MIT22 calculos de eficiencia

Embed Size (px)

Citation preview

  • 8/21/2019 MIT22 calculos de eficiencia

    1/24

    Sustainable Energy

    Toolbox8:

    Thermodynamics

    and

    Efficiency

    Calcu

    SustainableEnergy10/7/2010

  • 8/21/2019 MIT22 calculos de eficiencia

    2/24

    First law: conservation of heat plus wor

    Heat (Q) and work (W) are forms ofenergy.

    Energy can neither be created ordestroyed.

    =

    Applies to energy (J, BTU, kW-hr,) or power (W, J/s, hp)

    Work comes in several forms: PdV, electrical, mgh, kinetic,

  • 8/21/2019 MIT22 calculos de eficiencia

    3/24

    Energy,massbalances.

    Control

    Volume

    Conservationofenergy:in

    in

    out

    out

    E=Q+ W+Ek

    nk

    Ek

    nk

    k k

    Chemicalspeciesconservation:

    n = nin

    nout

    + r dV dt

    Image removed due to copyright restrictions. Please see Fig. 4.6

    and M. Modell. Thermodynamics and its Applications. 3rd ed. E

    Hall, 1996.

  • 8/21/2019 MIT22 calculos de eficiencia

    4/24

    Convertingheatandwork

    Intheoryvariousformsofworkcanbeinterconvertedwithhighefficiency(i.e.witmakingalotofheat):

    Kinetic,mgh,electricity Inpracticeitisdifficulttoefficientlyconvertso

    typesofwork:chemical/nuclear/lighttendtom .

    Workcaneasilybeconvertedtoheatwithefficiency:Electricalresistanceheaters,friction,exotherm

    reactions(e.g.combustion,nuclearreactions Impossible toconvertHeattoWorkwith

  • 8/21/2019 MIT22 calculos de eficiencia

    5/24

    probable state

    Entropy(S)andthesecondlawofthermodynamics

    Q

    Entropy:ameasureof d S

    disorderT

    rev

    Entropyoftheuniverseisalways increasing universeS 0 Movestomorestatistically

    pro a es a e Entropyisastatefunction

  • 8/21/2019 MIT22 calculos de eficiencia

    6/24

    Heat-to-work

    conversions

    Image removed due to copyright restrictions. Please see Fig. 14.7 in Tester, Jefferson W., and M. M

    Thermodynamics and its Applications. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

  • 8/21/2019 MIT22 calculos de eficiencia

    7/24

    Heat-to-work

    conversions

    Qin

    Win Wou

  • 8/21/2019 MIT22 calculos de eficiencia

    8/24

    A

    simple

    heat

    engine

    Energybalance:

    Q& Accumulation=InOut+GenerationC

    0(firstla0(steadystate)

    H

    0

    =

    Q&H W& W&W& Entropybalance:

    Accumulation=InOut+GenerationC

    gen0(steadystate)

    Q& Q

    0=

    H &+S

    gen S

    &

    =

    T

    gen

    H

  • 8/21/2019 MIT22 calculos de eficiencia

    9/24

    A

    possible

    heat

    engine

    Energybalance:

    Q& Accumulation=InOut+GenerationC

    0(firstla0(steadystate)

    H

    0

    =

    Q&H Q&C W& W& =W& Entropybalance:

    Accumulation=InOut+GenerationC

    gen

    0(steadystate)

    Q&C & &QH

    QC & Q&

    0= +

    S

    gen S

    &gen

    =

    C

    TH

    TC

    TC

  • 8/21/2019 MIT22 calculos de eficiencia

    10/24

    Maximum efficiency of heat engine

    HQ&

    W&0HC ==

    QQS

    &&&

    H

    workheatQ

    W

    &

    &

    To maximize efficiency:

    Q& =HC TT

    CQ& Algebra:

    H

    CHH

    CH T

    T

    QQQQW =

    =

    &&

    &&&

  • 8/21/2019 MIT22 calculos de eficiencia

    11/24

    Carnot

    efficiency

    W& T

    max C=

    1Carnot

    Q&

    H TH Setsupperlimitonworkproducedfromaproces

    hasahotandcoldreservoir

    powerplant,internalcombustionengine,geothepowerplant,solarthermalpowerplant

    Note:AlltemperaturesmustbeexpressedinKeRankine)!

    TcusuallycannotbebelowenvironmentalT. THlimited by materials (melting, softening, oxidizing

  • 8/21/2019 MIT22 calculos de eficiencia

    12/24

    m n

    FreeEnergyandExergy:Measures

    How

    Much

    Chemical

    Energy

    ispotentially

    available

    to

    do

    work

    Usualmeasureofabilitytodowork:Freeenergy

    G = H TS = U + PV - TS Wehavesomeminimumtemperatureinoursys

    Tcooling,~300K),andaminpressure(e.g.Pmin=

    V

    CallG-TcoolingSPminV theexergy:howmuchenergygoingintoadeviceisavailabletodowo

    Shouldalsoconsiderthelowest-chemical-energ(e.g.H

    2

    OandCO2

    ),notordinarystandardstate(H2,O2,graphite).

