148
COAL-FIRED OPEN CYCLE MAGNETOHYDRODYNAMIC POWER PLANT EMISSIONS AND ENERGY EFFICIENCIES J. Gruhl MIT Energy Lab Report #MIT-EL 78-018 November 1977

MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

COAL-FIRED OPEN CYCLE MAGNETOHYDRODYNAMIC

POWER PLANT EMISSIONS AND ENERGY EFFICIENCIES

J. Gruhl

MIT Energy Lab Report #MIT-EL 78-018

November 1977

Page 2: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)
Page 3: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

COAL-FIRED OPEN CYCLE MAGNETOHYDRODYNAMIC

POWER PLANT EMISSIONS AND ENERGY EFFICIENCIES

by

J. Gruhl

MIT Energy LaboratoryCambridge, Massachusetts 02139

MIT-EL 78-018

MIT Principal InvestigatorJ. F. Louis

MIT Project ManagerA. E. Sotak

Sponsored under a subcontract toExxon Research and Engineering Company

Linden, New JerseyPrincipal Investigator

H. Shaw

Sponsored byU.S. Environmental Protection Agency

Program OfficerW. C. Cain

Contract #68-02-2146

Page 4: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

NOTICE AND ACKNOWLEDGMENTS

This report was prepared at the MIT Energy Laboratory, Cambridge,MA, as an account of a small portion of the work performed as a

subcontract to an Exxon Research and Engineering Co., Linden, N.J.,program sponsored by the U.S. Environmental Protection Agency, Contract#68-02-2146. Principal Investigator of this project at MIT was Prof. J.Louis; program managers were J.D. Teare and later A. Sotak. Programmanagers at Exxon and EPA were H. Shaw and W.C. Cain.

None of these organizations nor any person acting on behalf of theseorganizations: (a) makes any warranty or representation, express orimplied, with respect to the accuracy, completeness, or usefulness of theinformation contained in this report, or that the use of any information,apparatus, method, or process disclosed in this report may not infringeprivately owned rights; or (b) assumes any liabilities with respect tothe use of, or for damages resulting from the use of, any information,apparatus, method, or process disclosed in this report. Mentions ofproducts or policies do not necessarily imply endorsements of thoseproducts or policies by any of these organizations.

ii

Page 5: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

ABSTRACT

This study is a review of projected emissions and energy

efficiencies of coal-fired open cycle MHD power plants. Ideally one

would like to develop empirically-based probabilistic models of MHD

performance. However, with the lack of empirical information about

full-sized facilities this survey concentrates on modeling analytically

developed data. Also presented are discussions of unresolved MHD issues

of importance, comprehensive lists of recent and ongoing research, and a

bibliography of material related to emissions and efficiencies of

coal-fired open cycle MHD power plants.

iii

Page 6: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE OF CONTENTS

Notice and Acknowledgments. .........................

Abstract . ..............................Table of Contents.................................

1. Introduction ..................................

2. MHD Programs in Progress ........................

3. Plant Design Configurations. ....................

3.1 Operating and Design Parameters ...........

3.2 Mass Balances of Specific Designs.........

3.3 Energy Efficiency Evaluations .............

4. Environmental Assessment ........................

...........

e* eeeeee e Ie

·............

. . . . . . . .· eeeeeeeeee~· eeeeeeeee·l4Illlll·tlll.

4.1 Air Emissions............

4.1.1 Sulfur Oxides.....

4.1.2 Nitrogen Oxides...

4.1.3 Trace Metals......

4.1.4 Particulates......

4.1.5 Other Air Emission!

4.2 Emissions to Water.......

4.3 Solids and Resources.....

4.4 Other Fuel Cycle Effects.

5. Conclusions....................

6. References and Bibliography ....

A. Appendix on MHD Economic-Environmental Simulation........... 127

iv

Page

ii

iv

1

9

25

27

31

55

73

73

73

80

90

98

102

103

105

105

109

112

I

. . . .. .. . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

............................ ·

.............................

.............................

.......................................................................................

............

............

............

Page 7: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

1. Introduction

Recent reports (Pomeroy, et al., 1978) show open cycle (or binary)

coal-fired magnetohydrodynamics, OCMHD, playing an extremely important

role in our nation's energy future. Under certain assumed scenarios,

such as no breeder reactors, open cycle MHD is overwhelmingly preferred

once it is available (about the year 2003). That same study shows the

large size (1932 MW) to be somewhat of a disadvantage that makes earlier

penetration, if available, unlikely. Once available, however, the share

of the market for OCMHD could be as large as 90% (Pomeroy, et al.,

1978). Most forecasts show MHD dominating future coal-fired power plant

markets, especially in scenarios where coal prices escalate rapidly.

Clearly this is an important advanced energy technology, yet there

is currently not enough performance data to precisely assess the

emissions or efficiency capabilities of OCMHD power plants. Appendix A

displays the large uncertainties that exist concerning this information.

The theoretically very high performance potential, meeting emissions

standards with 50 to 60% conversion efficiency, and absence of moving

parts and heat exchanges in the MHD cycle, have been the principal

justifications for continued research and development. With the absence

of full-sized facilities, this study concentrates on analytically derived

data, ongoing research efforts, and problems and potential solutions for

meeting the theoretical performance potential.

MHD is envisioned as a topping cycle to be operated in series with a

steam cycle, see Figure 1-1. Coal is first processed then sent into a

combustor where it is burned at very high temperatures, 2756 K to 3033 K

(45000 F to 50000 F) and at high pressure, 7 to 15 atm. The gaseous

1

Page 8: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

al oC o

E-L *

-raO

II-

_

",I

O

I

2

r-

{NH

C)

.)

C4

C)

0©I)o· r

rO

·ri

--w,

21m

II

rzI

t , E I

i

I

W.C

,,

Page 9: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

combustion products are made electrically conductive, about 10 to 12

mhos/m, by injection of a small fraction, about 1%, of seed material such

as potassium carbonate. The conductive gas is then expanded at high

velocity, about 1000 m/s, through a high magnetic field, about 5 to 8

Tesla, thus producing direct current at electrodes perpendicular to the

flow field and magnetic field. The still hot gases, about 2256 K

(3600 0F), are then sent to a bottoming steam turbine. Before or after

this turbine the gases usually will preheat the coal and/or air. In an

open-cycle system the steam turbine exhaust usually goes to a water

heater and then eventually up the stack. Some of the possible design

variations that have been studied are outlined in Chapter 3.

Even considering nearly identical conditions, about 1617 K

(24500 F) direct air preheat and a 24.1 MN/m2/811K/811K

(35000 psi/10000 F/10000 F) supercritical single reheat steam

bottoming cycle, performance estimates are widely scattered, (see Table

1-1 and several others in this report) sometimes almost a factor of two

variation on certain estimates ($642 versus $1102 investment cost per

kWe). This large uncertainty in projected performance is the first major

issue discussed in each of the following chapters.

The second issue elaborated is that of barriers that must be hurdled

before commercialization of OCMHD. These technological problems are

indirectly related to the issues of this paper. Thus they are only

roughly summarized in Table 1-2, are listed in order of severity in

Chapter 5, and are briefly mentioned in the sections of this report where

they bear upon aspects of performance.

3

Page 10: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 1-1

AVAILABILITY AND COST COMPARISONS OF PROJECTED FULL-SIZEOPEN CYCLE COAL MHD DESIGNS

Capital Cost

(Pomeroy, et al., 1978)

(NASA, 1977-(NASA, 1977)

(Seikel, Harris, 1976)(General Electric, 1975)

(Pepper, Yu, 1975)

(Rosa, et al., 1970)

(Hals, Jaci-on, 1969)

$805/kWe$1103/kWe (Westinghouse)$642/kWe (GE Co.)

$718/kWe$910-$1440/kWe$340-$440/kWe$35-$55/kWe (peaking)$90-$120/kWe

Cost of Electricity

(Levi, 1978)

(Pomeroy, et al., 1978)(Pomeroy, et aT., 1978)

(NASA, 1977-(Seikel, Harris, 1976)(Seikel, Harris, 1976)(Seikel, Harris, 1976)(General Electric, 1975)(NASA, 1975)

(NASA, 1975)(NASA, 1975)

(Hals, Jackson, 1969)

32 mills/kWh34-43 mills/kWh (baseload)130 mills/kWh (peaking)27.1-43.9 mills/kWh42-49 mills/kWh (GE Co.)32-50 mills/kWh (WE Co.)31.8 mills/kWh (GE Co.)41.5-55.5 mills/kWh41-48 mills/kWh (GE Co.)27-35 mills/kWh (Westinghou34-42 mills/kWh (low Btu,Westinghouse)

3.34-4.26 mills/kWh

Construction Time

(Pomeroy, et al.

(Seikel, Harris,

, 1978)1976)

5-6.5 years6.5 years

Date of Commercialization

(Pomeroy, et al., 1978)

(Penny, Bourgeois, Cain,(Seikel, Harris, 1976)(Pepper, Yu, 1975)

1977)200320001996-19991988

4

se)

- -- �--��-�- -1- -111�-------- -�-�- --"I' I-----

Page 11: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 1-2

SUMMARY OF MHD PROBLEM AREAS

Problems Potential Solutions

Particulate Removalsubmicron sizeshigh quality plasma with lowash

. facility testing

Seed Recovery- efficiencies of recovery fromsolids

- suitability for reuse- economic problems and energycosts

- water contamination- ash composition peculiarities- atmospheric releases

Nitrogen Oxide Control-- may not meet standards

Sulfur Oxide- potassium sulfate emissions

Properties of Coal

- some fundamentals are importantbut not known or are widely

varying

- conductivity, ignition, de-volatilization, combustion,gasification, slag vaporization,slag agglomeration

Moisture- in low-grade coals

· seed collection· combustion modeling

· thermal regeneration

· minimize during combustion· reduce oxygen in high-

temperature areas and injectair in low-temperature

regions· post-combustion control· two-stage combustion· use different pressures· use different air/fuel ratios

· facility testing

· kinetic conditions testing

· devolatilization kineticsstudies

· ash vaporization studies

· coal drying

5

Page 12: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 1-2 (continued)

SUMMARY OF MHD PROBLEM AREAS

Durable Materials, especially insulators, electrodes and heat exchangers- extremely high temperatures . develop high grade materials- corrosive exhaust gases . develop predictive techniques

for optimizing conditions andmaterials

- short life of nozzles, valves, . study high temperature andboiler tubes and duct materials corrosion effects

- ash and seed corrosion of . study of thermal cyclingceramic and metal parts and long duty cycle effects

Generator, Duct and Diffuser Life

- effects of combustion productsand slag on walls

- multiplicity of load circuits- axial breakdown limitation

Other Component Problems- demonstrate air preheaters- slag coating of heat exchangers- high temperature heat exchangers- superconducting magnetic system

cost, size, and temperature

problems

Combustors- 5000OF- reasonably free of slag vapor10-20% original ash

- sufficient rate and uniformcoal feed

- good mixing with low pressuredrop

- high slag rejection and topping

Large Facility Sizes- effects of components on eachother

- 2000 MW minimums

- reliability problems associatedwith large blocks of power

- scale-up problems

Turndown and Load Follow

. studies of properties ofcombustion productslong duration tests

· disk generators

. facility testing

· facility testing· more direct measurements

and analytic modeling

· development of smallermodules

· testing of componentinterfaces

· use several smaller modules

6

Page 13: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 1-2 (continued)

SUMMARY OF MHD PROBLEM AREAS

Demonstrate Enthalpy Extractionand Isentropic Efficiency

Absolute and ConvectiveInstabilities

Stable Electrical Loading

Accurate Performance Estimates

- efficiency and coal consumption- capital cost and cost of

electricity- availability- adaptability to base load- likelihood and expected yearof commercialization

. short duration experiments

large facility testing

large facility characteristicsanalytic stability studies

· optimum design specification· facility testing

· forecast of R&D funding levels

7

Page 14: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

It is easy to be optimistic about the future of OCMHD, one just has

to review the system's simplicity, the fallback positions, the time and

funding available, and the progress to date (compared to the competing

technologies, particularly the operating experimental facilities).

However, it is also easy to be pessimistic, there are considerable

technical problems associated with virtually every major power plant

design component. Efficiencies and emissions will be significantly

affected by the trade-offs and design changes resulting from future

solutions for these technical problems, and this is a major reason for

the significant uncertainties in the values reported in the following

chapters.

8

Page 15: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

2. MHD Programs in Progress

Research and development programs in MHD cycles have progressed

erratically for more than a century (Levi, 1978), initially being linked

to the work of Michael Faraday in 1831. Translation of the MHD concept

into commercial application has been motivated recently by the need for

efficient, clean methods of converting coal energy into electricity.

Modern efforts began at Westinghouse starting in 1938 and were continued

into the 1950's at Cornell University. Feasibility experiments were

conducted in the 1960's first at Westinghouse, GE, and Avco and later at

University of Tennessee and Stanford University.

Internationally, the Soviet Union has advanced, first in

closed-cycle, later in open-cycle, facilities fueled by natural gas. The

Japanese have been concentrating on use of heavy oils as fuels, primarily

to reduce amounts of petroleum to be imported. In addition to the U.S.

and U.S.S.R., Poland and India because of their significant fossil fuel

resources have continued to conduct MHD research. The United Kingdom,

France, and West Germany have essentially stopped their MHD programs

although they have joined an international cooperative with the other

principal research countries and some countries with relatively new

interests: Australia, Austria, Belgium, Canada, Czechoslavakia, Hungary,

Italy, Netherlands, Rumania, Sweden and Switzerland.

A summary of the more recent history of MHD development is shown in

Figure 2-1. Excellent further historical discussions are contained in

(Kantrowitz, 1977), (Way, 1971), and (Tager, Henry, 1976).

It would take a considerable effort to describe all the current and

future plans for MHD in the U.S. Instead Table 2-1 lists the

9

Page 16: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

'JJ4 96-MOO -- N3D HHIWHD-_-4

I L- .3D - 3HI

L4 OOOL - - 00l-31V 3H3ud ulv 3

I a3ldllU3A 1ONO 3 ZOS O

. Q313 :lU3A OtlNOO XON

u!w L - MI OO0'8'L - N39 HW

VlS3J1 t- .L3NVW )S 3ZI118VIS Ani I--

u!w L - MI 000'Z£ - N3D HW

aI l31U:3A a33S JO NOI.LVIdl33Ud 31lV.lSOL.3313sq OZ - IO.LSt WO VO3 CO HHW

0ro

I mOL-M OO9L -N 3

o01.vUt3finjss

I CM C

I0N

I. °

..... I

I

I

4

I1

I

* . q~~~'t

N30 HWI3OOfnS SL) - M OL

I.-M~I0L

O

CD U)

4:0

0)

U

Oa:

o o

O

O

-o 0

0 -CDC4

HO

O ¢

{9 ';~ ,

co#)

0.

r-iI

0)

4

34(SUrV--o -oA SNOI- 1II)

SaNn .- LN3IdO3A3Q tVnNNt

10

.1 srq Z - M) - N3D HIW

I.-z Z

cc? TU. , jwZ I.

liZ I0 I0

.',;

I I I I

. ~ ~ ~ ~ ~ I .I

.

.- . . . .

. B

q

.

i

I

Page 17: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 2-1

RECENT AND ONGOING MHD RESEARCH

Argonne National Lab

Arnold Engineering DevelopmentCenter

Avco-Everett Research Lab

Battelle Pacific Northwest Lab

Bechtel

British Coal Utilization Reseai

Association

Brookhaven National Labs

Burns and Roe

California Institute ofTechnology

Central Electricity GeneratingBoard, Great Britian

Eindhoven, Holland

Electrotechnical Lab of Japan

- generator phenomena- combustion studies and modeling- project planning and definition- systems studies- magnets

- component and materials experiments- high enthalpy extraction- magnet testing and building- test facility

- component and materials experiments- seed recovery- generator design- economic and environmentalassessments

- auxiliary component development- peaking plants- pollution control by gas cleaning- NOx control experiments

- electrode development

- design evaluation- labor and materials studies- cooling water evaluations

rch

- combustion modeling

- comparative assessments

- design

- performance studies

- slag buildup on heat exchangers

- closed-cycle facility

- oil-fired MHD -Mark V, VI

11

__I s --

Page 18: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 2-1 (continued)

RECENT AND ONGOING MHD RESEARCH

EPRI

Exxon Research & Engineering Co.

Flinders University of SouthAustralia

Fluidyne Corporation

Foster-Wheeler

Gilbert Associates Inc.

General Electric Co.

Hercules Powder Corp

Hittman Associates Inc.

Institute of Gas Technology

International Atomic EnergyAgency, Vienna

Krzhizhnavosky Power Institute

Laboratory of Direct Conversionof Italy

Arthur D. Little, Inc.

Lockheed-Huntsville Research& Engineering

Max Planck Institute of PlasmaPhysics of Germany

Maxwell Labs

- market penetration- R&D funding

- evaluation of designs

- comparative assessments

- air preheaters- facility design and evaluation

- design evaluation- evaluation of auxiliaries

- design studies

- MHD market penetration- design and evaluation offacilities

- preheater development

- support studies

- comparative assessments

- comparative assessments

- MHD commercialization potential

- prototype MHD plant

- closed-cycle facility

- comparative assessment

- environmental assessments

- combustion modeling- closed-cycle facility

- support studies

12

Page 19: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 2-1 (continued)

RECENT AND ONGOING MHD RESEARCH

MEPPSCO

Mississippi State University

M.I.T.

Montana Energy and MHD R&DInstitute

Montana State University

National Bureau of Standards

National Science Foundation

North Carolina StateUniversity

Nuclear Energy Agency (OECD)

Oak Ridge National Labs

Parsons

Rand Corporation

Reynolds Metals

Rockwell International

Stanford Research Institute

- generator design~~~~~~

- generator design- magnet design

- corrosion studies

- magnet design- emission modeling and control- combustion modeling- modular design tool- generator performance- disc generator experiments- materials problems- seed recovery experiments

- research facilities

- air preheaters

- materials problems- electrodes- slag characteristics

- basic research funding- comparative study funding

- electrode materials

- international cooperation

- comparative assessment

- design studies

- closed-cycle examination- overview studies

- gaseous electrode development

- design studies- space applications

- comparative assessments

13

Page 20: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 2-1 (continued)

RECENT AND ONGOING MHD RESEARCH

Stanford University

STD Research Corporation

Systems Research Labs

Teknekron,Inc.

