast Track limits

1 Node is the transition point between electrical devices, as modeled by SCEmappers. Distribution circuits can have upwards of a thousand nodes

Page 11: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

5

Long‐Term Forecasting Must Incorporate The Impacts of DERs on Load Profiles

‐3

‐2

‐1

0

1

2

3

5

6

7

8

9

10

11

kVA (Gen

)

kVA (Load

 and Net)

Load Profiles

‐3

‐2

‐1

0

1

2

3

5

6

7

8

9

10

11

kVA (Gen

)

kVA (Load

 and Net)

Load ProfilesDelta due to Profile Shift

• Point-based peak forecasting– Used historically– Assumes no significant profile

changes

• Daily profiles are changing due to DERs

– Accounting for profile changes is challenging using point forecasts

• Profile-based forecasting– Required to account for profile

changes

9

System Analysis is Becoming Complex due to DERs

• Line segment and voltage analysis is crucial to evaluate DER impacts

• Two-way system analysis must be performed at a more granular level

• One-way system analysis was performed at a feeder level

10

Page 12: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

6

Long-Term Forecasting Must Incorporate Changing Profiles

• Energy is consumed 24 hours a day

• Solar can only generate during daylight hours

• Solar must be oversized to account for non daylight hours

• May result in significantly higher generation loading during daylight hours

‐30

‐25

‐20

‐15

‐10

‐5

0

5

10

15

 1:00 AM

  2:00 AM

  3:00 AM

  4:00 AM

  5:00 AM

  6:00 AM

  7:00 AM

  8:00 AM

  9:00 AM

 10:00 AM

 11:00 AM

  12:00 N

  1:00 PM

  2:00 PM

  3:00 PM

  4:00 PM

  5:00 PM

  6:00 PM

  7:00 PM

  8:00 PM

  9:00 PM

 10:00 PM

 11:00 PM

 12:00 AM

 1:00 AM

Peak = 10.41kW 

Peak = 21.43kW 

~200 kWh

~200 kWh

DERs Sized to Offset Energy Can Create Overloads

11

• Risk mitigation options are changing to include relying on DER

– Multiple mitigations should be identified for each project

– Mitigations must be evaluated to determine the optimal grid solution

• Mitigation evaluation must include Net Benefits

– Costs must be evaluated – Risk reduction must be determined– Execution risks must be identified– Net-Benefits must be calculated

Grid Solution Portfolios Must be Optimized in order to Fully Leverage DERs

DER Portfolio

$5M

OD: 2015

Risk II

New Feeder

$3M

OD: 2017

Risk I

Alternative Feeder

$4M

OD: 2017

Risk II

Substation Upgrade

$5M

OD: 2018

Risk I

12

Page 13: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

7

Planning

Evaluates future assets

Where they are located, how they are sized, and how they are operated

Operations

Utilizes assets and maintains reliability situational awareness 

Identifies asset location

Planning

• Evaluates capital upgrades

• Limited ability to evaluate DER to solve grid risks

Operations

• Utilizes assets

• Maintains reliability

DERs are driving Planning and Operations to Become More Interdependent

Planning

Operations2016

202X

Changing Reliability Concerns;

Advanced Mitigation Options

13

System Planning

• Grid Analytics Application

• System Modeling Tool• Long‐Term Planning 

Tool

SCE’s Grid Modernization Software RoadMap

14

Grid Operations• Grid and DER Management System

Electrical Connectivity Model

Customer Engagement

• DRP External Portal• Grid Interconnection 

Processing Tool

11

Page 14: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

8

Summary

1. Integration of DERs changes the way SCE plans and operates the electric grid

2. New types of analysis and evaluation are required

3. Long-Term System Planning and Grid Operations are becoming more dependent

15

Questions?

Benjamin LeeSouthern California EdisonGrid Modernization

[email protected]

16

Page 15: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

Jeff SmithManager, Power System Studies

[email protected]

Method for Calculating and Increasing Hosting Capacity for PV on Distribution Systems

IEEE Innovative Smart Grid Technologies (ISGT) Conference,

Minneapolis, MN, September 2016

Page 16: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

2

What is Hosting Capacity and Why is it So Important?

• Definition:

– Hosting Capacity is the amount of DER that can be accommodated without adversely impacting power quality or reliability under current configurations and without requiring infrastructure upgrades.