    A ton of room temperature air has quite a lot of t

    cooling min

  • 8/21/2019 MIT22 calculos de eficiencia

    13/24

    Rankine

    cycle

    Image removed due to copyright restrictions. Please see Fig. 14.7 in Tester, Jefferson W., and M. M

    Thermodynamics and its Applications. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

  • 8/21/2019 MIT22 calculos de eficiencia

    14/24

    Which of these Six Cases are not Feasib

    Q

    Q

    QFeasible

    Not Feasible. Violates Seco

    Not Feasible. Violates Seco

    HotCold

    WQ

    WQ

    Feasible. Example: electric h

    Feasible. Heat Engine

  • 8/21/2019 MIT22 calculos de eficiencia

    15/24

    Combustion Turbine CT as lants

    Common

    heat-to-work

    engines

    in

    practi

    Rankine cycle:(shownbefore)

    Brayton cycle:combustiongasesaredirexpandedacrossaturbineandexhausteCombustionTurbineCTgasplants

    Combined cycle (CC):BraytoncyclefollbyaRankinecycleontheturbineexhaus

    IGCC:CCappliedtosyngasproducedfromc

    Internal combustion engine:combustiogases powering a piston

  • 8/21/2019 MIT22 calculos de eficiencia

    16/24

    In

    most

    Heat

    Engines,

    Work

    extracted

    a Boilingaliquidunderpressure:bigvolumechan

    lotsofW=PdV

    Turbines,pistonsextractmechanicalworkfrompressurizedgasbyanearlyadiabaticexpansion

    T V

    1=T V

    1 P V

    =

    P V

    hi hi lo lo hi hi lo lo

    nRT

    V

    W

    =

    hi

    highP

    =

    C

    /

    C 1

    1

    VlowP

    p V

    WouldliketoarrangesothatPlo~1atm,Tlo~lo

    feasibletemperature Low T good for Carnot efficiency

  • 8/21/2019 MIT22 calculos de eficiencia

    17/24

    Exhaust tends to be too hot T >> ambient

    Impractical

    to

    arrange

    ideal

    Phi,

    Thi

    Materiallimitsonpressure,temperature

    SteamcyclesconfinedtorelativelylowThi

    InternalCombustionEngines,Turbines

    Exhausttendstobetoohot T >>ambient

    Alotofenergycarriedawayaswasteheatinexhaust(LHV,exergyanalysis).SodespitehtheseareusuallymuchlessefficientthanCa

    NeedtocombineToppingandBottomicycles.

  • 8/21/2019 MIT22 calculos de eficiencia

    18/24

    electricity from high T and use

    ne

    Combined

    heat

    and

    power

    (CHP)

    Heatandpowerareoftenproducedtogethertomaximize

    theuseofotherwisewastedheat.

    Topping cyclesproduce

    electricityfromhighT,andusethewasteheatforotherprocessneeds(e.g.,MITcogenfacility)

    Bottoming cyclesare

    processeswhichusemediumheatTheattogenerateelectricity

    Topping

    Q&H

    elW&

    &QC

    Low-

    temp.

    heatneed

    Bott

    Q

    Hitemhene

    Q

  • 8/21/2019 MIT22 calculos de eficiencia

    19/24

    Heat pumps

    Move heat from cold

    Coefficient of perfo(COP)

    Q& T&

    Practically, COPs ar

    3x as much heat c

    supplied as electri Limited by power g

    efficiency

    Heatpump

    &

    W&

    10C

    ~25CH

    w TW =

    &

  • 8/21/2019 MIT22 calculos de eficiencia

    20/24

    Select the More Efficient Home Heating

    Burn NG with 90% efficiency furnace

    OR

    Use electricity to drive heat pump

    NG Power Plant Combined Cycle with 50% e

    Transmission and distribution losses are 10%

  • 8/21/2019 MIT22 calculos de eficiencia

    21/24

    Air conditioning and refrigeration

    Type of heat pum

    Coefficient ofperformance (C

    CQ&

    HQ&

    &

    ~35C~25C

    ea

    pump

    H

    C

    TT

    WQCOP

    s

    =&

  • 8/21/2019 MIT22 calculos de eficiencia

    22/24

    Canconvertheattochemicalenergyb

    run

    into

    Carnot

    limit

    CH4 + 2 H2O + Q = CO2 + 4 H2

    H >0andS >0rxn rxn NeedtosupplyheatathighT(toshift

    RemovehotH2 fromcatalysttofreezetequilibrium.

    WhenwecoolhotH2 toroomT,emithealowerT(makesadditionalentropy).

  • 8/21/2019 MIT22 calculos de eficiencia

    23/24

    .

    Conclusions

    1. Heatplusworkisconserved(fromtheFirstLaw

    2. Heatcantbeconvertedtoworkwith100%effic(fromtheSecondLaw).

    3. Realprocessessufferfromnon-idealitieswhichgenerallykeepthemfromoperatingclosetothethermodynamiclimits(fromreallife,plustheSe

    .

    4. Chemical,nuclearenergyinprincipleareworkmostpracticaldevicesconvertthemintoheat,theatenginestoextractPdVwork:Carnotlimit

    5. Carefulaccountingforenergy/exergyandtheliwhatispossibleisnecessaryforassessingnew

  • 8/21/2019 MIT22 calculos de eficiencia

    24/24

    MIT OpenCourseWarehttp://ocw.mit.edu

    22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166JIntroduction to Sustainable Energy

    Fall 2010

    For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/