Tokyo Institute of Technology

TRW Energy Systems

University

University

University

University

of Illinois at Chicago

of Mississippi

of Montana

of Pittsburgh

- test facility- generator phenomena- magnet design and effects- NOx modeling and control- cooling requirements

- design and systems studies- coal drying- retrofit to older plants

- support studies

- comparative assessments

- NOx modeling

- evaluation of designs- prototype combustors

- combustion modeling

- performance studies

- support studies

- seed regeneration- slag effects- downstream components

University of Tennessee

University of Tokyo

U.S. Bureau of Mines, Morgantown

U.S. DOE

U.S. DOE Pittsburgh EnergyResearch Center

- seed recovery- experimental facility

- systems studies

- seed regeneration- seeded coal combustion properties

- R&D funding- experimental programs- commercial demonstration

- seeding and seed recovery andregeneration

- environmental emissions- combustion experiments- coal drying

14

! __ _

Page 21: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 2-1 (continued)

RECENT AND ONGOING MHD RESEARCH

U.S. EPA

U.S. NASA

U.S. Senate, Office of TechnologyAssessment

U.S.S.R.

USSR Atomic Energy Institute

USSR Institute for HighTempertures

Westinghouse Research Labs

Whittaker Corporation

Wright-Patterson AFB

- environmental assessments

- comparative study funding- design and evaluation

- overview of government role in MHD

- comparison with other energy cycles

- sponsoring MHD research anddevelopment

- systems studies

- MHD research- facilities

- design and evaluation offacilities

- systems studies- experimental facility

- unconventional designs- systems studies

- systems studies

15

Page 22: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

organizations involved and the general research and development areas to

which they are contributing. In addition to EPRI sponsorship, a recent

tally of government funding of MHD studies (Penny, Bourgeois, Cain, 1977)

showed DOE with 81%, DOD 13%, and NSF 6%, of the $8.15 million being

spent on 37 projects. Current facilities are listed in Table 2-2 and

some of the future U.S. facilities are listed in Table 2-3. The

approximate timing of these future facilities is shown in the ECAS study

in Figure 2-2 and in an accelerated forecasted from DOE and EPRI in

Figure 2-3. Two ideas about the logical process of the research and

development necessary to support this facility timetable are shown in

Figures 2-4 and 2-5.

16

Page 23: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

0,4

C) u.0t

InI4-

14 d w

('bd

$4

. 7

W!* 1%9-.4 H-

0 , t .4 4 ) 4 U) 4

r to v) 94

U) 0. 14 0. (4.$4 0's .0 1 ;4 -4 - Nv

.9-4

r('

0

0 3$o

0)

u U

C14.UQ

00V Q

Cl 0 C0

4Io,4

oo0 0,

u

0o 4>A1

.-4 4,t twl

o o o 0 0o 0) - C 0

I,-4

C4cn

._4

X X~ X Xn001 l 00 cW,. 4 cJ-IT .

o oC)14,4 0I 1 94('4 .'l (, 4.4

O Z Io' O 0 01-4

,-4

14 oV444j0 1 cl c

94 Alo ,4 ,-4* O -O O

0 .O

0 I

tn o:o -:r-t(s I94 ,O 94O Ioo I

,.4

ix: In,-vx a vaz'n X vz X:; 4

c1 I,4

,4 4

Co '= v ra0 o4 "O '(

Uc

i, .,.

'94 P..

to

A

0a

CN

0Ur0"

I IC

,4,-I

trl o

a o- O

(4 0

0 E9- :01-4

N

o u0.O14

,4 : $4 .0

li u

-4

0 0

0 O

r,0 -0

94 0 00Vn 0

O;

0 C4

00

o0 o0 o('4 '.4

o, 0

U)n d

17

914 U ('4I LA X 4

..

I U4O ('4 o

0 1

0 0X c'('I 0(101-44 r4

O .4-CIO

Ul

00

0I ,

c;

.4I Cl

0

0 a

A Z OCl -4 -4

14

_ 00 a

v) . I . q on = cN on: ?- A F

omi.5-4

I IS ,4 14

I

I

01.%coN

N

I

I

a)coa?0

w

U)

) 1-

UoW F

..4,o 4O93004-

*o4 ^F4

C) $4 '-10N'.4o

o >

F-4K0

>4

P. ,0

C ."-4

H .P:X

D _10

. 5

H4-3

4

tJ04

0

0ol

) 0co4)Ce

k

E-4

ck44(-r J4)l

0<,4000

o000

0

C)

DN

I ~4

U 4a"4 0F4A

I

I

Page 24: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

( H

0

0-1-

0 Fo7H

I Q 0 0u

HO O:

o~~~F o *S

4,~~P HEOy]O Z g : X

a)0;e3Li N

+) ~ ~ ~~~ H X e0N

Z >s doo

W ~~~~~~~~~~.(" 1

H -'U p i O S O

a~~~ O

W P ,I-sl e

F-I:z O X

I-o

0~ '-I

H

OH

4.F4H4 F4aW,) Q

0 hi

0

00 .--

U v

om

'A(n (

luQ L00'a ..Ol C) O

°c ·- a~ _ 3 a00 ,C- -1 o n

0 (A 0n 1cj 'A~

2

0

NU-i

rl

0 0.0 -T

u HH xp.

4'4

OH4 0

r(0

0o

EO

I 11 L LL J

Cl

I0CU

cl

IU

H

0-4,"J0H

0 '-

.0

o0D

U)

C'

0En0Vl-4U)-11:mp'nu

U-i

O0

00a

Cl

U.'

('

Oq t'*q

0400a0 000

r ..-)

o I0) J0

XO t~

Oa

0.14 0H

0

r"

U-

Li.) 0(-4

0-4

0co

0

O H

\00q CO* 11

o'J r,

w ,

.nol -4

.U'

4

>k. " H ,.

CO 0 C'4> rE-C'J

U.

O 0 0O 0 0a, Cl H H

I 0 I(.

'4

10

xcl

-4

s zcN

c;

ci:30

0

')

Ln vn O

;0 ' C

( NH4

000..

C .z0 w'

- 00~ E

H

1-4a. ('. ,

.- I ;3

Z v< LQ- -. 0nA itU 7-.- ) a'

18

0H

0 L

"I > >: agt

CD

'0

I-

H'a-'

m 9H

0Cl

co

; II D0 r

I

N cl e- ('4e

.

D C C

00

0I I

ua

0

IN ,,o

Jl C co

cn cn o{

M

044r 4c ctn

U) U) >~.4 ) '-

soH _

o00

V)a

a< ,) 00LI ) L i ) .

-a:'..-

0

0wr

0

U

a

00'.et

m

0 .0 (14

U H

I

Page 25: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

*0 e-40 C "

Q1 ~ 0 N 0 N 0P 9-405C 3L~~r! cO.Nu

cn

o 0 00H 0

H U

U U 4:> in

a'

0;

00%OC14

00Hx

o

oC. Xr, ,

.J 3

U k )1 bO

0 O H0 U Hd 0)

tn

H

H4

0

O)

onI'

0O

co

N Nw W bli 0! ~

. 14 --

) CL

4

e -7

v I

o 0 0 0o o O 0N 0 N N

C.. (9 NO

I I

X

VO

04

I

o o c)0400 0-a 0 : >

V4-4 ,

-7TCO000

;

0

co0

900

*n-.Ir I-0r

0;

c

o,UCo

I

V):,

'0

0' O XX. x -4

x x xCo OD t

'-40o 0 N 4

c4

0.4

0 0 H o o '"44

0.,

0 I I

-7'

C-)xcnHN

0z

'.4

e) Hla 4

1a

o00

0 00 0o; o:

-7-7

0 -o c

* 0

4)

OD 0O

0co H

HI-.

HF-4cn

HH1-4

:):D -

19

U U

I: G4 oC .e0 0

OC

:: cJ : : I

n

oI-r T

0J'4

o C

14 4 CP

0r:0

W 0 o

94NHH00

o

-p

Pp4

.,-uS

I0 V

;n MP °I

r-4

Eq

U

i-f11-04

ct

. C ..,

14 -0 0 ;!to P

(Of) COC°cm :t Iw tx

0

0

Hr"

0o

Ia

r-4

O

I

Cd)0 I"

-c'' VIi. < tzK la

P: D P4

I

t

Page 26: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

4F

E4J

ora~~~ 4

0

O 0

4 o0o

· H 4 ,:o

d oC)C

0r) <0 0Noc oP C$6-

a'\

Ua ~wHk pcn P

Q, E~~~~~~~~.

c O

0 E-4N

0 0o a

u - N N

0 .0O 0r-4* vI

H ,N o

CO O 0

u'o 4cu

~' ' H HH04 C3 ^ 9,~ E 'ai C|2<R

20

iCa -1 ; %-Oxi ;;I 1-f m~ F. -.

Page 27: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

C)

0

0

r-4

0a,

CO

I,)OD

4,

'D-

2 r..

21

Page 28: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Figure 2-3 Major MRD Program Phases (Jackson,et al., 1976)

22

YEARS

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

I . i . ... . ._..... ... __PH SEI

OIMtL)NSTRAI. tN(RG AND F'FRFORMANCE OF MAJOR r,(IMP¢)NE N I i S |

INITIATlT SUBJSYSTEM TEETING AND INTEGRATIONITrT CDIfI

tINITlATE BASE PLANT CONCEPTUAL DESIGN

t( OMiLE 11 PRELIMINARY DESIGN OF ETF

- . r ! , i ..r i. ... i... .PHASE II

*DISIGN AND C( NIRUCT THE ETF· DMONSTRATE I SYSTEM PERFORMANCE*OPTIMIZE COM OINENIS AND SUBSYSTEM· COMPLETE PRELIIIiNARY DESIGN OF COMMERCIAL SCALE PLANT. ~, . ... .'17 r- T ... -._'N._ =-; -T -- ';

PHASE III

· DESIGN CE)NSTRUCT AND OPERATEFULL SCATE PLANT TO DEMONSTRATECOMMfRCIAL FfASIBILITY

Page 29: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

zM0'.

co

C:

0

EI

at

--Co

.00=l

CL7CI

a:

ooc'0'C -

a, Eo 0

E >0 W0.) CU)

0 E_ _l

,

CL

-U

0I2.M

4)

0

C3

0d

04)0

CaH

OPd'

O

H

a AOr

*r4

23

Page 30: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

CL

C

C

O

0,

0o

cC,a:

.

a-C,

M

a-CL

T3r,

- Ew aC-0 W

0 3

,

0

C

OH

r4

COd

P*r

4 0O

OH

I.ar

0'H

24

..5

ui6-

-N

-2l00

Page 31: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

3. Plant Design Configurations

In addition to choices between open-cycle and closed-cycle there are

a tremendous number of possible MHD design variations. In Phase I of the

ECAS study the open-cycle variations included:

(1) coal, solvent refined coal, or coal gasifier products as fuels;

(2) air or oxygen-enriched air as oxidant;

(3) direct air preheat using MHD exhaust, or indirect (separate)

preheating using coal volatiles or a coal gasifier product, or

combinations of direct and indirect preheats; and

(4) steam bottoming cycles or gas-turbine bottoming cycles.

An excellent display of the MHD configuration options is shown in Figure

3-1 from (Jackson, et al., 1976). This diagram shows that for coal-fired

OCMHD the principal distinguishing feature is the high-temperature

preheat or regeneration procedure. The regeneration procedures could

involve anything from using the MHD exhaust heat to produce a clean fuel

for indirect air preheaters, to using direct air preheaters with the MHD

exhaust heat utilized to generate heated, clean fuel for the MHD

combustor. The simplicity of the MHD process and the relatively early

stage of its development are the reasons for the tremendous variety of

designs.

Receiving the most attention lately (due to low expected cost of

electricity) is the OCMHD design suggested in Phase II of the ECAS study

(General Electric, 1976), called NASA Case 1. This configuration uses

direct air preheating at 1316 K to 1371 K (24000 F to 2500 0F), direct

coal-fired combustor, and a 24.1 MN/m2/811 K/811 K (3500

25

Page 32: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

o

oE-C-I

0

00

04)

O

(n

H

I0A

43hD

26

I� _ _

Iil-1o - t

Iff JI I .- 4 fl

I :·r 7 z- I . -

Page 33: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

psi/10000 F/10000 F) steam bottoming cycle. In this system the coal

processor feeds dried crushed coal to a single-stage cyclone combustor.

The preheated air is mixed with the coal at a 95% stiochiometric air fuel

ratio and is fired to 2700 K (44000F). The cyclone combustor is

assumed to remove 80% of he coal ash. Potassium carbonate is the

seeding material. The MHD generator conditions (Beecher, et al., 1976)

include a .62MPa (6 atm) pressure, .75 Mach flow rate, and 6 T magnetic

field (in the equivalent Westinghouse ECAS Base Case). The MHD exhaust

is at 1650 K (25110 F) and passes to the steam generator. Seed-ash is

collected on the superheater surface and in the stack gas cleanup

system. The seed is recycled through a Claus plant that converts part of

the potassium sulfate to potassium carbonate before reuse. These are the

most important features of the frontrunning configuration, additional

important parameters are listed in Section 3.1.

3.1 Operating and Design Parameters

Even given the exact design configuration there is still a

significant variation in system performance that is due to variations in

operating and design parameters. For example, the air preheat

temperature can play a major role in system efficiency and cost, and

values of 1089 K, 1366 K, 1589 K, 1644 K, 1922 K, and 2200 K (1500 0 F.

20000 F, 24000F, 25000F, 30000F, and 35000°F) have been

explicitly investigated. This section begins with a listing of the

important operating and design parameters, Table 3.1-1. This list is

separated into the parameters related to the various system components,

and is further segregated into the independent parameters and the

27

Page 34: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 3.1-1

MAJOR PARAMETERS DETERMINING OCMHD PERFORMANCE

MHD GeneratorIndependent Parameters- generator type and channel connection; linear Faraday, Hall,

diagonal wall, and cylindrical configurations- generator size and geometry- materials- temperatures and pressures- working fluid- magnetic flux density

- seed type and feed rate

- flow rate

Dependent Parameters- enthalpy extraction ratio- plasma flow rate- electrical conductivity of fluid- electron affinities of OH, C02 and A102- electron-atom collision cross sections- emissions- power output- Hall parameter nonuniformities- pressure drop- electrical loading parameter- heat leak fraction- enthalpy

Fuel and Combustor

Independent Parameters- combustor type, desiTgn and stages- combustor pressure and temperature-time history

- coal feed rate and configuration- coal type and size, or solvent refined or gasified coal

characteristics- oxidizer type and eed rate

- air feed rate and temperature- coal properties; ash, volatiles, moisture and so on

- drying of coal

Dependent Parameters- air/fuel ratio- percent slag rejection- percent ash in flue gas

- coal moisture- enthalpy- pressure drop- radioactive heat loss- overall efficiency of combustor- combustor residence time- carbon burnout- uniformity of product distribution

28

Page 35: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 3.1-1 (continued)

MAJOR PARAMETERS DETERMINING OCMHD PERFORMANCE

Nozzle, Diffuser, Inverters, Electrodes, Insulators, CompressorIndependent Parameters- size and geometry f channel, etc.- materials- nozzle area, contour- pressure and temperatures

Dependent Parameters- lifetimes- pressure and temperature drops- thermal losses- electrical losses- diffuser exit temperature- diffuser recovery factor- duct wall temperature- heat transfer coefficients- nozzle heat loss

- channel loft

- efficiencies- enthalpy- flow rates

MagnetsIndependent Parameters

- magnet size and strength- support- magnet shape and orientation

Dependent Parameters- bending stress- magnetic flux density

Air PreheaterIndependent Parameters- design and type- temperatures at stages- pressure

Dependent Parameters

29

- lifetime- air preheater losses- enthalpy- pressure drop

Page 36: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

'FTABLE 3.1-1 (continued)

MAJOR PARAMETERS DETERMINING OCMHD PERFORMANCE

Seed and Slag RecoveryIndependent Parameters- combustor designs- reactor, absorption tower, heat exchanger types and sizes- coal propertes

Dependent Parameters- recovery percent- seed form- cost and energy losses

Seed RegeneratorIndependent Parameters- reducing process- design and type

Dependent Parameters- efficiency and cost- seed form

Steam CycleIndependent Parameters- type and design- pressures and temperatures

- heat rejection type

Dependent Parameters- boiler lifetimes- heat rejection- heat transfer coefficients- power turbine heat rate- compressor turbine heat rate- power output

30

Page 37: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

dependent parameters, that is those values that can only be controlled

through changes in independent parameters. It should be noted that

dependent parameters for some components are independent choices for

others.

The values for many of the parameters that are expected to be

selected for the first commercial design are shown in Table 3.1-2. The

Base Case ECAS OCMHD cycle parameters for (Phase I General Electric) are

shown in Table 3.1-3. A comparison of major features of the Base Case

with the solvent refined coal case is shown in Table 3.1-4; a comparison

of magnet designs in Table 3.1-5 and 3.1-6; and a comparison of

preheaters in Tables 3.1-7 and 3.1-8.

Phase I ECAS Base Cases for General Electric and Westinghouse are

compared to the General Electric Phase III Base Case in Table 3.1-9.

Additional Phase II OCMHD Base Case parameters are shown in Table 3.1-10

and performances in 3.1-11. Finally some interesting miscellaneous

performance factors are collected in Table 3.1-12.

3.2 Mass Balances of Specific Designs

First it should be reiterated that no large coal-fired OCMHD's are

operational. Mass balance computations to date have therefore been

calculated analytically not empirically. Computer programs for these

computations exist at Westinghouse, General Electric, and elsewhere, and

are also being developed at MIT. Thus there is no reason to duplicate

these efforts for this study, instead some already published mass

balances of important specific OCMHD designs are presented here.