• Hosting Capacity is

– Location dependent

– Feeder-specific

– Time-varying

• Hosting capacity considers DER interconnection without allowing

– Voltage/flicker violations,

– Protection mis-operation

– Thermal overloads

– Decreased safety/reliability/power quality

Hosting Capacity can be used to inform utility interconnection processes and to support DG developer understanding of

more favorable locations for interconnection

Develop original method

Utility application

Streamlined method

development

Utility application

Vendor implementation

2010 2011 2014 2015 2016/17

Evolution of Hosting Capacity Methodology

Page 17: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

3

Evolution of Hosting Capacity Methods

• Detailed hosting capacity methods first used to quantify

– How much DER can be accommodated

– Where can DER be accommodated

– What distribution impacts occur

• Industry-wide application

– Over 6 million unique DER deployment scenarios evaluated across >30 feeders and > 12 utilities

• Lessons learned

– Location matters

– No two feeders are alike – feeder clustering not sufficient

– Rules-of-thumb aren’t effective (DER as % of load for example)

– Detailed analysis not easily replicableacross large number of feeders

• New methods can be developed basedlearnings to “streamline” the analysis

Utility Participation in EPRI Hosting Capacity EvaluationsMain map: © 2012 Microsoft Corporation. Imagery © Microsoft – available exclusively by DigitalGlobe (Bing Maps Terms of Use: http://go.microsoft.com/?linkid=9710837). Inset map: Map data © 2012 Google

Distribution FeederPV Impact Heat Map

PV

Impa

ct

Feeder Models PV Impacts

Develop original method

Utility application

Streamlined method

development

Utility application

Vendor implementation

2010 2011 2014 2015 2016/17

1.035

1.04

1.045

1.05

1.055

1.06

1.065

1.07

0 0.5 1 1.5 2

Max

imu

m F

ee

de

r V

olt

age

(Vp

u)

Total PV Penetraion of Deployment (MW)

A B C

Wor

st-C

ase

Res

ult f

or E

ach

Uni

que

DE

R D

eplo

ymen

t

Increasing penetration (MW)

Threshold of violation

A – All penetrations in this region are

acceptable, regardless of location

B – Some penetrations in this region are

acceptable, site specific

C – No penetrations in this region are

acceptable, regardless of location

Page 18: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

4

Detailed Implementation of Hosting Capacity Assessments

Method Overview

• Select specific locations for DER

• “Iterate” through each case

• Solve 1000’s of load flows

Run power flow

Criteria violated?

VoltageProtectionPower QualityThermal

Add DER

Hosting Capacity

Y

N

Analysis of High-Penetration Solar PV Impacts for Distribution Planning: Stochastic and Time-Series Methods

for Determining Feeder Hosting Capacity. EPRI, Palo Alto, CA: 2012. 1026640

Findings Results similar to detailed impact studies

– Accurate

– Time-consuming/data intensive

– Applicable to specific scenarios

Difficult to consider range of possible DER scenarios

– All locations (three-phase and single-phase)

– Feeder reconfigurations

– DER types

Not easily replicable across entire system– Typically have to limit the

cases/locations/scenarios considered

– Can take hours to days to simulate a single feeder depending upon feeder complexity

Page 19: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

5

Large “Scale” of Distribution System Creates Challenges for Distribution Planners

• Typical utility responsible for 100’s to

1000’s of distribution feeders

• Each feeder uniquely designed and operated to reliably serve all customers

• Methods needed that can be applied across entire distribution service territory

• Capture unique feeder-specific responsesGranular

• As distribution feeders changeRepeatable

• System-wide assessmentScalable

• Clear and open methods for analysisTransparent

• Validated techniquesProven

• Utilize readily available utility data and toolsAvailable

EPRI’s Streamlined

Hosting Capacity Method

Page 20: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

6

Streamlined Implementation of Hosting Capacity Assessments

Method Overview

• Solve base load flow/short-circuit cases

• Increase DER at each location on feeder

• Apply advanced algorithms to calculate hosting capacity at each location

Baseline Power flow/short-circuit

Select DER location

Increase DER

Apply Power System Criteria

Hosting Capacity

Limit?

Y N Substation

Distributed DER

Substation

Centralized DER

DER Location

DER

Cap

acity

DER

Cap

acity

DER Location

Findings

Close approximation of DER impact

– Less time/data intensive

– Not a replacement for detailed studies

Full range of possible DER scenarios can be considered

– All locations (three-phase and single-phase), feeder configurations, DER technologies and types (centralized vs distributed)

Easily replicable across entire system

– Typically 3-5 minutes per feeder when automated

Integration of Hosting Capacity Analysis into Distribution Planning Tools. EPRI, Palo Alto, CA: 2016. 3002005793

Page 21: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

7

Streamlined Hosting Capacity Method – What is it?

