MIT led Course

Embed Size (px)

Citation preview

  • 8/13/2019 MIT led Course

    1/11

    Light Emitting Diodes

    Outline

    - Luminescence Spectra of Atoms

    - LEDs. p-n Junction

    . Light Outcoupling

    - Organic LEDs

    - Quantum Dots in LEDs

    1

  • 8/13/2019 MIT led Course

    2/11

    Characterization of Organic Illumination SystemsApril 1, 1989, Hamburgen et a l .

    Device Under TestThermocouple Probe

    Electrode Separation

    Electrode #1 Electrode #2Penetration Penetration

    DimensionsininchesElectrode Electrode Electrode#1 Electrode#2

    SubjectOrientation Separation Penetration Penetration

    BokChoy parallel 0.5 0.5 0.5MandarinOrange parallel 0.38 0.38 0.38Cornichon axial 0.5 0.5 0.5

    KosherPickle axial 2.5 1.0 1.5DillPickle axial 2.5 1.0 1.5

    Electrode Position:

    2

  • 8/13/2019 MIT led Course

    3/11

    p-n Junctions and LEDs

    High energy electrons (n-type) fall into low energy holes (p-type)

    p-type n-type

    ResistorNot

    Shown

    Power Source

    LED

    3

  • 8/13/2019 MIT led Course

    4/11

    p-n Junctions and LEDs

    Red

    Light Yellow

    Emitted Light

    EmittedSmall Gap

    ENERGY

    Large Gap

    4

  • 8/13/2019 MIT led Course

    5/11

    ANODE CATHODE

    Homojunction p-n Light Emitting Diode

    Forward Bias condition

    Eg

    p-n Diode

    INJECTED ELECTRONS

    p EC

    n EV

    npELECTRICITY IN LIGHT OUT

    +

    INJECTED HOLES

    Zero bias condition

    Eg

    NO CHARGE

    p INJECTED(NO LIGHT OUT)EC

    nEV

    PHOTON EMITTED

    VoltageDiode Current Across Diode

    TemperatureSaturation

    Current in Boltzman

    Reverse Bias Constant

    CURRENT

    Forward

    Current

    VB

    VOLTAGE

    Breakdown

    Voltage

    LeakageCurrent

    Avalanche

    Current

    ReverseVoltage

    5

  • 8/13/2019 MIT led Course

    6/11

    Extraction Efficiency of Planar LEDs

    critical angle of total internal reflection

    Problem: Only small fraction of light can escape from semiconductor.

    Above equation gives < 10% extraction efficiency for typical III-V.

    Trapped

    light ray

    High-index

    semiconductor

    EscapeCone

    6

  • 8/13/2019 MIT led Course

    7/11

    Image in the Public Domai

    ArtificialLightingconsumes8%ofUSenergyand22%ofUSelectricityTheenergycostisestimatedat$50Bannuallyor$200percapita

    7

  • 8/13/2019 MIT led Course

    8/11

    INSTALLED EFFICIENCY FRACTION

    Incandescent 5% 12%

    Fluorescent 20% 62%

    HID lamps 25% 26%

    White LEDs 35% ----

    Note: Electric Motor Efficiency is 85%~90%All Images are in the Public Domain8

  • 8/13/2019 MIT led Course

    9/11

    Survey of Lightbulb Technology Performance(using data from bulbs.com)

    Lum

    inescence

    Efficiency

    [lm/W]

    60 65 70 75 80 85 90 95 100

    Color Rendering Index

    QD VISION

    NEXXUS 110V LED

    COMPACTFLUORESCENT

    HALOGEN

    INCANDESCENT

    CREE

    LR6 LED

    CREE

    LRP38 LED

    OTHER LEDTECHNOLOGIES

    9

  • 8/13/2019 MIT led Course

    10/11

    OLED: The Green Display

    TV and PC Account for 1% each of US Electricity Usage

    Plasma

    Power

    Usage[W/in2]

    0.35 LCD

    RPTV

    0.30

    0.14

    OLED

  • 8/13/2019 MIT led Course

    11/11

    MIT OpenCourseWarehttp://ocw.mit.edu

    6.007 Electromagnetic Energy: From Motors to Lasers

    Spring 2011

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/http://ocw.mit.edu/terms