31

Page 38: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.1-2 Input Parameters Projected for First CommercialSized Facility (Jackson, t al., 1976)

POWER INPUT - GROSS

COMBUSTIONCoal ICombustor I

Seed rate I

PREHEATERTypeOxidizer temp. (K)

MHD GENERATORType

Load factorMagnet

Flow

DIFFUSERExit pressure (psia)Recovery factor

2000 MWth

Montana, Rosebud SeamDirect, 2-stage, 90%

slag -rejectionK - 1% of total

combustion products

Direct fired, regenerativei644

Diagonal connected,i5 meter nominal

0.7 (variable)Maximum field 6 tesla,

superconductingHigh subsonic

16.250.8

STEAM BOTTOMING CYCLESteam conditions 3500 psia (1000l°F/OO000F)Heat rejection wet cooling tower

ENVIRONMENTAL EFFECTSSOz < 1.2 lb/106 BtuNOx < 0.7 lb/106 BtuParticulates < 0.1 lb/106 Btu

32

Page 39: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.1-3 Major System Parameters for Open Cycle MHDGeneral Electric Base Case (Harris, Shah, 1976)

PARAMETER

FUEL COAL

TYPE

SIZE, PULVERIZEDMOISTURE CONTENT, DRIEDOXIDIZER

FURNACE, GASIFIER OR FUEL PROCESSING

VALUE OR DESCRIPTION

ILL #6, 10788 Btu/LB HHV70% THROUGH 200 MESH

2%AIR

COMBUSTOR TYPECOMBUSTION PRESSURE (ATM)COMBUSTION TEMPERATURE (OF)AIR PREHEAT TEMPERATUREF/A RATIO RELATIVE TO

STOICHIOMETRIC F/ASLAG REJECTION

TYPEWORKING FLUIDAVERAGE MAGNETIC FLUX

DENSITY (TESLA)COMPRESSOR PRESSURE RATIODIFFUSER OUTLET PRESSURE (ATM)ELECTRIC LOAD PARAMETERPOTASSIUM SEEDING

ANGER(S)HIGH TEMPERATURE AIR HEATER

TYPE REFR,GAS AP/PAIRAP/P

RADIANT FURNACEGAS AP/PWATER AP (PSI)

SECONDARY FURNACEGAS A P/PSTEAM AP (PSI)AIR AP (PSI)

ECONOMIZERS

STEAM BOTTOMING CYCLE

GAS AP/PWATER AP (PSI)

TYPEHEAT RATE FOR POWER TURBINE

(BTU/kW-HR)HEAT RATE FOR COMPRESSOR

TURBINE (BTU/kW-HR)CONDENSING PRESSURE (IN. Hg)

HEAT REJECTION

WET MECHANICAL DRAFTCOOLING TOWERS

STACK GAS TEMPERATURE33

DIAGONALCOMBUSTION GASES

510.751.140.801%

ACTORY CERAMIC STORAGE0.070.02

0.01570

0.0385421

0.0221

?S.3500/1000F/1000F

8160 (r = 42)

8270 (r - 41 )

2.3 (1060 F)

25 CELLS251°F

PRIME CYCLE MHD

SPECIAL9

46342500

1.0785%

HEAT EXCH,

Page 40: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Io 8 8 81 a % r R 8 8S %

· - - - - - - - - 0C g

-·i 8 8 8 r r % a 9 P °o%_I., . j -_

SL

III It

.E.2~-u 2

aEt

.V?I

, I

2,

: . t- -I E

0~.I_ CM3

E-

snI

- Irw 8hhZ CI . .I,,, Z ; ''6-E=1.. -12 :

LQP ·5P 4; LhOr Wr

v\ *r%Odhi*dC\(olPm LI"'�a�

PS 4�j� 5:

tL SJ,f"ch9 _3

Z LCEe'5 L a

4,- e4C�ur� 8C-i a'Ec"

; %�g E.se�f&��rcE"

:kero-ee 8g,�.P���norm

Iio

I

o

e

-TE I

8 :

-3: s I 9 ; d 'L (V e -! :i d ;·

,.,It 1

o o sl9 0 R t- s-

:EI

_

: _ ;i8 it a

,. _ ., | Z = Z _

z Z Ei

C Z i & t 5; ZIsef

Ii-

c

'IaE.

rE

Z

E__ Z.15R

_2 <

Z f EI~f t:~. I1.I.@-;~ E 'E -

I e , J.3-i _F ,

z,

?_-

9Ua

U

0l)o0

gI E i o 0

v

I '9Ac . oEl I

.1 . j ,3

2

:E

dd ~wi~oo 2 9 -

a

cl0

o0

4

0

H *4 _Cf-09

C

I

.EE

:: 1

E _,

- S

aVEEZE - e f'E Z ' , F

V -CE .2 g

2

| B rss|4

Z E

E

!ac :

m ,o

I

F9I90Q

r4

1

0E4

1

'Uv

Z;Z

gz710

t

"-Ea: &

-i I

o, E

If--

34

- R w R . -.-j .6 : ;-4 ,

t1

>io.

ZE

2

Ti.1

o

ICICI

� C a ;-" B 5� �5a

cSi

o �P�ggi,,9 r

�fla�?R�P:a3%$P��

w

w

"I9

!3x

V.

Z a - &z,

Page 41: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.1-5 Magnet Design Data for Base Case MHD GeneratorCase 1 - 2000MWE Plant Size(General Electric, 1976)

Channel Specifications

Inlet

Exit

Active Length

Field: Inlet

Bo max.

ExitVB2 = 25

0

1.4297 m x 1.4297 m

3.653 m x 3.653 m

25m

2.496 T

5.992 T

3.12 T

11 11,600 m3T2

Magnet Design Data

Warm bore (circular) Inlet

Exit

Active length

Ampere turns

Ampere meters

Stored energy

Current density, winding, average

Dewar O.D.

Inlet end

Exit end

Dewar length, overall

Conductor weight

Main structure weight

(design stress 25,000 psi)

Internal structure &miscellaneous weight

Dewar weight

2.87 m

6.50 m

25 m

50.8 x 106

34.2 x 108

15,200 megajoules

2.0 x 107 A/m 2

9.3 m

13.6 m

31 m

900,000

1,900,000

180,000

750,000

kg

kg

kg

kg

3,730,000 kgTotal

35

2 d

Page 42: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.1-6 Magnet Design Data for Base Case MHD GeneratorCase 24 - SRC As Fuel (General Electric, 1976)

Channel Specifications

Inlet

Exit

Active

Field:

length

InletPeak

Exit

Magnet Design Data

Warm bore (circular):

Active

Field:

1.067 m sq.

3.499 m sq.

4\20 m

3.21 T

7.72 T

2.40 T

Inlet

Exit

length

Inlet

Peak

Exit

2.60 m

6.36 m

20 m

3.27.92.4

VB2 = 2 AB2 dl0

Ampere turnsCurrent density, average

Dewar O.D.

Inlet end

Exit end

Dewar length

Conductor weight

Main .structure weight

Intermediate structure &miscellaneous weight

Dewar weight

13,200 m3T2

76.4 x 106

2.0 x 107 A/m 2

9.8 m

13.7 m

28 m

1,036,000 kg2,100,000 kg

200,000 kg

750,000 kg

4,086,000 kgTotal 365,

Page 43: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.1-7 Air Preheater Design Data for GE OCMHD

Cases 1, 2 and 3 (General Electric, 1976)

Case 1 Case 2 Case 3

Plant Size MWe 2000 1200 600

Air preheattemp (F) 2500 2500 2500

Air pressure (atm) 10.5 10.5 10.5

Number of Heaters 6 2 blowdown 6 2 blowdown 6-2 blowdown3 reheat 3 reheat 3 reheatL1 spare i 1 spare L1 spare

Heater beddia. (ft) 30 24 17

Heater bedheight (ft) 40 40 40

Heater totalheight (ft) 75 70 60

Heater bedweight (tons) 1400 900 450

Heater totalweight (tons) 2400 1650 1000

Pressure dropAir side (atm) 0.01 0.01 0.01Gas side (atm) 0.06 0.06 0.06

Table 3.1-8 Air Preheater Design Data for GE OCMHDCase 24 - base Case with SRC As Fuel(General Electric, 1976)

Air preheat temperature (F)

Air pressure (atm)

Number of Heaters

Heater bed diameter (ft)Heater bed height (ft)Heater total height (ft)

Heater bed weight (tons)

Heater total weight (tons)

Pressure dropAir side (atm)Gas side (atm)

3100

16

6 2 blowdown3 reheat1 spare

30

40

75

1600

2600

0.010.10

37

- ---- --. . . . . . . ~ ~ -

_ .-

_

Page 44: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.1-9 Comparison of Performance Data forCoal/Open Cycle MHD/ Steam Systems Between ECA8Phases 1 and 2 (NASA, 1977)

Net output power, MWe

Coal thermal input to combustor, MWt

Air preheat temperature, OF

MHD inlet temperature, OF

MHD diffuser exit temperature, OF

MHD inlet pressure, atm

Compressor exit pressure, atm

Airflow, lb/sec:PrimarySecondary

MIHD inverter output power, MWe

Compressor power requireda, MWe

Steam turbine-generator output, MWe

Powerplant gross power output, MWe

Ratio of the difference of MHD power and compressorpower to plant gross power

Auxiliary power required, MWe

Ratio of auxiliary power to powerplant gross power

Coal thermal input to seed-reprocessing system, MWt

Ratio of coal for seed reprocessing to total coal

MHD efficiency, MHD power minus compressor powerdivided by amount of coal to combustor

Steam-cycle efficiency (including generator)

Thermodynamic efficiency, ratio of gross power toamount of coal to combustor

Overall efficiency, ratio of net power to total coal used

aGiven in electric power even if shaft driven.

Phase 2 G. E.conceptualpowerplant

1932

3688

2500

4634

3662

9.0

10.7

2492

189

1406

377

587

1993

0.52

50.7

0.025

311

0.078

0.279

0.420

0. 540

0.483

Phase 1

Westinghouse

base case 2,point 17

1988

3870

2400

4503

3655

7.0

7.6

2653279

1230

307

821

2051

0.45

63

0.031

213

0.052

0.238

0.420

0. 530

0.487

38

G. E. basecase 1

1895

3700

2500

4634

3625

9.0

10.5

2486187

1399

361

555

1954

0.53

55.6

0.028

231

0.059

0.281

0.400

0.528

0.483

.

.

- ---- - ----

Page 45: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.1-10 Major Dign Parameters of Coal/Open CycleMHD/ Steam System - ECAS Phase 2 (NASA, 1977)

Table 3.1-11 Summary of Performance and Cost for Coal/Open Cycle l)D/Bteam(NASA, 1977)

System - BEAb enas C

Net powerplant output (60 Hz; 500 kV

Thermodynamic efficiency, percent

Powerplant efficiency, percent . .

Overall energy efficiency, percent.

Coal consumption, lb/kW-hr . . . .

Total wastes, lb/kW-hr.......

Powerplant capital cost, dollars

Powerplant capital cost, $/kWe

Cost of electricity (capacity factor, Capital . . . . . . . . . . . . .Fuel . . . . . . . . . . .Operation and maintenance ..Total. . . . . . . . . . . . .

Estimated time of construction, yr

), MWe ............ 1932.2

.. . . . . . . . . . . . . . . . . . .. 5 4 .0.................. .... .49.8... . . . . . . . . ... . . . . . . . 4 8 . 3

.. .................... 0.655

............ .... ..... ........ 0.082

... . ......... . . . . 1391. 1x106

. . . . . . . . . . . . . . . . . . . . 720.0

). 65), mills/kW-hr:.. ... ...... .............. 22.7

. .. . . .... . .. .. . .. . 7.3 .. .. ........ .... ....... .1.7... . . ...... . .. . . . ... . . . . 3 1 . 8

. .. . . . . .. . . . . . . . . . . .. 6.5

G. E. estimate of approximate date of first commercial service . .

Coal type ........ I....................... . Illinois #6

Moisture content of coal delivered to combustor, percent ............... 2

Air preheat temperature, oF ................... . . ........... 2500

Combustion pressure, atm 9. ......... .............. 9'Combustion temperature, F . . .. . . . . . . . . . . . . . . . . . . . 4634

Combustor fuel-air ratio relative to stoichiometric . . .. ..... .... .1.07

Combustor slag rejection, percent . . . . . . . . . . . . . . . . . ........ 85

Slag carryover to channel, percent. ........ .. 15

Generator type . . . . . .. . .. . . . . . . . . Diagonal wall

Average magnetic flux density, T . . . . . . . . . . . . . . . . . . . . .. . . . . 5

Electrical load parameter. . . . . . . . . . . . . . . . . . . . .. . . . . .... 0.8

Potassium seed, percent ...................... 1

Steam-bottoming-cycle conditions, psig/ 0 F/F . . . . . . . . . ... 3500/1000/1000

Cooling tower type .................. .... . Wet mechanical draft

Stack-gas temperature, F . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

-- r~~~~~~~~~~~~~~~~ll~~~~~1lit

0%

I qqR- 1999. .-.-- 1!11

Page 46: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 3.1-12

PROJECTED OCMHD OPERATING CHARACTERISTICS

Full Load Heat Rate(Pomeroy, et al., 1978)(Pepper, Y-Ui- 774)

Forced/Planned Outage Rate

(Pomeroy, et al., 1978)

(Jackson, et iT., 1976)

Minimum Load(Pomeroy,(Pomeroy,

et al.,

et T.,1978)1978)

Lifetime(Beecher, et al., 1976)

7068 Btu/kWh6600 Btu/kWh

20%/15%

20% total unavailability

60% full capacity

85% of full efficiency

30 years

40

Page 47: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Perhaps the most important design, certainly the most often cited,

is the ECAS General Electric Base Case. The first mass and energy

balance schematic of this case showed the potential of flexibility of

input fuels, Figure 3.2-1. A slightly revised and later version of this

schematic is shown in Figure 3.2-2.

The ECAS Phase I Westinghouse equivalent Base Case is shown in the

schematic diagram in Figure 3.2-3 (Base Case 2). The other major

configurations studied by Westinghouse included a coal gasifier, shown in

Figure 3.2-4, and a char fuel option, shown in Figure 3.2-5.

Another important mass and energy schematic is that developed for

the U.S. Department of Energy that is to represent the goal for the first

commercial facility, see Figures 3.2-6 and 3.2-7.

EPRI has also sponsored mass and energy schematics, and that closest

to the ECAS Base Cases is shown in Figure 3.2-8. Figure 3.2-9 shows a

scheme for increasing the stiochiometric air ratio to 120%. This cycle

is incorporated into the other EPRI-sponsored schematic in Figure 3.2-10

as an attempt to maximize NOx and extract it as a fixed nitrogen source

for fertilizers.

Aside from these system-wide schematics there are a number of mass

and energy balances of particular types of components. For example,

perhaps the most important of these are the seed regeneration schematics

which include the ECAS schematics, Figure 3.2-11, Tables 3.2-1 and 3.2-2,

as well as others, Figure 3.2-12, Tables 3.2-3, 3.2-4 and 3.2-5.

41

Page 48: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

(,13, c,

o , -I oE

LOA ,2 ll n -In L.), tn V - z3 q '

42

-

o

--o

)lox

2

L.ck::3oa:IE

21o

cr

E9 cr.o

rzI.1

'I X

O

C-

r-4

.pO

r-4

I)

0

Q

r1.

I

.)O40

01

Q4)

o~f~CMA

Page 49: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Z, ~ ~ ~ g""¢

~--9o ~o. ~ ~ ~ ~ ~

75 ,o V) i

C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-c i"ID'---' EJII _ _.i,, - ~ c : ~1 II--

C' E;El/','2 - 2! li

,, ~_~~~CI,-D

co EoIC 1_ 2 2,

L10 ~~~~~~~~~~~~~~~~~~~~~0, 1 o

CL U'o 31:I

¢,~ ~ ~ ~ ~~~~~l

ODcu o ~~~~~~~~~ ru~cooL m ,,~~~~~~~~60 cu a, a: Z m~~~~~~~~~~' o -

O C3~~~~~~~~~~~~~~~~~~~~~~~~~~~5 C

C,,

C ~ ~ ~ ~ a~~C

43

Cr

a3C

Lt

zz2.

rc

I

II

I

i

tI

'S

Lf

00

0o

d

o

bO0d

.V -

. 4

NO4IN

0f4

tl

i

I

II

II

12.

z

C;

R

L

I

Page 50: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Location

Ambient

Compressor Inlet

Compressor Outlet

Preheater Outlet

Combustor OutletMHD Duct EntranceMHD Duct ExitDiffuser ExitPreheater Exit

Air Quench Chamber Exit

Steam Generator Exit

Figure 3.2-3 Schematic Diagram and State Points for OpenCycle MHD Westinghouse ECAS Base Case 2(Westinghouse, 1976)

44

PointNo.

0

1

2

3

4

56

7

89

10

Prss ure.Psia

14 6%

14.40

95.36

92.58

8. 18

59. 18

13.09

17.00

16.52

15.58

14.696

Temperatur,._F

59.0

59.0

465.2

2398. 4

4414.4

4185.8

3460.4

3644 .0

2538.0

1880305.0

Flow.IbiS

2768.5

2768.5

2768. 5

2768.5

3144.3

3144.3

3144. 3

3144.3

3435. 8

3435. 8

3435.8

Page 51: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

LocWtion Point._______________ .No.