The Input

• Utilizes existing planning tools

– CYME, Milsoft, Synergi

The Method

• Developed from years of detailed hosting capacity analysis

• Validated and open methods

The Output

• Effectively and efficiently analyzes each and every feeder in system

• Considers DER size and location

– Small distributed and large centralized DER

• Considers DER technology and impacts

– PV, wind, storage, etc

– Voltage, thermal, protection

Input Method Output

case by case look needed

Location √no impact

Location XPotential risk

Details on Streamlined Method: EPRI Report 3002003278, 2015

Develop original method

Utility application

Streamlining method

development

Streamlined method

application

Vendor implementation

2010 2011 2014 2015 2016/17

Page 22: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

8

Key Aspects of Hosting Capacity MethodPower System Criteria and DER

Power System Criteria

Thermal

Substation transformer

Primary conductor

Service Transformer

Secondary Conductor

Power Quality/Voltage

Sudden (fast) voltage change

Steady-state voltage

Voltage regulator impact

Load tap changer impact

Protection

Relay reduction of reach

Sympathetic tripping

Element fault current

Reverse power flow

Reliability/Safety

Unintentional islanding

Operational flexibility

Substation

Distributed 1 Distributed N

Substation

Centralized 1 Centralized N

DER Size and LocationDistributed and Centralized

Unique DER Technology

Page 23: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

9

Utility Applications

Utility applications to date

• TVA, Southern Company, Salt River Project, XCEL Energy, SCE, Central Hudson, National Grid, HydroOne, Austin Energy, CFE (Mexico), ESKOM (S. Africa), ESB (Ireland)

Develop original method

Utility application

Streamlined method

development

Utility application

Vendor implementation

2010 2011 2014 2015 2016/17

Informing developers

Assisting with screening

Planning for DER

Identifying cost-effective means for increasing hosting capacity

Defining a Roadmap for Successful Implementation of

a Hosting Capacity Method for New York State, EPRI, Palo Alto, CA: 2016. 3002008848

Page 24: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

10

Substation Marker *Hosting CapacitySample ResultsSystem Hosting Capacity

(~ 300 distribution feeders)

Substation-level Hosting Capacity

Feeder-levelHosting Capacity

*Initial analysis results from TVA/

EPB study, results not finalized

lower

higher

Page 25: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

11

Implementing the HostingCapacity Method into Existing Distribution Planning Tools

• Distribution Resource Integration and Value Estimation (DRIVE) tool

• Rather than develop a new software tool, EPRI has focused efforts on implementation into existing planning tools

• Benefits of using existing planning tools

– Necessary data resides in existing planning tools

– Does not require “translating” data to other software platforms (requiring updating other software databases)

– Can be used as part of toolset within planning tools for multiple purposes

• Screening

• Planning

• Cost-benefit analysis

Incorporating EPRI’s Hosting

Capacity Method into existing utility planning tool

EPRI’s

DRIVE Tool

Existing Planning Tools

(CYME, Milsoft, Synergi, PowerFactory,

etc.)

Develop original method

Utility application

Streamlined method

development

Utility application

Vendor implementation

2010 2011 2014 2015 2016/17

Page 26: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

12

Increasing Hosting Capacity

*A Framework for Determining the Technical and Economic Impacts of PV System

Wide. EPRI, Palo Alto, CA: 2015. 3002005783

Used EPRI’s Streamlined Hosting Capacity method to determine feeder-specific DER impacts across system and mitigation required to increase hosting capacity

• DER considered: Distributed, Customer-based

• Issues considered (voltage, thermal, protection)

Estimated upgrades required to achieve higher hosting capacities (not all feeders required upgrades)

• Penetrations:

– 0.5 MW

– 1.0 MW

– 2.0 MW

• Upgrades Utilized:

– Power factor (inductive)

– Reconductoring

– Voltage class upgrade

– Breaker relay replacement

Page 27: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

13

Feeder Hosting Capacity Results

Each feeder has a unique hosting capacity response- Some are voltage-constrained- Others are thermal constrained

Page 28: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

14

Methods for Increasing Distribution Hosting Capacity• Methods for increasing hosting capacity depend upon

many factors

– Limiting power system criteria

– Distribution system design and operating characteristics

– DER capabilities

• A single solution/technology does not resolve all issues

– Voltage

– Thermal

– Protection

• Solutions can be situation-specific

– E.g., smart inverters and reconductoring can help with voltage issues but not protection

• Solutions for increasing hosting capacity can have other benefits as well

– Reconductoring and voltage uprating can reduce losses and increase load-serving capability

– Comm/control of DER coordinated with existing controls can help regulate voltage

Grid-Side Enhancements/Changes

– Reconductoring

– Voltage uprating

– Transformer replacement

– Additional voltage regulator

– Comm/control (curtailment)

– Additional relaying

– Storage

Operational Changes

– Voltage regulation changes (LTC setpointadjustment, etc.)