Ambient 0

Compressor nletd ICompressor Outlet 2Air Preheater Outletd 3Combustor OuUdet 4

D Duct Entrance 5MHD Oduct Ex 6OifWuser Ea 7Air Preheater Exit 8Air Quench Chamber Exit 9Steam Generator Exit 10Fuel Preheater Entrance 11

Fuel Preheater Exit 12

Figure 3.2-4 Schematic Diagram and State Points for OpenCycle MHD Westinghouse ECAS Base Case 3(West nghouse, 1976)

45

Pressure,Psia

14,696

14.40

13&94

15431

146.96

99.02

13.5417.00

16.52

15.58

14.696

15S9015 31

Temperature,. F

59.0

59.0

603.8

2587.44400.0

41:9.6

3280.4

3446.0

2230.4

1680.0

305.0

1600

259L 0

Flow.Iis

1710.2

1710.2

1710.2

303 2

3030.2

3030. 23030.23210.2

3210 2

3210.2

1282.9

1282.9

Page 52: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Location

Ambient

Compressor Inlet

Compressor Outlet

Air Prehealer OutletCombustor OutletMHO Ouct EntranceMHO Ouct Exit

Difluser ExitAir Preheater Exit

Air Quench Chamber Exit

Steam Generator ExitGaporSFA Combustion Air

Crossover Air

Figure 3.2-5 Schematic DiaCycle MHD Wes(Hoover, et a

gram and State Points for Opentinghouse ECAS Base Case 11., 1976)

46

Point.

0

1

2

3

4

5

6

7

9

10

1112

13

Pressure.

Psia

14.696

14.40

95.36

92.58

88.18

58.59

12 94

17.00

16.52

15.58

14.696

16.16

2L 25

93.5

Temperature,OF

59.0

13 15469

2933.54400.0

4162 4

3422 6

3620.6

2483. 0

1880.0

305. 0

800.0

23840

2384.0

1976.3

2934.

2934. 7

2934.7

3194.8

3194. 8

3194.8

3194.8

3194.8

3493.4

3493.4

113.0

63 0

29347

t . ._

Flow.

Page 53: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

131.3P

641.5H4.~~~~~~~~~l 17Pg41

|". r i* gja

GII

Figure 3.2-6 Air-Gas Side Balance of OCMHD(Jackson, et al., Oct. 1976)

LEGE ND

N - ENTHALPY - 8TULBI - fLO I LI/NO

P - PNESSUNE - PSIAF - TEMPERATURE - F DECREES

3218 II

Figure 3.2-7 Steam Side Balance of OCMHD(Jackson, et al., Oct. 1976)

47

(

Page 54: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TO~~~~~~~~~~~~~~

fuktlN~E . FF 1 03 OFa LiilW.P iE4 .' '

CO"E"IST.R 'S2 IF DIFFUSER 6. 0¢ 3:,5 5tZ250.8~ ooo.or D 5~nP T IL6 417.2F 1s 1V3.32357W 1116 - 11 61 4I 5.'" (;.2P

S L A t S E E D 188 .5 3 2Ef TE 6043. , 2200F:5.:o;,-V"" e " I .T I3 I 41 r .O w IF S .:2

IL~3'P SE 9 2 1. 1X I5. 1777 - E"R U - I .0F s'3v

"3~~~~~~~~~~~~~~~~5 6%.8s"'2S-~ 26.; 73? KS6a6 ' ... O 2.7ill( 16.21. ~ 33 2r 1 l.Sr[a. 1682r s3ni i.fzl l ?:, 314TE. 5,OE 13 .EiOaA 3.7¢~.3 11u 6 ijj

AI~ *Enrl3 69.OPIq0.0P ale ,L~~~~~~~~~~I56 3M~1 2. 2r 21~.6~P

$LA~ SEE0 8. 5H ?n ) u .5.132.2H ~57'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 35. ~,

1~'223~*2CO j Ci426.0~u

]200'. '3U20 . i;

BoP -2 ,1 *

LEGED: (!2~P

p - PRESSURE - PSlIAI~ l5.5+

¢ - TEH~£RATURE - F eJ2.0F

H 'ENTHLP - RTU/L8 k,~20,/e~

W- FLOY- LB/PR

Figure 3.2-8 Air-Gas ide Flow Diaram-PP~I 0aae 2(Cufing, etal.,, 197)

350 W3Z5 K4

881 W2658 K

COMBUSTOR 4.85 P N(

12700 ppm .(NOx)

O.fu0.ui sec 0. 161 sec Dwell Time NO Level

(9 0.25 sec 4800 ppmW = Mass Flow (kg/sec) 0.5 sec 4420 ppmK = Temperature (K) 1.0 sec 3920 ppmP = Pressure (Atmospheres)

Figure 3.2-9 Theruodynasic State Points and Flowratesfor Topping Oycle-120% Stoichiomatric AirEPRI Case 4 (Cu&ting, et al., 1971)

Figure 3.2-10 Air-Gas ide Flow Diagram-EPRI Case 4(Cutting, et al., 1971)

Page 55: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

*4

0

C

-r

e4.

0a Obeo

.t9

CO 0

30ri~da'' e

am

*rJr

0

hi4

49

I

Page 56: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

E 0 -00 o0-+C " 0 C 00 Co C o o

h o ~ ~ C o

,l o o o Uo= + - r) u C o f*V dddd CC 0 * X R 0 v ° o

Q . * * * . *-0_ . 1- C- ,

O_ ° o o oo o o,-,

· l D Co C) o . C o o oC

-- . . c- - CZ

7 C, * C8 UN _

o - 8 o o o C ooW M

ceC:C "- . 8 oo n '0'8 U' .oo0) U'0'

n ~ 0 4 '0- -aC ) )C ) C '

c C

0o , o _X Q CL 8

ZL ~ ~ Eo o o °, I Ou o ) F CC z ) CC O OO ; C.

0AC,

0Y.2

50

C1

0

C4bo

43U

4O3d

Owk

oO

4r reorm

rHI

(\JOd

rAr--44~,0E-4

Page 57: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

'- 0$~h a00 0 0 0 00

' ,- O- . o cO :a. . ..0 C'.J CJ C'J D C

'(C'.') 0.

BS o o o o o o o,..~g P00 ,- , -,, CD -

'.0 0 - 0 '

8o 0o oo oooC%~Q~~,~CC%

t. oF-. , o-Y 000000

,

I 0v S C On O

C(D~~ f e C V O6C00 C C CD

7. . ' C CD o o

coEen.. o

00 0 0C mCD o 00 ' - -

,

W .00 .

o os .

0 o X- I..

CD -0,A OL ,,0 U'.

m . L:* D 6

0~~~~~~~~~~~~~~~~~~E mC_o _

i'-1

_ 0

.J c 0 0 cO C IC'J 0 - N 4- OC2 = C) I .) = 0(A Id Y<

51

0

0to

0o

0-t

4.

) o311

o611

rR

ICCj

('J

0r-4

14

Page 58: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Sed L Irs m MI FIll

FSe Seli Ta .

I ·,0 IC.. II SoC.eilpsehside""'"")I -"-'t , ,,,er I.

m) 2S I 2c30 1 1 IT.

1u' . (i 8'4 s1 P., 1) ( 13.5l4

hesu rl, I.Seed3 SeCleIssSIll, I

',SI4 /psi&

To MiD ,:ll S off -GC.-but, 6 .

5l il

, , I elerISZ°C

Figure 3.2-12 Desulfurization Scheme for CombinedCycle MHD Power Plant (Bergman, t al., 1977)

52

Page 59: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.2-3 Solid and Liquid Streams - Material Balancefor Base Case MHD Processing Scheme(Bergman, et al., 1977)

Solid or Liquid Streams

Coal** Ash***

4750

47005050

1040

2537Q1270 2280

K2SO4 Sulfur K2S

(lb/hr)

82100820810

8046080460

1207068390

300 1370300 1370

1750310 15190

11600

2co3 *2

47005050

46004600

7003900

42300 39101270 55470.

'Enthalpy**~*H

(Btu/hr)

345080

3450807850033500

-257.321015 -29.76

-11.19-68.27

-192.90.- 0.87

1270 55470

*See Figure 32 - 12.

**Coal Analysis (4.95% H, 76.1% C,4 Kg H2 0/100 Kg dry coal)

1.0% N, 4.95% 0, 3.0% S, 10.0% Ash,

***Ash Analysis (28.0% Al iO, 4.4% CaO, 15.0% Fe203,0.8% Na2O, 0.5% P205, 6.5% SO 2, 1.3% TIO 2)2 * 2 5' i02, 1.3 2 Tb 2)

1.6% K20, 1.1 % MgO,

****At 298 K and 1 atm the enthalpy of all elements in that physicalstate is 0.

53

FlowStream*

ABCDEFGHIJKLHN0PQ

Page 60: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.2-4 Gaseous Streams - Material Balance for BaseCase MED Sed Processing Scheme(Bergman, et al., 1977)

Mole 2

Ar CO2 co ' H2 H20 R2S N2 02

1. Gasifier Air

2. Producer Gas

3. Reducer Off-gas to heatrecovery

4. Reducer Off-gas to regen-eration

0.92 0.03 1.26 77.10 20.69

0.70 3.06 24.86 8.80 3.67 0.29 58.64

0.70 24.25 3.67 1.31 11.16 ' 0.29 58.54

- 1.45 21.91

- 0.08 1.92 -5.68

- 0.08 1.25 -153.33

0.70 24.25 3.67 1.31 11.16 0.29 58.54 . :-. . 0.08 0.66 -80.60

_ -, _ - - 100.00 - 0.087 -23.32

6. RegeneratorOff-gas

7. Claus PlantAir

0,75 4.34 3.95

0.92 0.03

1.40 4.34 .22.01

1.26

63.12

77.10 20.69

- 0.09 0.62 -16.29

- 0.40 -1.48

8. Claus PlantTail Gas 0.64 5.46 18.23 .35' 74.95 - 0.40 0.955 -65.57

* See Figure 3-12

** he molar gas volume is taken to be 359 ft3at 273 K and 1 atm.

*** At 298 K and-I atm the enthalpy of all elements in that physical is 0.

Table 3.2-5 Energy Requirements for Seed Desulfurizationin Base Cae (IgTman, et al., 1977)

Coal Input (Wt)

Thermal Input (MWt)Air preheatSteam for regeneration reaction

Total

Thermal Output (Wt)Casifier steamReductor steamRegenerator steamClaus plant steamReductor gas, sensible heat, and

heating valueSolids sensible heat

Net heat recovered (t)

Electricity produced(402 efficiency, MWe)Electrical input for auxiliaries(compressors. pumps, etc.. MWe)*Credit for carbonate production (e)Net electricity production (MiWe)

Effect on Efficiency

1000 + 23.32 1023.32000 + 98.2 2098.2

98.2

(6.92)(0. 51

(7.43)

2.6311.7911.4413.77

15.873.59

59.09

51 ;60

20.64

(0.32)

3.0023.32

- 48.77

Loss of Efficiency 50.00 - 48.80 - 1.23 points

*Includes seed leacthing system energy consumption and assumes steamdrives for pumps and gas compressors above 50 HP.

54

Flow Stream*

No Name

VolumetricFlow RatescfJ** X10

EnthalpyR*** Xlo;bBtu/hr

5. Steam

Page 61: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

3.3 Energy Efficiency Evaluations

Table 3.3-1 shows the wide spread of estimates of OCMHD

efficiencies. Of course some of this variation is due to lack of data

and some is due to differences in designs. The energy losses at the

points in several specific designs can be computed from the schmeatics in

the previous section. Th-is section begins with some general energy loss

information and proceeds to the specific energy effects of changes in

various design and operating parameters.

In comparison with other advanced energy cycles the Phase I ECAS

studies shown how OCMHD's appear now to be competitive, Figures 3.3-1 and

3.3-2. With the axes reversed Figure 3.3-3 shows a slightly different

set of results directly from the Westinghouse ECAS report. In the

detailed ECAS Phase II studies the energy balance is shown in the flow

chart in Figure 3.3-4. Table 3.3-2 displays a slightly more explicit

breakdown of combustion losses; Table 3.3-3 shows additional detail on

energy use of auxiliary components, and Table 3.3-4 shows a similar loss

breakdown for the "reference" commercial facility of the future.

The best way to determine the energy efficiency changes due to

particular parameter variations is currently through parametric

investigations in the analytic system models. Some of these studies have

been done as part of ECAS Phase I, Table 3.3-5. Unfortunately there were

not enough of these parameteric studies to allow for a unique solution

for the effects of various parametric changes. Statistically stated

there are not enough values to ensure that predictive formulae would not

capitalize on chance effects in the observed data. There have been some

55

Page 62: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 3.3-1

PROJECTED OVERALL OCMHD ENERGY EFFICIENCIES

Estimate

(Pomeroy, et al., 1978)

(Cutting, et al., 1977)(NASA, 1977J-(Penny, Bourgeois, Cain,1977)

(Bergman, Bienstock, 1976)(Jackson, et al., 19;'6)

(NASA, 1976

(NASA, 1976)

(Seikel, Harris, 1976)(Seikel, Harris, 1976)(Seikel, Harris, 1976)(Westinghouse, 1976)(Westinghouse, 1976)(General Electric, 1975)

(General Electric, 1975)

(Pepper, Yu, 1975)

(Powell, Ulmer, 19741(Feldmann, Simons,Bienstock, 1970)(Hals, Jackson, 1969)

48.3% - 49.2%46% - 46.9%48.3% - 48.7%

55% - 60%

45.6% - 50.14%47%

46% - 54% low Btu Westinghouse data

loss of 3% for seed reprocessing

associated with high-sulfur coal41% - 53% (GE Co.)

42% - 50% (WE Co.)48.3% (GE Co.)

44% - 49% direct air preheat44% - 54%

44% - 55%

40% - 46% with solvent refined coal52% thermal

50% - 55%

50.8% - 51.9% thermal efficiency50% - 60%

56

Reference

Page 63: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

I L1MMHD Isteam1 ccoal fired)

I

I

* aI -,Supercritical 02

; ,-CCMHD-steamI ,- aao Fredl

I- 1 | -- 4-SRC fuel, - , CC lsteam/, ,e -k -

fuel) / -Supercritical CO2 a. -, \

TLBmintegrated : , , ,gasifier)-, I I

- ", - LowtemperaturI < fuel cells (HBTU

- t1 'r_ _

fuel ca

, CGT (HB

CGT ioal fired (A

Low-temperaturefuel cells(hydrogen fuel)-

. "

OGT 1'- I- HBTU fuel)J /

OGTlorganic (HBTU fuell

LMR steam tcoal (PFB) andLBTU Integrated gasifier)-J

I

.20 - .30

m al fired AFB))

IHD Isteamfired)

!I I

II II

I.II

gasifier)

.50

Figure 3.3-1 Effect of Overall Energy Efficiency on Coatof Electricity in General Electric Resultswith Shaded Area OCMHD (Seikel, Harris, 1976)

57

80

70

60

50

E

-

b;Ii

8S

d

40

30

20

in

.10~v I I~~~~~~~ B ~~~~~~~~__ I

-

I I I I.60

I

Page 64: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

tE

.bId

zr2

.-.... Contrdor data--- NASA estimate using

contrator data

Figure 3.3-2 Effect of Overall Energy Efficiency on Costof Electricity in Westinghouse Results withShaded Areas OCMHD (Seikel,Harris, 1976)

58

as

e

Page 65: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

50

40

._

._t-

r-

L

3030

20

30 40 50 60Cost of Electricity, Mills/kWh

A-Fuel Cell Steam Bottoming1-Molten-Carbonate2-Solid Electrolyte

B-Fuel Cell (Phosphoric Acid)C-Alkaline Fuel CellsD-Liquid Metal MDE-Recuperated-Open-Cyzle Gas TurbineF-Closed Recuperated Gas Turbine (Coai)G-Recuperated-Closed-Cycle Gas TurbineH-Steam (Atmospheric Boiler)I-Steam (Pressurized Fluidized Bed oiler)J-Steam (Pressurized Boiler)K-Distillate-Burning Combined-Gas TurbineL-Open-Cycle MHDH-Metal Vapor Rankine Topping CycleN-Combined-Closed-Cycle Gas-Steam TurbineO-Coal Burning Combined-Cycle-Gas Steam Turbine

Figure 3.3-3 Advanced Energy-Conversion Systems - Rang ofResults with Shaded Area uCMHD (Beecher, et al.1976)

59

Page 66: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

IBTU fuel.. I. 1 .At.

Wf

Cooling towerrejection,1345 IMW

Figure 3 3-4 Simplified Energy Flow Diagram for Phase 2Conceptual Powerplant - Coal/Open Cycle MD/Steam System (NASA, 1977)

60

Page 67: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.3-2 Energy Balance for Combustion FlowtHarris, Shah, 1976)

Energy Outputs

*MHD power output 1420*Combustor/channel/diffuser cooling 235*Radiant furnace heat transfer 983*HTAH heat transfer 857*Secondary furnace heat transfer 1298*(Economizers 328(Coal dryers 8Leaving losses 370

Coal ash (sensible + latent) 22K 2SO 4 (sensible + latent) 10Combustion gas (sensible) 183Combustion gas (latent) 155

Energy Inputs Other Than Combustion

Air heating (857 + 539) 1396Air compressor power 372Coal heating in mills, dryers 8

Net Energy Output 3723 MWt

Combustion Energy Input 3750 MWt

Fuel HHV @ 10.788 Btu/lb 3688Correction for SOx - K2SO4(G) 17Condensation and solidification 45

of K2S04

Excess Energy Input 27 MWt

*Values specified by system advocate

61

Page 68: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.3-3 Auxiliary Power Requirements and ElectricalLosses for ECAS Open Cycle MHD(Harris, Shah, 1976)

ITEM

PUMPS

CONDENSATECIRCULATING WATER

AIR BLOWER

COOLING TOWERS

COAL HANDLING

COAL PROCESSING

MHD COMPONENTS

TURBINE AUXILIARIES

"HOTEL" LOAD

MAKEUP WATER TREATMENT

INTAKE STRUCTURE

INVERTER LOSSES

TRANSFORMER LOSSES

ASSUMPTIONS

A/E ESTIMATEPROPORTIONAL TO COOLING

TOWER HEAT LOAD

v =80%

PROPORTIONAL TO HEAT LOAD

" OF EQUIPMENT RATING

EQUIPMENT RATING

0.75% MHD POWER

0.75% STEAM POWER

A/E ESTIMATE

A/E ESTIMATE

A/E ESTIMATE

1% MHD D-C OUTPUT

0.5% 60 HZ GENERATION

NO. OF MW TOTALUNITS EACH MWe

4-

3

25

1.464.61

'*.- 1.00

,2.15

.2.25

14.00

10.50

6.90

6.37

.75

.75

.. 14.2

9.96

74.9

62

_ __

Page 69: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.3-4 OCMHD System Energy Balance for EventualCommercial OCMHD (Jackson, et al., 1976)

GENERATORS

MHD

Steam TurbineSubtotal Generators

MOTORS (CALCULATED)

Secondary Air FanCirculating Water PumpCondensate PumpBoiler Feed Booster PumpInduced Draft FanSubtotal Motors

PLANT AUXILIARIES (ESTIMATED)

Main Steam TurbineFuel HandlingAsh HandlingService Water SystemMHD TransformerSteam Turbine TransformerSeed HandlingInve rter -C1lnup SystemMagntMiscellaneousSubtotal Awuliaries

TOTAL PLANT OUTPUT (NET)COAL BURNER

LB/HRHHV

. BTU/SEC

KWth.STATION HEAT RATE (BTU/KWH)

(BASED ON HHV)STATION EFFICIENCY (%)

.KW

634, 000

370,408

4844,9071, 230

766

7, 556

295

6, 307

1,636' .293

12,6835, 548

10, 000

6,31113, 671

1,0001, 936

616,00911,081

1,896,1112, 000, 000

. . KW

1,004,408

-14, 943

-59,680929, 785

- 7341

46.50

63

_ - _ - i lu ~ ii i~~~~~~~~ ,, , ,.

Page 70: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.5-5 Parametric Variations for General ElectricECAS Task I Study Open Cycle MHD(Corman, et al., 1976)

Parameters

Power Output (MWe)

Combustion

Coal

Oxidizer

Combustor slag rejection percent)

Preheater

Firing

Oxidizer temperature (FI

MHD Generator

Type

Inlet pressure (atm)

Average magnetic field (TI

Potassium seed (percent)

Electrical load parameter

Heat Exchangers

Gas ( pip)

Air (A p/p)

Steam Bottoming Cycle

Turbine inlet temperature (OF)

Turbine inlet pressure (psi)

Maximum feedwater temperature (OF)

Air Bottoming Cycle

Turbine inlet temperature (OF)

Pressure ratio

Heat Rejection (in. Hg)

Actual Powerplant Output (MWe)

Thermodynamic Efficiency (percent)

Powerplant Efficiency (percent)

Overall Energy Efficiency (percent)

Coal Consumption (lb/kWh)

Plant Capital Cost ($ million)

Plant Capital Cost ($1kWe)

Cost of Electricity, Capacity Factor - 0. 65

Capital (millslkWh)

Fuel (millslkWh)

Maintenance and operating (millslkWhl

Total (millslkWh)

Sensitivity

Capacity factor - 0.50 (total millsikWh)

Capacity factor - 0. 80 (total mills/kWh)

Capital a = 20 percent ( A mills/kWh)

Fuel A = 20 percent ( A mills/kWh)

Estimated Time for Construction (years)Estimated Date of 1st Commercial Service (year)

Common Elements: Direct Coal Comnbustion. Avco Combustors. and Refractory S

Case 1 2

1895

111. 6

Air

90

Direcl

2500

r araay

9

5

1.0

0.8

0.15 -

0. 10 -

1000/100c.... ,-3500

232

WCT1.5

1895

52.8

49.2

48.3

0.65

2090

1102

34.9

6.2

2.8

43.9

55.1

36.8

7.0

1.2

7

1997

1180

8.9

1180

52.0

48.5

47.6

0.67

1239

1049

33.2

6.3

2.9

42.4

53.2

35.6

6.6

1.3

6

1997

3

599

8.7

=-·

599

52.3

48.7

47.8

0.66

715

1193

37.7

6.3

3.2

47.3

59.6

39.6

7.5

1.3

6

1997

4

1870

Mont

7

1870

49.6

47.9

47.8

0.80

2060

1101

34.8

6.l2.9

43.8

55.2

36.8

7.0

1.2

7

1997

5

1867

N. D.

6.5

1867

48.4

46.5

46.3

1.07

2107

1128

35.7

6.3

2.9

44,9

56.5

37.7

7.11.3

7

1997

6

1888

I111. 6

80

9-

1888

52.7

49.1

48.1

0.66

2092

1108

35.0

6.3

2.8

44.1

55.4

37.0

7.0

1.3

7

1997

7

1888

0

188

52.7

49.1

48.1

0.66

2091

1107

35.0

6.3

2.8

44.1

55.4

37.0

7.0

1.3

7

1997

8*

1426

7

1426

51.6

47.2

46.1

0.69

2018

1415

44.7

6.6

3.6

55.0

69.5

45.9

9.9

1.3

7

1997

9

991

Air/O

500

1500

10.2

1991

50.0

46.9

46.1

0.69

2016

1012

32.0

8.8

2.3

43.1

53.4

36.b

6.4

1.3

7

1993

10

1994

I Air

Indirecl

3104.

11.5

, 1_12017

Di reel

13.0

..'

1994 .2017

S5.5

51.850.8

0.62

2164

1085

34.3

5.9

2.9

43.1

54.2

36.1

6.9

1.2

1993

.56.1

52.4

51.4

0.62

215Z

1061

33.7

5.9

2.7

42.3

i53.Z

1.2

1999

12

2073

16

6

2073

57.7

53.9

52,0

0.60

2173

1048

33.1

5.7

2.6

52,1347

6.6

1,1

1999

13

1738

2000

6

5.

i738

48.6

45.1

44.3

071

2052

1181

37.3

6.8

3.0

47.1

59,2

39.6

7.5

1.4

7

1995

14

1929

25.00

8.7

0.85

1929

53.7

50.1

49.2

0.64

2116

1096

34.7

6.1

2,7

43.5

54.7

36.5

6.9

1.2

7

1997

15

9.

0.7

1799

50.2

46.8

45.9

0.69

2059

1144

36.2

6.6

2.9

45.6

57.438.37.2

1.3

71997

Base case 1."Base case 1 configuration, reduced power output.t Base case 2.

DCT - Dry cooling towerHT = High temperatureIll. Illinois 64

Mont - MontanaN. D. North DakotaWCT - Wet cooling tower

I

.- _ _ -- . - -

- I _ I I _ 3 _ _

! . . I- _

It |- -

I t

.- -

I i

-

__

-- L·C

--

--

I .I I _ _ I.- _ --9 .

.-

-- ---

-

1993

I 1799

.

Infli rect Di reel

t

l

Page 71: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.3-5 (cont'd)

Parameters

Power Output (MWe)

Combustion

Coal

Oxidizer

Combustor slag rejection (percent)

Preheater

Firing

Oxidizer temperature (F)

MHD Generator

Type

Inlet pressure (atm)

Average magnetic field (T)

Potassium seed (percent)

Electrical load parameter

Heat Exchangers

Gas (pip)

Air (plp)

Steam Bottoming Cycle

Turbine inlet temperature (F)

Turbine inlet pressure (psi)

Maximum feedwater temperature (F)

Air Bottoming Cycle

Turbine inlet temperature (oF)

Pressure ratio

Heat Rejection (in. Hg)

Actual Powerplant Output (MWe)

Thermodynamic Efficiency (percent)

Powerplant Efficiency (percent)

Overall Enemgy Efficiency (percent)

Coal Consumption (lb/kWh)

Plant Capital Cost ($ million)

Plant Capital Cost ($/ikWe)

Cost of Electricity, Capacity Factor - 0.65

Capital (millslkWh)

Fuel (millslkWh)

Maintenance and operating (mills/kWh)

Total (millslkWh)Sensitivity

Capacity factor - 0. 50 (total millsl/kWh)

Capacity factor - 0.80 (total millslkWh)Capital A - 20 percent ( A millslkWh)

Fuel a -20percent( Amills/kWh)

Estiaed Time for Construction yearsEsti~ned Date of 1st Commercial Service (year)

Drage HT Air Preheater

16

1701

0.6

0. 6

1701

4706

44.2

43.4

0.73

2036

1197

37.A

7.0

3.1

47.9

60.2

40.2

?.6

1.4

7

19!97

17

1895

6

0.8

.1895

52,6

49,2

48,3

0.65

2028

1069

33.6

6.2

2.8

42,6

S3.8

36.026,06,6

1.2

7

1997

18

1895

I, i

ii ii

1695

52.8

49.2

40.3

0.65

2024

1067

33.9

6.2

2.8

4207

53.7

35.9

6.6

1.2

7

1997

19

188320

1901

Diagonal Farada:

1683

52.5

4809· .9

48.0

0.66

20s9

1109

35.1

6.3

2.6

44.1

55.5

37.07.0

1.3

7

1997

0.5

1901

53,050.'

49.9

0.63

2105

1107

'35.0

5.9

2.7

43.7

55.0

36.67.0

1.2

7

199?

65

21

1870

1.5

i

-lb

18170

52.1

'7.646.3

0.46

20689

11i7

35.3

6.6

2.8

44.7

56.137.6

7.1

1.3

1997lo3l

22

1999

1.0

2400

10

1999

S5.5

5.,950.9

0.62

2304

1152

36,4

5.9

3.2

45,6

57.5

1.2

19991999

23

1889

---- I---3500

232 -

DCT1.9

1889

520. -

49.1

68.1

0.66

2153

1140

36.0

6.3

2.8~501

'5.1

5607

37.87.2

1.3

19971997

Common Elements: SRC Fuel. Avco Combustor.and Refratorv Storagre HT Air Preheater

24*

1932

. .

3100

Farada3

15

6

WCT1.5

1932

5S.2

56.6

44.3

0,71

166

965

30.5

10.6

2.8

37.9

6,1

2.2

19791999

25

1754

2500

9

1754

53.0

51.6

40,2

0.79

1763

1016

32.1

11.9.

3.0

47.0

57.6

40*4604

2.4

17951995

26

2005

3600

20

2005

60.4

56.9

46.0

0.69

1883

939

29,7

10.4

3.0

43.1

52.9

37.0

35.9

2.1

20032003

27

1931

3100.

15

5

1931

58.2

56.8

44.3

0.71

1670

968

30.6

10.8

2.8

44.2

'54.3

36.0

6.1

2.2

7

1999

28

1937

7

w1

1937

56.4

56.9

4404

0.71

1652

956

30.2

10.8

2.6

43.8

53.7

37.66"U

2.2

7

1999

29

1942

6

0.5

1942

58.6

57.1

4.5

0.71

1673

964

30.5

10.8

208

44.0

54.0

37.66.1

2.2.·7

1999

30

1919

1.

1.5

_b.

-.ak

1919'

57.9

56.4

'4.0

0.72

1859

966

30.6

10.9

2.6

44.3

5404

38,16.1

2.2

71999

.................... r .....

II

i

-- Ip

-- to

.5

II Innnnnn I II,

I I I II

e,

I I

wII .

.:t I l t!: I I -- Y_ .- - I __.LL= · : =t_ .! [- · I _I __ ___�____� � ·· � _ � _�·__����_ __�_�__�_�� __·_�_·�_�·�___ ·IIIIi I II

Page 72: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

additional investigations of efficiency changes due to variations in one

parameter, the moisture content of the coal, Tables 3.3-6, 3.3-7 and

3.3-8. Attempts to model the effects of parameter changes have been made

for sulfur content of coal, Figure 3.3-5, and for channel wall

temperature and pressures, Figures 3.3-6 and 3.3-7.

Some crude initial models of OCMHD efficiencies are shown in Figures

3.3-8 and 3.3-9.

66

Page 73: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.3-6 Energy Balance for 2000 MWt MHD Power PlantOperating on Eastern and Western Coal withThermal Drying (Bergman, Bienstock, 1976)

Pittsburgh Seam Rosebud Seam

2

Moisture Level (wt. H20)x100/(wt. dry coal)

Gross MMD Channel Power, We 634.54

Gross Steam Plant Power, We 583.31

Compressor Power, MWe 171.17

Plant Auxiliaries and ElectricalLosses, MWe 43.82

Net Power, MWe 1002.86

Drying Energy, MWt 1/ -" 0

Efficiency, Z 50.14, , .. .. , ... ..~~~~~~~~~.

2

601.12

593.50

172.23

43.60

978.79

93.0

46.74-; '

; -.

l/Drying energy is supplied by combustion of an

Table 3.3-7 Energy BalanceOperating on ASteam Drying

Pittsburgh Seam

Moisture (wt H 0) x 100/(wt dry coal -- 2

Gross MMD Channel Power, MWe 634.54

Gross Steam Plant Power, MWe 583.31

Compressor Power, MWe 171.17

Plant Auxiliaries and ElectricalLosses, MWe 43.82

Net Power, MWe 1002.86

Drying Energy, I Wt 0

Efficiency, 2 50.14

auxiliary fuel in the dryer.

for 2000 MWt MHD Power Plantatern and Western Coal with,Berg an, Bienstock, 1976)

. ~ ~ ~ ~~~ . .

2

601.12

585.47

172.23

43.26

971.10

33.8

48.56

Rosebud Seam

10

581.96

587.10

172.23

42.94

953.89

24.0

47.69

, 27.4

532.15

595.25

172.23

42.32

912.85

0

45.64

-/Drying energy comes from waste steam deposited in steam bottoming plant from MMD topping cycle.

67

10 27.4

532.15

595.25

172.23

581.96

592.80

172.23

43.19

959.34.

66.1

46.43

42.32

912.85

0

45.64

Page 74: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 3.3-b Energy Efficiency Effects of Various SystemsParameters (Annen, Eustis, 19l7)

_!_ _ _ _ - ; : Illinois 6 Coal - Montana Rosebud Coal

Separate Flow Separate Flow Single Flow Separate Flow Separate Flow Single FlowAir Preheat Temp. Air Turbine Gas Turbine Gas Turbine Air Turbine Gas Turbine Gas TurbineiAir Preheat Temp.

2000°K 18001 2000°K 1800'K 2000°K 1800 20000 K 1800°K 2000K 1800°K 2000°K 18000. , ,. , , .. . . ., , , , ! '

Net Power from MHD

!cycle (MHD PWR- 1cycompressor power),- i 636.7 544.5 599.8 513.8 648.3 554,7 628.8 541.9compressor power),MW

707.9 599.6 734.0 619.1Net Power from Air/;Net Power from Air 269.9 319.6 297.7 343.4 271.6 321.6 284.5 335.2:Gas Turbine, MW

lNet Power from Bt- iNet Power from Bot- 130.2 143.6 134.1 142.8 327.8 383.0 119.2 133.3 11u.8 128.8 313.5 368.71toming Cycle, MW

JTotal Power, MW 1036.8 1007.7 1031.6 1000.0 1035.7 982.6 1039.1 1009.6 1030.1 1005.9 1047.5 987.8

,Thermal Efficiency !i(based on lower ! 51.8 50.41 51.6 50.0 51.8 49.1 52.0 50.5 51.5 50.3 52.4 49.4heating value) %

Bottoming Cycle and iIntercooler Heat iRejection (propor- iIRejection (propor- i 384.4 424.0 400.6 424.9 540.1 631.3 352.0 391.3 366.3 397.7 516.7 607.7itional to coolingwater requirement)

MW

iMID Mass Flow Rate D Mass Flow Rate 763 665 772 692kg/sec806 . 826.6

.Air/Gas TurbineMass Flow Rate 1479 1751 830 1080 1488 1762 838 1111

kg/sec

HD Combustor Flame i 2932 2841 2963 2870 2794 2689 2934 2843 2963 2871 2805 2700

iMHD Dt Length 18.2 15.2 20.1' 16.7 13.4 10.3 18.8 15.4 20.2 17.2 14.5 10.7I ~~~ ~ ~ ~ ~ ~~~~~~~~ .... _______ __________ .... ______(Thermal Input = 2000 MW)

68

Page 75: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

V

LSILLIIIo

0.1.

PERCE,.T SLLF.P '. C'

'A EP, '_ I 'SS' . L' ,IB L -T c , i E- , L PI 5 tC GE . -:

Figure 3.3-5

50

Baseline Plant Station Efficiency and SulfurControl Costs s. Coal ulfur Content(Jackson, et al., 1976)

COMBUSTION PRESSURE

5 ATM.

ALI- IN

"-ONLY 120 MW OF HEAT RECOVERED IN STEAM PLANTI I - I I I

600 800 1000 1200WALL TEMPERATURE (K)

1400 1600

Figure 3.3-6 Effect of MB Channel Wall Temperature andAssociated Heat Losses on Cycle Efficiencyfor Two Different Combustion Pressures(RiA, 1975)

69

0

U-

wC)

W

a-

JQ

49

48

47

46

45

400I- - -

Inn

11711IIntII

_

_

_ . --1

-

Page 76: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

cycle

1500 K

TinLr Preheater

combustorinlet

pressureI L, , a Lm)

~---4~~~~ l

> 10

Figure 3.3-7 Open Cycle nED Efficiency Variationwith Changes in Combustor Pressure(Amend,1975)

70

e

50

45-

I1nn rV

I ,

Page 77: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Model of Overall Energy Efficiency of OCMHD:

E = .415 - 1.392C + 3.977A -.00056R - .004F + .0229T - .0115G

+ 1.535P - 10.98M - 1.842S + 23.13L + 1.87B + .0122W

+ .00615W M - .00216W P - .00001W T + .218M P

- .000836M T + .00057P T - 1.035(C-2.2)2

E = Overall energy efficiency of OCMHD design, in percentC = Coal type: Ill #6=1, Montana= 2, N.D.=3, SRC=4

A = Combustion oxidizer: air=l, air/02=2R = Combustor slag rejection in percent

F = Preheater firing: direct=l, indirect=2T = Temperature in F of preheated air

G = Generator type: Faraday=l, diagonal Faraday=2

P = Generator inlet pressure in atmospheresM = Averaae maanetic field strenath in TeslasS = Potassium seeding in percent

L = Electrical load parameter,as fraction

B = Bottom cycle type: steam=l, air=2W = power output of OCMHD, in megawatts

Fit to 39 parametric designs with arithmetic standard deviationequal to 0.28% 2

Correlation of actual to predicted values is R .985

Figure 3.3-8 Simplified model fit to the energy efficiencyresult from GE ECAS Task 1 (Corman, et al., 1976).