– Relay setting modification

Technology Solutions

– Smart inverters (var and/or watt control)

– Distributed var control

– Energy storage

– PV panel orientation

– Demand response

Page 29: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

15

Feeder Mitigation Summary

• Mitigation is applied in this order

– Smart inverter

– Reconductoring

– Voltage class upgrade

– Protection upgrade

• The penetration levels shown at left represent all feeders in the system

• More mitigation is required to attain higher penetration levels

Page 30: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

16

Summary

• Hosting capacity analysis captures necessary impacts of DER

• Hosting capacity can be calculated different ways

• Streamlined methods are appropriate for system-wide analysis

• Hosting capacity can be determined within existing planning tools

• EPRI is currently working with software vendors for incorporation into distribution planning tools (CYME, Synergi, Milsoft, PowerFactory)

Development Implementation Delivery

OPENDSS2014-2015

CYME2016

Synergi, Milsoft, PowerFactory, etc

2016/2017

Page 31: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

17

References

Detailed Hosting Capacity Method

• Impact of High-Penetration PV on Distribution System Performance: Example Cases and Analysis Approach. EPRI, Palo Alto, CA: 2011. 1021982

• Analysis of High-Penetration Solar PV Impacts for Distribution Planning: Stochastic and Time-Series Methods for Determining Feeder Hosting Capacity. EPRI, Palo Alto, CA: 2012. 1026640

• Rylander, M., Smith, J., “Comprehensive Approach for Determining Distribution Network Hosting Capacity for Solar PV”, 2nd International Workshop on Integration of Solar Power Into Power Systems, Lisbon, Portugal, Nov 2012.

• Rylander, M., Smith, J., "Stochastic Approach for Distribution Planning with Distributed Energy Resources", 2012 CIGRE Grid of the Future Symposium, Kansas City, MO, 2012

• Rylander, M., Smith, J., "Comprehensive Approach for Determining Distribution Network Hosting Capacity for Solar PV", 2nd International Workshop on Integration of Solar Power Into Distribution Systems, 12-13 November, 2012

• Distributed Photovoltaic Feeder Analysis: Preliminary Findings from Hosting Capacity Analysis of 18 Distribution Feeders. EPRI, Palo Alto, CA: 2013. 3002001245.

• Alternatives to the 15% Rule: Modeling and Hosting Capacity Analysis of 16 Feeders. EPRI, Palo Alto, CA: 2015. 3002005812.

Streamlined Hosting Capacity Method

• Integration of Hosting Capacity Analysis into Distribution Planning Tools. EPRI, Palo Alto, CA: 2016. 3002005793

• A New Method for Characterizing Distribution System Hosting Capacity for Distributed Energy Resources: A Streamlined Approach for Solar Photovoltaics. EPRI, Palo Alto, CA: 2014. 3002003278.

• Rylander, M., Smith, J., Sunderman, W., “Streamlined Method For Determining Distribution System Hosting Capacity”, 23rd International Conference on Electricity Distribution, CIRED, Lyon, France, 2015

• Rylander, M., Smith, J., Sunderman, W., “Streamlined Method For Determining Distribution System Hosting Capacity”, Rural Electric Power Conference, Asheville, NC, 2015 (accepted for IAS Transactions)

• Distribution Feeder Hosting Capacity: What Matters When Planning for DER?. EPRI, Palo Alto, CA: 2015. 3002004777

• Smith, J., Rylander, M., Rogers, L., Dugan, R., “It’s All in the Plans: Maximizing the Benefits and Minimizing the Impacts of DERs in an Integrated Grid”, Power and Energy Magazine, March/April 2015. White Paper

Integration of Hosting Capacity Analysis into Distribution

Planning Tools. EPRI, Palo Alto, CA: 2016. 3002005793

Page 32: Mitigation - University of Nevada, Las Vegaseebag/slides on pv-distribution.pdf• Impetus –SCE installing 500 MW of distribution‐connected ... – Accounting for profile changes

18

Questions

Contact:

Jeff SmithManager, Power System [email protected]