71

I·"--�OIUIICIIXWWIWn�-1�. rur�llrn-rru-l--------·�---- , - -- -- -

l

iIF

i

i

I

Page 78: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

4C(. 42. 1 44. 4 .41( 5.7 52. 5-

I *

.,J.~ I *1J

a/) 53.3 -'U,

4 51.7 1

* I 1

·,- [ 1:

o I-

>, 5 C , 2. . 5 . I *

o*_ I .*4-

4r.3

a) I,

m 46.7 1*

o I JC1C

-o 1 '*a)

. 45.0 i

m . 3

I F

I * .I 1

4I I

1('.U 42.1 h,.3 46.4 4fI.K 5(C.7 5 2.c 5.

Figure 3.3-9 Scatterplot of predicted efficiencies versus those

analytically derived in GE ECAS Task 1, different letters refer

to different types of system configurations.

72

Page 79: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

4. Environmental Assessment

The primary impetus for developing open cycle MHD power plants is

the economic attractiveness. Some of this economic potential is due to

the very high efficiencies of these cycles and part is due to the lack of

need for scrubbers. Investigations to date indicate that there are other

environmental gains possible, but data are still lacking on many key

points. In particular only a few of the potential air pollution

emissions have been studied whereas the list of possible pollutants from

fossil-fuel facilities includes more than 602 inorganic pollutants and

491 organics. Liquid emissions are expected to be total suspended

solids, oil, grease, copper, iron, other heavy metals, and thermal

discharges (Penny, et al., 1977). Solids will be dominated by furnace

wastes, other collected slids, and sulfur. The following sections deal

in more detail with the particular emissions that have been studied to

date.

4.1 Air Emissions

When they come on lile OCMHD power plants will have to meet either

the EPA New Sources Performance Standards or updated (probably stricter)

standards for air pollution from stationary coal-fired power plants,

presented in Table 4.1-1. The following sections deal specifically with

these emissions, and a summary of these and other environmental and

economic data can be found in Appendix A.

4.1.1 Sulfur Oxides

Some projections of OCMHD sulfur oxide emissions are shown in Table

4.1.1-I. The ash holds about 2.4% of the sulfur, and high combustion

efficiencies reduce sulfur emissions, see Figure 4.1.1-but the

73

Page 80: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 4.1-1

ENVIRONMENTAL EMISSION STANDARDS FOR SOLID-FUELED SOURCES

74

Pollutant Standard (lb/MBtu) Possible Future Stand-ard (EPRI-predicted)(lb/MBtu)

SOx 1.20 (as S02 ) 0.60 to 0.30 (as S02)

NOx 0.70 (as N02) 0.40 to 0.13 (as N02)

Total Particulates 0.10 0.10 to 0.05

Fine Particulates none 0.10 to 0.02( less than 3 microns)

Page 81: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 4.1.1.-1

ESTIMATES OF SULFUR OXIDE EMISSIONS FROM OCMHD

Reference lb/106 Btu input lb/kWh output

(General Electric, 1976) base case 1.2 .008

(General Electric, 1976) SRC 0.8 .0062

(Jackson, et al., 1976) reference less than 1.2 -

(Shaw, Cain, 1977) 0.77 g/kWht 1.6 g/kWhe

(Penny, et al., 1977) - 5 ppm

(Hals, Jackson, 1977)

fertilizer recovery system - 100 ppm

(Harris, Shah, 1976) 0.5 .0034

(REA, 1976) 0.045

1.0I

C. .6,

SI6NC')

C

-. 2-

0

THEMGnDYrAM : C EFFIC\JNCy

Figure 4.1.1-1 SO2 Emissions as aFunction of Power PlantEfficiency (Bienstock, et al.,1971)

0 1 2 3 4 1 5r1ASS OF K2CO3/tiASS OF S STOICHiOMETRIC

Figure 4.1.1-2 Sulfur Removal byPotassium Carbonate Addition(Dicks, et al., 1977)

75

·1

I �

I

I 7

I

$· · , ·

Page 82: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

overwhelmingly dominant influence on the level of these emissions is the

amount of seed material used. As can..be seen from Table 4.1.1-2 or from

Figure 4.1.1-2 the concentration of SO2 in the emissions can be lowered

to almost any desired value, see Figure 4.1.1-3. This is a very

impressive advantage of MHD cycles, however, there are fairly substantial

economic and energy-efficiency penalties for high removal percentages.

An interesting trade-off then presents itself requiring a choice among

low-sulfur coal, beneficiated coal, high seeding levels, and

post-combustion sulfur oxide removal. Expectations for commercial-sized

facilities (Jackson, et al., 1976) show that the seed recovery method of

sulfur oxide control is likely to be the most cost effective technique,

0.5% efficiency penalty versus 1.5% and 3.0% for flue gas desulfurization

and coal cleaning (Jackson, et al., 1976), and 1.5% for nitrogen

maximization (Cutting, et al., 1977).

table 4.1.1-2 Removal of Sulfur Oxides in MiD PowerGeneration with K2 CO as Seed(Bienstock,et al., 171)

Wgt % of sulfur in coal: 2.2105% of stoichiometric oxygen

N2/0 2 = 2

Seed concentration Actual

g moles K2 C03 lb K2 CO3 S02 in S02 S02 removalcombustion removal, stoichiometric

kg coal 100 lb coal agas, ppm % removal

0 0 2735 -

0.37 5 1608 41.2 Si 94

0.72 10 102 96.3 8 - oY

0.90 12.5 35 98.7

a op onom o 9.8 b

aBased on formation of KS04.

76

Page 83: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

2.0

o-)

C:0ON

0E

-J

W_J0

1.5

I.0

0.5

0 1 2 3 4 5SULFUR CONTENT OF COAL,weight %

Figure 4.1.1-3 MHD Plasma SeedingLevels for Completely Elis-inating Sulfur From Uoal[Bienstock, et al., 1974)

2.0 iSO02 Emissions Are A EPA Lm,t

011.20 lb S0 2 .106 BTU

Combustion Products Of Plttsburgh/15 Sea Coal

1.0

0.5

00 1 2 3 4

PERCENTAGE OF SULFUR IN COAL WT. %I

3.5

30;I

E2

.E9

vl-x

.JIz

S

I<r

c

c:c

2Figure 4.1.1-4 Effect of SulfurContent on Cycle EfficiencyLoss (Bergman, et al., 1977)

2.5

2.0

1.5

..0

G5

o

77

502 Emission Level I 2 lb ,S Blu

ILLIN156SUBBITUMINOUSA

P1 TTS BURGHHIGH-VOLATILEA BITUMINOUS

MONTANASUBBITU MINOUS C

-NORTH DAKOTA LIGITE

100 200 300 400 500

POUNDS SULFUR/106

BTU IN ENTERING COAL

Figure 4.1.1-5 Energy Consumed inSeed Regeneration vs. Type ofCoal Employed(Bergman, et al., 1977)

I-

u

rJ

w9UU

U

Q

r X W --*--·

- - h

_ _

[-

w

L

_

Page 84: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Once the seeding technique has been selected there are several

factors that affect the economics of the process:

(1) the seed material used, almost certainly potassium carbonate,

but possibly cesium carbonate or a mixture;

(2) the sulfur content of the coal, Figures 4.1.1-4 and 4.1.1.-5,

and degree of control desired will affect the amount of

potassium sulfate that must be regenerated, see Table 4.1.1-3;

(3) lesser control translates into lesser requirements for reducing

gas and thus less equipment; and

(4) threshold standard, Figure 4.1.1-6.

From the initial sulfur i the coal to the sulfur that would come from a

Claus plant, the principal reactions are:

S + 2 = SO2

2S02 + 2K2C03 + 02 = 2K2S04 + 2C02

K2S04 + 2(CO + H2) = K2S + 2(C02 + H20)

K2S + CO2 + H20 = K2C03 + H2S

2H2S + 302 = 2S02 + 2H20

2H2S + S02 = 3S + H20.

A previously mentioned alternative to the seeding procedure is the

post-combustion removal option. In the particular design where NO is

maximized to be drawn off as a fixed nitrogen source for fertilizers the

nitrogen oxides convert the SO2 to S03 which is easily removed as

sulfuric acid (Hals, Jackson, 1969). Concentrations as low as 100 ppm

are apparently possible with this operating configuration, described a

little further in the following section.

78

Page 85: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 4.1.1-3 Required Percent ofK2SO0 to Sulfur-free Pota&giuaCompounds (Jackson, et al.,1976)

CoalPennsylvania(Pittsburgh)West. KentuckyIllinois #6

Montana(Rosebud)

Wt. Sulfur

1.63.33.3

0.85

Conversion %

16

52

57-71

8 - M

0

2

U

U

UI110C,

0 0.5 1.0 1.5 2,0 2.5

SO2 EISSION Ilb tO10TU OF COAL BURNTI

Figure 4.1.1-6 Change of Cycle Eff-iciency Loss with SO2 Emmis-sions Level (Bergman, et al.,1977)

79

2.0 -

t -

1.0 -

n 5O

Combustion Producl Of Pittsburgh S..Co\l 3% Sulr

I · ·I

V.P

I

I I I I I

Page 86: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

As has been stated before, the best method currently available for

computing SOx or other emissions from MHD's is the composite analytic

models. One such model is the GPES system of the MIT Energy Laboratory

which can be used to construct hypothetical systems, see Figure 4.1.1-7.

Sample results are shown in Figure 4.1.1-8. There are several other such

analytic models including those of Argonne National Labs, see Table

4.1.1-4. A crude parametric model of OCMHD emissions is shown in Figure

4.1.1-9.

4.1.2 Nitrogen Oxides

As can be seen in Table 4.1.2-1 there is a considerable variation in

the estimated NOx emissions from OCMHD. In the combustion of fossil

fuels the process of nitric oxide formation is a function of temperature,

see Figures 4.1.2-1 and 4.1.2-2. With the extremely high temperatures in

OCMHD it might be possible to produce levels of NOx emissions at almost

10 times those for conventional gas- and oil-fired plants, almost 10

times the current standard or 6.6 lbs N02/106 Btu (Beinstock, Demski,

Demeter, 1971). Fortunately there are relatively easy methods of

substantially reducing these NOx emissions, namely:

(1) using two-stage combustion,

(2) maximizing NOx production then scrubbing it out as a valuable

fixed nitrogen source for fertilizers, or

(3) using pure oxygen instead of air for the combustion oxidant.

The first of these control options, two-stage combustion, not only

reduces NOx emissions but also can increase the power density by 10 to

20% by operating at 90% of stiochiometric air (Beinstock, Demski,

Demeter, 1971). The measured NOx values in a staged combustion

simulation are shown in Table 4.1.2-2. Although it is not the intent of

this review to deal explicitly with the various (6 to 60 reaction

80

Page 87: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

0

sI

I U - .I

' - .I

U)r-p >1 o -

tO CU

3 w: U $-wD j~ C) -I

E E u r CO>o o 4 ' CV U C a -'-4

o

14 C. ¢k U C5-IL0 4100 ia)CLb0

E

I I I I I I I.

'-.4

C .C- E E - - - >

0*1-

H

4,

rHV43

0H

0

0

0

0 P

**V fi:0. i

ur:

C)-'0-Cp t

s= I c C4.I X o. 0 u II'. a) Q r-Cl.E m m

I I I Iiii

14c 4_s CLas _c r v0. bD

.4

81

Page 88: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

0. $(O 0 ,0,¥10,,~ 3 l

II

I

I

I

-· -0,50

~--.Z '": "",50'"" ="==".=.'===. '" ~ 2.,. X1 o**-2~'""=:::-; =.= .. 2,50

V 700 _I, ~ chamber

I -

v."CO

0

O

._4 0 ,5-Q

O, 40(

0,f00

0o200o I

,

SO2

A/

'/

-/

77

7

2"

SO

0,0S

.1 o ":~j 0 .... . :7=..:Z ::, I .1 ......:'

SO2 In 22 o0 lUre 4 1 XlA0

-'. *1 4-

nf Sulfur Con oundn cD COcl . IPund"__.O m

Pig'

for

iP /

I!

tr - ---

--- ., .- -' .

'---w

(

Page 89: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 4.1.1-4 Comparison of Equilibrium Conditions BetweenComputer Codes (Chung, Smith, 1977)

Parameter Present Code NASA Code

CpgI average .31 .33 Computed internallyfor each specie

Pressure, atm 4 4 4

Gas Temp,, R 4704 4593 4568

Average Molecular Wt. 29,5 29.6 29,5

Mass Fractions

02 - .020 .017 .012

CO .035 .030 .028

CO2 .2028 .2116 .2125

N2 .692 .692 .674

NO .0044 .0044 .0058

SO2 .0021 .0021 .0020

H2 .00021 .00021 .00018

H20 .0424 .0427 .0495

Ar - - .O11

Preheat temp., 1300R

Stoichiometric Ratio, 1.0

Higher Heating Value, 11946 Btu/lb

Coal, ontana Rosebud with ash removed

83

Page 90: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

-10. 10. 30. 50. 70. 90. 110.I-i ======= =====-= I ====!== =-==2===== ! ======= ==== == 1

110. I

I 2 *S = 180.8 - 27.1 K - 1.64 K - 1.73 A + 0.514 K A *

I C *

I S = SOx removal in percent *

I B*

I K = ratio of mass K2C03 to mass Sulfur in combustor

I *

90. 1 A = Stoichiometric air ratio in percent *+~ ! * B

aJ ~ . I *

I *

J K* HI *

>o 70. 1EI *x

o I

,I *" ! *GFE

- 50 I A*

! * D *D C

*!I *30.I *I *

I *

I *

10. 1 *I *

I *A

I *

1*

I . Actual SOx Removal in Percent

-10 1=-!0. 30. 50. 70. ==I===== !=-=. 110.-10. 10, 30. 50. 70. 90. 110.

Figure 4.1.1-9 Very crude model of SOx removal based upon data from

(Dicks,et al.,1977) and (Bienstock, et al.,1971).

84

Page 91: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 4.1.2-1

ESTIMATED NOx EMISSIONS FOR OCMHDX

85

Reference lb/106 ug/J lb/kWh ppmBtu input output

(General Electric, 1976) base case 0.3 0.129 .002 248

(General Electric, 1976) SRC 0.3 - .0023 -

(Jackson, et al., Oct. 19;76) less than

Reference 0.7 - -

(Shaw, 1978) 0.71 0.304 - 585

(Folsom, 1978) Old EER set 0.72 0.309 - 595

(Folsom, 1978) New EER set 0.685 0.295 - 566

(Mori, Taira, 1972) - - - 243

(Mori, Taira, 1973) - - - 50

(Pepper, Eustis, Kruger, 1972) - - - 283

(Penny, Bourgeois, Cain, 1977) - - - 135-300

(Bienstock, et al., 1973) - - 150

(Hals, Lewis, 1972) - - 160-260

(REA, 1976) - - 155

(Shaw, Cain, 1977) 1.10g/kWht 2.3g/KWhe

Page 92: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

I0,00c

I000

a-

z

0

zz0zZ

100

I0

0.1

0 01

0 001

I I I I I I I I I I !

0 800 1600 2400 3200 4000 4900 5600GAS TEMPERATURE IN F

Figure 4.1.2-1 NO-Equilibrium Concen-trations in Combustion Gases(Hals, Lewis, 1972)

1

wW0

z0zo

TEMPERATURE (F)

Figure 4.1.2-2 The Variation in Nit-ric Oxide (NO) EquilibriumConcentrations for CombustionProducts From Coal with Airfor Different Preheat Temper-atures and Fuel-air Ratios(Hals, Jackson, 1969)

Table 4.1.2-2 NO Formation in 2-Stage Combustiont(Benstock, et al., 1973)

% Stoichio-metric oxypen

11010210195949492929188

NO,

440026952650880782727543496496356

CO

vol-%

1.142.172.274.306.616.908.117.539.95

10.40

2000 2150 2450 2850% Stoichio-metric

NOX ,p Pm

Gas entrance temperature,or

I b NU'

1()6 BtuCO

vol-%

110102101106103105107107104104

x

x

x

x

K

408626122225150351550575885885814

3.132.001.700.120.270.400.430.660.640. 59

00.10.40O000OO

86

FOTAL GAS PRESSURE: t ATM

_- _i i i I I I I I i

Second Staoe�I_

:I - - - --

2000- "' r ----------V---------'------'

- _I l _ _= _ I s-- _ _------Y

------ _ _ _- _ _. · I I__ �. .

C------

inn r\nnI U,UU

b

I

-

F jjL Stag - --------- C·--·L--Y-·SamlinP at s0nn-n6NN()-n% S toich i), -- VV- -- - P 'FFI. t- , P t 1, - - "' ��""�` LL"CI`�L'

Page 93: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

equation) analytic models, some of this discussion is really in order to

explain extrapolation of the results in Table 4.1.2-2 to large

facilities. Comparisons of analytic models is therefore made at a couple

of key points in their simulations.

Using principles of thermodynamic chemical equilibria and postulated

kinetic mechanisms the principal concern of analytic models of NOx

emissions is the temperature-time-composition environments of the

process. The tremendous amount of nitric oxide formed during combustion

slowly decomposes to its elements. At some point in this process the mix

is frozen and remains unchanged, and analytic models of the

time-temperature history are aimed at estimating that freeze point.

In addition to a considerable amount of work at MIT there have been

analytic models developed and used by:

(1) NASA-Lewis TRAN-72 (Patel, et al., 1976)

(2) US Bureau of Mines (Bienstock, et al., 1973)

(3) Avco (Hals, Lewis, 1972)

(4) Stanford (Pepper, Eustis, Kruger, 1972)

(5) Tokyo Institute of Technology (Mori, Taira, 1972)

(6) STD (Patel, et al., 1976)

(7) Exxon (Shaw, 1978)

(8) EER (Folsom, 1978)

(9) Argonne (Chung, Smith, 1977)

Comparisons of these models can first be made for the temperature-time

profiles of their simulations, see Figures 4.1.2-3 through 4.1.2-7.

Exact specification of the cooling rate is essential because high

87

Page 94: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Figure 4.1.2-3 Temperature Profilesin MHD Plants (Bienstock, etal., 1973)

IC.2

z'4

0,

o2

z0

o4zI-zz0

U

Figure 4.1.2-4 ED-teamS Power Plant

with Two Stage Combustions forControl of Nitrogen Oxides.200F assumed Air Preheat Tem-

perature (Hals, Lewis, 1972)

NOZZLIE N x ZLS

NGLE rTAG COMBI; r.T ,lN

j . 0DUC1 r Tt CA)' O TH

- ~ ~~~~~~~ rAt) %TR2EWLJT:D

I

0 ' ~~ 2 4 t- . | | *19 ~~PREHE ATE FPt~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I | ifFUSERI | |

..' , PA

N T

i i

,4 . _ | ] , | _ t . _-- _- I .L- -- L~ _~ -- . -J

40 '0 2 IO '

TIUE S1C i

Figure 4.1.2-5 MHD-Steam Power Plantwith Two Stag4 Combustions forControl of Nitrogen Oxides.300 Assumed Air Preheat TeU-perature (Hals, Lewis, 1972)

Figure 4.1.2-6 Teperature-Time History in OCMHD (Pepper, Eust4iKruger, 1972)

88

zI',4

o

z

zU20

z

A

Page 95: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

i ....... diffuser boiler -7 Mn4r. ! ~trailht t-c . ... o( = const.- -

28

24

200

1

1200 -

8

40(

Figure 4.1.2-7 Analytic ResultsTemperature-Time History(Mori, Taira, 1973)

Dilf fuser- - Boler

r Air peheciter

-_1 _04% SA ( 700°K)

.... 2460ppm

94% S A

1500 KI

165 ppm

i I I I I I i I I

005 0.1 0.2 0.5 1.0 2.0 5.0 10 20

T IME, seconds

I

Figure 4.1.2-8 NO Levels in MHDPlant (Biewstock, et al.,

16

zx

17

0

-10

5

0zx 2

-03

5

2

_ r04

1973)Figure 4.1.2-9 NO-Time History in

OCMHD (Pepper, Eustis, Kruger,1972)

162 101 t sec 1I -Figure 4.1.2-10

Figure 4.1.2-10 AnalyticalPlant, &v-i.

89

Results, Taira,

for the1973)

Optimize

for

10000

Z 50000o

0

9 200Z 1000

I

,1 I.E U'I

IC

d Power

i-t-

3

I*, s';cr I.~~~~~~~~~~~~~~~~~~~~~I~~~~b·~~~~~' 'ih~~~~~~~

n >

-ii

-85 -pt

""IU()

to 2TIME :SC)

. - I

I

I

Page 96: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

cooling rates cause decomposition to stop, or freeze, at high NOx

concentrations, Translation of these temperature profiles into NOx

histories, including the end frozen flow point are shown in Figures

4.1.2-8 through 4.1.2-11. Gas resident times at high temperatures and

substiochiometric air, SA, conditions can be seen to be very important

see Figures 4.1.2-12 through 4.1.2-15. Other important factors for NOx

control are method, position, temperature, and pressure of secondary air

injection, with some illuminating sensitivity analysis on this subject

shown in Table 4.1.2-3.

The second NOx control scheme is now taken up, namely, that of

maximizing NOx formation and then scrubbing it out as a saleable

fertilizer additive (Hoover, et al., 1976), (Cutting, et al., 1977), see

Figure 4.1.2-16. It has been determined that NOx emissions could be as

high as 4800 ppm and that a Mitsui wet process could be best for its

recovery. The process has been concluded (Cutting, et al., 1977) to be

not competitive, losing four points in efficiency with 10% higher capital

investment and cost of electricity. The third NOx control scheme, use

of pure oxygen, also is at a substantial cost disadvantage (Hals, Lewis,

1972).

A crude parametric model of NOx from the staged OCMHD process is

developed in Figure 4.1.2-17.

4.1.3 Trace Metals

There are no experimental studies of trace metals from MHD

facilities. Some very crude analytic work would be very useful. There

is speculation (Harris, Shah, 1976) that all trace elements will vaporize

90

Page 97: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

' t

Czz

f .

:,i

2jLirl_L, ,

!i.,

-1 i

Li

31I

<Z

'

/

H-

I-,

/

/

0 0 o 0o

C)Ludd ON

CC

0kQ

09 0

It4

4lo

00

o0

· ,X

EE)I Hii- X

f~t-

r-4

II 1 c

'40U

- C(ZV

0 CIV) (NFq C:

\o, (, X"i c Owa- 1(N (N

_\9 94

-0(- VAI ' 'Sso-1d91

NJ

rN

G-

r\!0C"3:.

_ __ · __ __ _ _ _0__

(N

0· te

ar

1*

0_ __ __ __ __ ___

-L

Page 98: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

4-coI

I-i

c"JC)

E o0--I0-

C\1 C)

I I I I I

0otl

oCoco

o-4-

C)0t~J

wtasAWS 0o .LX3 :e (;at) uwdd ON

I. q

cuJOVo

KO

o .. uE 0Q)

C) 0o ELO 0 0

C a

-O 0X 4

t= 40j0C ¢

0

c O

L7 D 0

O 0

O s- ..Ca) )

0, 44-- 0V

LdX HcU

43

l ;zpc e

92

___ __ _ __�__ ______

-- ---r - --- I-

Page 99: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

* ANALYTICAL COMPUTED DATAT EXP DATA (RANGE) 5% FUEL RICH

1 EXP DATA (RANGE) 10% FUEL RICH

5% FUEL RICH(ANALYTICAL DATA )-

10% FUEL RICHNALYTICAL DATA)

500 750 1000 1250 1500

GAS COOLING RATE-°K PER SECOND

Figure 4.1.2-13 Final NO -concentra-tions in MND Eaist Gas Accor-ding to Experimental and Ana-lytical Data (Hals, Lewis, 1972)

0o 2 4 6 8 10RESIDENCE TIME (sec)

Figure 4.1.2-14 NO Emissions in anMHD Power Plant as a Functionof Residence Time for the Ra-diant Boiler and Air PreheaterEaCh (Jackson, et al., 1976)

93

1400

1200

I000

800

600

400

Ea.C.

Zz

0

zwoz00x0

200

250

I-I-- I T I 1

--- Equilibrium 0 concentrationassumed

---- Non-equilibrium 0 concentrationQ'-\ allowed

-- '---Present EPA limits for\ cool considered

"a~~R, -__

3000

E00C

- 200C

(-

zo0

(Z

0z

))

fnI I m I [ [ I m · m n

n

\ . . . .

92% Al -I '_RIiI

v ·-

Page 100: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Oo Oo oU)

C)Co

was£S Jo 1x3 le (4laM) wdd ON

oO.r4

e;4-

6,

0

-4

CDo O4m

o O

p4· o

Oi

0r'

4-

NI O O

4) 0cu J

O--

* J

94

a)

m-I-r-Li)CAs

4-,

co

-

E.E sA

Lttn ei OLr) '.

I. I II - I ,_ . ... .... __ _ _

oCco.

_ _I _ -- Ir -- -- �III�L·II�IIIY

Page 101: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table 4.1.2-3 Open Cycle MED Sensitivity of NOx Ei ssionsEstimates (Folsom, 1978)

SYSTEM MODIFICATION

Baseline Configuration

MHD Channel Residence TimeReduced by Factor of Two

Diffuser Residence TimeReduced by Factor of Two

Linear MHD ChannelPressure Profile

Frozen Chemistryin Nozzle

Combustor NO ConcentrationReduced to Zero

Linear Temperature Profilein Radiant Furnace

Radiant Furance ResidenceTime Increased by 0.5 sec.

Secondary Air Injection inExit Plenum Delayed 0.5 sec.

First Order Approximation ofRadiant Furnace ThreeDimensional TemperatureProfile

* NEW RESIJLT

NO CONCENTRATIONAT END OF EXIT

PLENUM (PPM)

566

572*

568*

566

565 *

590

516

417

677*

PERCENT CHANGEFROM BASELINE

0

+ 1.06

+ 0.35

- 0.18

+ 4.24

- 8.83

-26.3

+19.6

95

. _ _ .- -

---- I I

Page 102: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

,-

o

-ii-

ow4WZI >

2 :4wwO

U(A0IxU

a-a:w

<WCL I

W

ILn

0

J m) a

ZW I.~. n OD-'r'u

oo.0

O H

o P ,

d 0_

o to

e- IgF.e oO H

H

04

96

v,4

0yUAU)

aLclM4

-JW

d4oz+

U

Page 103: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

0. 750. 1500. 2250. 3000. 3750. 4500.X10**3 == == ====:=== I ==== : ===== = =_==== ==

4..50' *

N = 104066. + 241.8 S1 -61.2 T - 1682. S2 - .4374 ST*

+ 4.91 S1S 2 + 1.001 S2T

E 4.00 N = NOx concentration at exhaust in ppmI *

S= Percent stoichiometric at st stage

S : Percent stoichiometric at 2nd stage *

3.50 I T = Second stage entrance temperature OC *

x IXx I *° 3.00"' I *UI

I*a !L 2.50 * *I *

I C*

I *

i~~ *2.00 !.50I I *

I *

*1 *1.50 I *· ! 1*I *! *

1 *

0.50 1 *I E F

I D*

I*0.00 * Actual NOx at Exhaust in ppm

O. 750. 1500. 2250. 3000. 3750. 4500.

Figure 4.1.2-17 Very crude model of NOx exhaust from two-stage

combustor based upon (Bienstock,et al.,1973) data.

97

Page 104: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

in the combustor and form sulfates, oxides, chlorides, and fluorides and

should be collected with the K2S04. (Adding to this the inevitable

corrosion products of the facility materials, and some refining of the

seed material thus appears necessary.) In (Harris, Shah, 1976) they

reason that 1% of these elements will appear in the stack gas.

Considering particle size distributions, adhesions, and actions of vapors

it could be that the eventual levels will be somewhere between the

conventional coal combustor levels and these optimistic 99% removal

levels, see Table 4.1.3-1. If any of the numbers in these fairly broad

ranges are causes of concern then research ought to be directed at those

sensitive areas.

4.1.4 Particulates

Estimates of particulate emissions from full-sized OCMHD are shown

in Table 4.1.4-1. There are several reasons why particulates may not

present a problem for OCMHD's:

(1) to be economically viable 99.5% of seed and ash particles must

be captured, see Figure 4.1.4-1;

(2) mechanical cyclones, Venturi scrubbers, baghouse filters,

electrostatic precipitators and other collection devices are

available technologies;

(3) some pre-generation, hot-side precipitators may be necessary to

avoid slag buildups and this would further reduce particulate

emissions;

(4) combustion parameters that reject most of the ash as slag will

pay great dividends in seed recovery, see Figure 4.1.4-2.

The materials that reach the precipitators consist of approximately 10%

of the total coal ash and 50% of the K 2SO4 formed in the flow

(Harris, Shah, 1976).

98

Page 105: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 4.1.3-1

ESTIMATED TRACE METAL REMOVAL PERCENTAGES IN OCMHD

TABLE 4.1.4-1

ESTIMATED PARTICULATE EMISSIONS FROM OCMHD

Reference lb/lO6Btu input lb/kWh output

(General Electric, 1976) base case 0.1 .0008

(General Electric, 1976) SRC 0.06 .00046(Jackson, et al., Oct. 1976) less than

reference 0.1(Shaw, Cain, 1977) totalparticulates 0.15 g/kWht 0.32 g/kWhe

(Shaw, Cain, 1977) fineparticulates - -

(Harris, Shah, 1976) 0.1 .0007General Electric, 1976) 0.1 .0007

(REA, 1976) 0.1 -

99

Element Percent of Element Entering SystemThat Is Removed Before Stack Emission

Antimony 25-99

Arsenic 60-99

Beryllium 25-99

Boron 25-99

Cadmium 35-99

Chromium 0-99

Cobalt 20-99

Iron 0-99

Lead 60-99

Manganese 0-99

Mercury 90-99

Selenium 70-99

Uranium 0-99

Vanadium 30-99

Zinc 28-99

Page 106: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

cumulative

or

99.4 99.5 99.6

Figure 4.1.4-1 Precipitator Efficiencies for 39 CasesInvestigated in Westinghouse Phase I ECAS Studies(Hoover, et al., 1976).

100

30

20

10

0

40

Page 107: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

uu I I I I

95

a

o

o

(n 90

0

8570 75 80 85 90 95 100

SLAG REJECTION, percent

Pigure 4.1.4-2 Potassium Recovery from Fly Ash VersusSlag Rejection in Combustor (Bienstock,et al.,1973).

101

o 0.7g mol K2CO3/kg coalX I.Og mol K2CO3/kg cool

+ Equiv .Og mol K2 CO3 /kg coal

I I I I 1

__; A -IU I I I- 1

I I

Page 108: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

A slightly different collection procedure may be required for

peaking MHD's, but dust concentrations less than 0.01 grain/SCF are

expected (Rosa, et al., 1970).

4.1.5 Other Air Emissions

Estimates of some of the other air emissions from OCMHD are given in

Table 4.1.5-1. Thermal discharges to the air would be considerable in an

MHD-Gas turbine design, but in the MHD-Steam these would be less than for

conventional combustors, due to the greater expected efficiencies of

MHDs. Although heat is the pollutant in air most positively correlated

with excess mortalities, the heat dispersive potential of the atmosphere

is considered so enormous that there have been considerations of pushing

additional heat up the stack to increase the buoyancy of the MHD plume

(Rosa, et al., 1970) for better disperson of the other gaseous and solid

pollutants.

TABLE 4.1.5-1

OTHER AIR EMISSIONS FROM OCMHD

102

Heat to Air

(General Electric, 1976) base case 606 Btu/kWh

CO

TShaw, Cain, 1977) nil(Bienstock, et al., 1971) 0

(General EleEriTc, 1976) 0

(Hals, Lewis, 1972) with single stage 4.0%(Hals, Lewis, 1972) with secondary stage 0.4 to 0.6%

Hydrocarbons

(General Electric, 1976) 0(Rosa, et al., 1970) 0

i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

Page 109: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

There is a considerable amount of CO created in the combustion

process. The carbon monoxide concentrations exist in accordance with

several equilibrium relationships including:

2C0 2 = 2C0 + 02

CO + H20 = CO2 + H2.

The fraction of CO in these chambers can be as much as 10.4%, see Table

4.1.2-2. In the OCMHD design currently of interest, however, this CO is

completely oxidized in the second stage, see again Table 4.1.2-2.

There is no expectation for MHD exhaust to contain any unburned fuel

or hydrocarbons (Rosa, et al., 1970).

Noise from an MHD facility will be less than that from gas turbines

of the same power (Rosa, et al., 1970). With the secondary heat recovery

cycles attached there should be sufficient suppression of noise so that

no additional attenuation will be necessary.

4.2 Emissions to Water

Table 4.2-1 shows estimates of some of the water wastes and

emissions from OCMHD facilities. Figure 4.2-1 indicates the substantial

reduction in thermal emissions to water from OCMHD. The principal reason

for this amount can be seen to be the higher expected efficiency of these

facilities. Quantifications have not been attempted of what amounts of

total suspended solids, oil, grease, copper, iron and other heavy metals

might be released to the water system supporting the OCMHD facility.

103

Page 110: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

0 TOTAL HEAT REJECTED PER UNITW _ Fl ErITPI T Y T r.PN9PATrFn

W

2.0

w 1.5LU

z

1.0

0

o .5

I

I- ?0

l-orAL-

N.PC EAR.PRESENT

_ I

CONVSTEAM

7 =OVERALL THERMAL EFFICIENCY

CONDENSER HEAT REJECTED\ Ei STACK + OTHER HEAT REJECTED

ITOTAL

N

N CLEAR (AD';ANCED I

MHD-IGAS MHD-

TURBI Ej / TEA

S 1 11 S ~~~~~~~~~~~~~~~~~~~~~~~~~~~II 20 30 40 50 60 70

OVERALL THERMAL EFFICIENCY, 7/ %

Figure 4.2-1 Effect of Power Generation Efficincyupon Thermal Pollution (Bienstock,et al.,1971).

104

I

Page 111: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 4.2-1

ESTIMATES OF WATER EMISSIONS FROM OCMHD

Heat to Water

(General Electric, 1976) base case 2468 Btu/kWh

(Harris, Shah, 1976) 2377 Btu/kWh

(General Electric, 1976) SRC 2040 Btu/kWh

Waste Water

(Shaw, Cain, 1977) 0.051 kg/kWhe

(Harris, Shah, 1976) 0.75 lb/kWh

(General Electric, 1976) 0.09 lb/kWh

Liquid Waste

(Shaw, Cain, 1977) 24.60 g/kWht

(Shaw, Cain, 1977) 51.0 g/kWhe

4.3 Solids and Resources

The ash wastes shown in Table 4.3-1 are just slightly under the

total ash that comes in with the coal. The same is true of the sulfur

output shown in Table 4.3-2. The coal input to the plant is held outside

in a 60-day supply pile; seed material is held inside. Slag and other

wastes are held temporarily onsite before trucking to disposal. With

holding ponds and all of this storage for the 30-year life of the plant

it can be seen why the plant land requirements are only a small fraction

of the total land requirements once disposal needs are considered.

4.4 Other Fuel Cycle Effects

The effects of coal extraction and transportation, facility

construction, aesthetics, and other indirect environmental consequences

of MHD plants will be very similar to those consequences for conventional

105

Page 112: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 4.3-1

ESTIMATES OF SOLID WASTES FROM OCMHD

Furnace Solids(General lectric, 1976) .0534 lb/kWh

Fly Ash(General Electric, 1976)(Shaw, Cain, 1977)(Harris, Shah, 1976)

.006 lb/kWh0.029 kg/kWh0.058 lb/kWh

Total

(Shaw, Cain, 1977)

(Shaw, Cain, 1977)(General Electric, 1976)

14.01 g/kWht29 g/kWhe

0.082 lb/kWh

106

__

L

Page 113: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

TABLE 4.3-2

CONSUMPTION OF NATURAL RESOURCES AND SOLIDS

Land (acres/100 MWe)General:General

"Harris,:Harris,

(Hoover,

(Hoover,(Hoover,

Electric, 1976) base case main plantElectric, 1976) SRC main plantShah, 1976) main plantShah, 1976) disposal landet al., 1976) main plant

et al., 1976) disposal land

tT., 1976) railroad access

Total Water (gal/kWh)(General Electric, 1976) base case(General Electric, 1976) SRC(Shaw, Cain, 1977)(Harris, Shah, 1976) disposal land(Hoover, et al., 1976)

Cooling Water (gal/kWh)(General Electric, 1976) base case

(General Electric, 1976) SRC

(Harris, Shah, 1976)(Hoover, et al., 1976)

K2SO4 Seed MaterialShaw, Cain, 1977)Harris, Shah, 1976)Hoover, et al., 1976)

Sulfur Output(Shaw, Cain, 1977)

(Shaw, Cain, 1977)(Harris, Shah, 1976)

Coal Input

(General Electric, 1976) base case(General Electric, 1976) SRC(Shaw, Cain, 1977)(Harris, Shah, 1976)(Hoover, et al., 1976)

3.713.715.1

84.011.64 to 24.3811.36 to 14.7523.05 to 28.13

0.220.21

0.727 kg/kWhe0.33

0.530 to 0.612

0.220.21An oU.3L0.516 to 0.596

.00059 kg/kWh

.00120 lb/kWh

.00027 to 00535 lb/kWh

11.4 g/kWhe4.60 g/kWht0.021 lb/kWh

0.65 lb/kWh0.71 lb/kWh0.297 g/kWhe0.655 lb/kWh0.65 to 1.07 lb/kWh

107

I-- - --- --- __

Page 114: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

coal-fired facilities. There are computer programs that can be used to

simulate some of these effects, such as direct fuel cycle effects from

MERES at Brookhaven National Labs or indirect national environmental

effects from SEAS at U.S. Environmental Protection Agency. A listing of

some of these general impacts from coal-fired facilities can be found in

(Jahnig, Shaw, 1977).

108

Page 115: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

5.0 Conclusions

There is considerable trade-off potential between the various

performance measures for OCMHD power plants. As such there is little

doubt that current source emission standards, or even stricter standards,

could be met. As increased demands are put on various aspects of OCMHD

performance, however, the ultimate performance measure that is likely to

suffer is economic cost. And thus the eventual market penetration of

this technology will depend directly upon the comparative degree to which

the costs have been held in line after all the problems have been solved

and the emission and resource constraints met.

Some of the problems that have been perceived to most severely tax

that ultimate performance measure are, in order of priority:

(1) considerable variations in types and severity of problems at

different facility sizes;

(2) short life of materials exposed to exhaust gases and

particulates, particularly electrodes and insulators, and the

mutual compatibility of the materials under thermal cycling;

(3) slag coating of components, particularly the heat exchangers,

slag tapping techniques, and high slag rejection in combustion

area;

(4) arcs in passage of currents through cooler layers, and power

conditioning system;

(5) workable and durable air preheater;

(6) good uniform mixing and feed of air and fuel;

(7) suitability for reuse of regenerated seed, and homogeneous

seeding with that regenerated material;

109

Page 116: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

(8) cost of stable superconducting magnet system;

(9) durability of heat exchanger surfaces in secondary furnace;

(10) energy costs of seed recovery system;

(11) cost of seed losses, especially in the slag, and investment

cost of seed regenerator;

(12) avoidance of excessive heat losses, and effects of necessary

thermal gradients between superhot and supercool areas;

(13) workability of NOx control;

(14) prediction, optimization, and maintenance of working fluid

conductivity, particularly boundary layer and particulate

influences, and feedback from channel to combustor;

(15) expense of integrated power plant control system;

(16) costs of high-temperature heat exchangers; and

(17) costs of coal drying and handling.

Although most of these problems are only indirectly related to emissions

and energy efficiencies it is believed that the trade-offs involved in

solving these problems will significantly affect those performance

measures in the commercial OCMHD. To ensure that the most appropriate

trade-off of cost versus emissions is reached it seems essential that

emission standards be based upon power plant outputs, so investments in

high MHD efficiencies are adequately rewarded.

From the standpoint of recommending future work in this area it

would be desirable to have maintained an updated data base of MHD

emissions and efficiency information. An ongoing project at MIT is

concerned with putting together just such a data base for fluidized

110

Page 117: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

bed combustors. There are several advantages to having such data bases

available for all of the advanced energy technologies:

(1) they can be used as design tools to search for attractive

configurations and operating parameters, particularly those

unexpected synergistic effects that could be identified and

exploited;

(2) they can be a ready source of latest information on the

performance of that energy cycle;

(3) analytical models can be systematically tested against such a

data base to evaluate the gap between theoretical and

experimental information; and finally,

(4) they can be used to systematically identify and quantify the

need for key pieces of information that are now inadequately

known.

This final objective is perhaps the most important in that it could

be a mechanism for developing R&D strategies.

111

Page 118: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

6. References and Bibliography

Alad'ev, I.T., et al., 1969. "Studies of Liquid-Metal MHD Cycles at theKrzhizhanovskTT Power Institute," Tenth Symposium on EngineeringAspects of Magnetohydrodynamics, Cambridge, MA, pp. 39-40, March 26,CONF-690348.

Alyautdinov, R.A., et al., 1974. "Computer Model of the U-25Installation," Colloquium on the Problems of MHD Energy Conversion,Moscow, pp. 233-239, February, CONF-740242.

Amend, W.E., et al., 1975, "Investigation of Two-Phase Liquid-MetalMagnetohydrodynamic Power Systems," Argonne National Lab., Argonne,Ill., 14 p., CONF-750810-1.

Amend, W.E., 1975. "Open Cycle MHD Systems Modeling Studies," ArgonneNational Lab., Argonne, Ill., 13 p., CONF-750669-2.

Annen, K.D., R.H. Eustis, 1977. "MHD Systems with Low CoolingRequirements," 16th Symposium on Engineering Aspects of MHD,Pittsburgh, PA, May 16-18.

Argyropoulos, G., 1976. "Magnetohydrodynamic (MHD) Cycles for ElectricPower Generation," Issue paper to U.S. Senate Office of TechnologyAssessment.

Atomic Energy Review, 1972. "MHD Electrical Power Generation -- 1972Status Report," Vol. 10(3), pp. 304-361.

AVCO Everett Research Lab., Inc., 1970. "Study of MHD Power SystemBurning Char with Oxygen," Everett, MA., 27 p., Feb.DI-14-32-0001-1201. PB-235-776.

AVCO Everett Research Lab., Inc. 1974. "Development Program for MHDPower Generation," Interim Technical Report, Everett, MA, 250 p.,June.

Bates, J.L., 1976. "Characterization and Evaluation of Materials for theUS-USSR MHD Program," Quarterly Report, Battelle Pacific NorthwestLabs., Richland, WA, 70 p., January-March, BNWL-2004-2.

Beecher, D.T., et al., 1976. "Energy Conversion Alternatives Study(ECAS), WestEinghouse, Volume III. Summary and Advanced Steam Plantwith Pressurized Fluidized Bed Boilers," Westinghouse ResearchLabs., Pittsburgh, PA, November. PB-268-558. NSF/RA-760590.

Beecher, D.T., 1975. "Study of Advanced Energy Conversion Techniques forUtility Applications Using Coal and Coal-Derived Fuels,"Westinghouse Report No. 75-9E9-ECAS-R1, pp. 4-43.

112

Page 119: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Bergman, P.D., D. Bienstock, 1973. "Mixed Potassium-Cesium Seeding inOpen-Cycle MHD Power Generation," 13th Symposium for EngineeringAspects of MHD, Stanford, March.

Bergman, P.D. et al., 1975. "Conceptual Design and Economics of an MHDPilot Plai," Intersociety Conference on Energy Conversion, Newark,Delaware, pp. 512-23, August.

Bergman, P.D., D. Bienstock, 1976. "Utilization of Western Coal for MHDEnergy Conversion," 15th Symposium on Engineering Aspects of MHD,Philadelphia, PA, May 24-26.

Bergman, P.D., D. Bienstock, 1977. "Economic and Energy Considerationsin MHD Seed Regeneration," 16th Symposium for Engineering Aspects ofMHD, Pittsburgh, PA, May 16-18.

Bienstock, D., et al., 1970. "High-Temperature Combustion of Coal Seeded

with Potassium Carbonate in the MHD Generation of Electric Power,"Bureau of Mines Report of Investigations 7361, 33 p.

Bienstock, D., et al., 1971. "Environmental Aspects of MHD PowerGeneration, T71 Intersociety Energy Conversion EngineeringConference, New York, pp. 1210-17.

Bienstock, D., et al., 1973. "Coal Combustion Aspects of MHD PowerGeneration," Conference on American-Soviet Cooperation in the Fieldof MHD Power.

Bienstock, D., et al., 1973. "Air Pollution Aspects of MHD PowerGeneration,' Engineering Aspects of Magnetohydrodynamics, Universityof Mississippi, pp. vii.1.l-vii.1.10, March 26, CONF-730311.

Bienstock, D., et al., 1974. "Coal Combustion Aspects of MHD PowerGeneration," Colloquium on the Problems of MHD Energy Conversion,Moscow, pp. 50-62, February, CONF-740242.

Blair, D., 1977. "Open Cycle MHD," Draft of Paper, Exxon Research andEngineering Co., Linden, N.J., April 12.

Bogdanova, T.N., et al., 1973. "Study of the Energy Efficiency ofThermal Electric Power Stations with MHD Generators," Izv. Akad.Nauk SSSR, Ener. Transp. No. 5, pp. 143-9, Sept.-Oct.

Bohn, T., et al., 1972. "Applied Magnetohydrodynamics Volume 10. MHDExperimental Installation AGRAS II: Description and OperatingExperience," Kernforschungslanlage, Jeulich, 85 p., August.Jul-883-TP.

Brogan, T.R., 1963. "Electrical Properties of Seeded Combustion Gases,"in Progress in Astronautics and Aeronautics, Vol. 12, pp. 319-345,Academic Press, New York.

113

Page 120: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Brogan, T.R., et al., 1974. "Preliminary Design of a Magnetohydrodynamic(MHD) ChanneT-for the USSR U-25 Facility." Final Report. MEPPSCP,Inc., Boston, MA, 304 p., November. FE-1733-T-1.

Brouns, R.J., 1976. "Environmental Impacts of Nonfusion Power Systems,"Battelle Pacific Northwest Labs, Richland, WA, 130 pp., Sept.

Brown. D.H., et al., 1976. "Energy Conversion Alternatives Study(ECAS). eneral Electric Phase II Final Report Volume I, etc..."General Electric Corporate Research and Development, Schenectady,NY, December. PB-268-466 NSF/RA-760582.

Brunsvold, A.R., E.S. Pierson, 1976. "Liquid-Metal MHD Coupled toCoal-Fired Fluidized-Bed Combustors," Argonne National Lab.,Argonne, IL, 9 p., CONF-760556-1

Buende, R., J. Raider, 1973. "Designing MHD Generator Systems forMinimum Power Production Costs," Energy Convers. 13, No. 4, pp.143-148, October.

Burkhart, J.A., et al., 1977. "Open-Cycle Magnetohydrodynamic/Steam

System," inTNSA, 1977), pp. 201-245.

Carter, C., 1969. "Convective and Absolute Instabilities in an OpenCycle MHD Generator," in Proc. Tenth Symp. on Engr. Aspects of MHD,Mass. Inst. Tech., Cambridge, Mass.

Chung, P.M. and R.S. Smith, 1977. "An Analysis of a High-TemperatureCoal Combustor According to a One-dimensional Flow Model," ArgonneNational Lab, ANL/MHD-77-2, October.

Corman, J.C. et al., 1976. "Energy Conversion Alternatives Study(ECAS). eiieral Electric Phase II Final Report Volume I, etc...."General Electric Corporate Research and Development, Schenectady,NY, December. PB-268-466 NSF/RA-760582.

Corman, J.C., R.B. Fleming, L.P. Harris, and P.V. Pohl, 1976. "EnergyConversion Alternatives Study (ECAS), General Electric Phase I.Final Report, Vol. II, Advanced Energy Conversion Systems: Part 3,Direct Energy Conversion Cycles," NASA CR-134948-II-3, Feb.

Cutting, J.C., et al., 1977. "Open-Cycle Coal Burning MHD Power Plantsfor CommerciaFService," 16th Symposium Engineering Aspects of MHD,Pittsburgh, PA, May 16-18.

Dicks, J.B., 1972. "MHD Central Power: A Status Report," Mech. Eng., p.14, May.

Dicks, J.B., et al., 1974. "The Direct Coal-Fired MHD Generator System,"14th Symposium Engineering Aspects of MHD, April.

1!4

Page 121: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Dicks, J.B., et al., 1974. "Direct Coal-Fired MHD Power Generation," J.Eng. Power, 96, No. 2, pp. 153-157.

Dicks, J.B., et al., 1975, 1976. "Development Program for MHD DirectCoal-Fired Power Generation Test Facility," Quarterly ProgressReports, Tennessee University, Tullahoma, TN, FE-1760-1, 2, 10, 22.

Dicks, J.B., et al., 1977. "A Description of the Direct Coal-Fired MHDFacility-at-he University of Tennessee Space Institute," 12thIECEC, pp. 995-1003.

Dicks, J.B., et al., 1977. "Investigation of Direct Coal-Fired MHD PowerGeneration," 16th Symposium Engineering Aspects of MHD, Pittsburgh,PA, May 16-18.

Dinelli, G., 1966. Effect of Various Parameters on the Efficiency of theMHD Power Stations," International Atomic Energy Agency, Vienna,Austria, 26 p., July 4, CONF-660704-54.

Donshoi, K.V., et al., 1966. "Problems of MHD Conversion: SomeExperimentaT e-rsults," International Atomic Energy Agency, Vienna,Austria, 20 p., July 4, CONF-660704-56.

Duggan, J.L., Cloutier, R.J. (eds.), 1975. "Energy Sources for theFuture. Proceedings of a Conference Held July 7-25, 1975 in OakRidge, TN," Oak Ridge Associated Universities, Inc., TN, 312 p.,July. CONF-750733.

Edelston, B.S., E.S. Rubin, 1976. "Current and Future Use of Coal in theNortheast," Brookhaven National Lab., Upton, NY, 151 p., May,BNL-50560.

Electric Power Research Institute, 1975. "An Overall Program for theDevelopment of Open Cycle MHD Power Generation," June, EPRI-SR-12.

Electric Power Research Institute, 1974. "EPRI/OCR Workshop on theDevelopment of Open-Cycle MHD," Electric Power Research Instituteand Office of Coal Research, Palo Alto, CA, May.

ERDA, 1974, 1975. "U-25 MHD Pilot Plant," Inst. Vysokikh Temperatur,USSR, ERDA-tr-102-P1, 2, 3.

ERDA, 1975. "Magnetohydrodynamics Power Generation and Theory,"Technical information Center, Oak Ridge, TN, 875 p., November,TID-3356.

ERDA, 1975. "Second US-USSR Colloquium on MagentohydrodynamicElectrical Power Generation," Washington, D.C., 327 p. CONF-750669.

ERDA, 1976. "Third US-USSR Colloquium on MHD Electrical PowerGeneration," Moscow, USSR, October 20-21, CONF-761015.

115

Page 122: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Eustis, R.H., C.M. Kruger, 1975. "Atmospheric Pollution Aspects ofMagnetohydrodynamic Power Plants," Stanford Univ., EPRI-110-FR,(PB-248 331), November.

Eustis, R.H., S.A. Self, 1975. "MHD Phenomena at High Magnetic Fields.Interim Technical Report July 1972 - December 1974," Stanford Univ.Dept. of Mechanical Engineering, Calif. 13 p., February. FE-1227-1.

Fabris, G., et al., 1976. "Influence of Wall-Jet Gas Injection onLiquid-RFtaT MHD Generator Performance," Argonne National Lab.,Ill., 8 p. CONF-760556-2.

Federal Register, 1971. "Standards of Performance for New StationarySources," 36(247), 24876-24895, December 23.

Feldman, H.F., et al., 1970. "The Effect of Air/Fuel in theMHD-Generator on the Operation of an Open-cycle MHD-topped PowerPlant," 10th Symposium on Engineering Aspects of

Magnetohydrodynamics, Cambridge, MA, March 26-28.

Feldman, H.F., et al., 1970. "The Effect of Air/Fuel in theMHD-Generator on the Operation of an Open-cycle MHD-topped PowerPlant," Energy Conversion, Vol. 10, #2, April.

Feldman, H.F., Simons, W.H. and Bienstock, D., 1968. "Factors Affectingthe Optimum Feeding Levels of Coal or Char Fired, Open Cycle MHDPower Plants," SM107/36, Electricity from MHD, IAEA, Vienna.

Feldman, H.F., et al., 1970. "Kinetics of Recoverying Sulfur from theSpent Seed Tinn MHD Power Plant," Environmental Science andTechnology 4(6), pp. 496-502.

Feldman, H.F., et al., 1970. "Thermodynamic, Electrical, Physical, andCompositionalProperties of Seeded Coal Combustion Products," Bureauof Mines Bulletin 655, Washington, DC.

Fishman, F., 1968. "Instability of Hall MHD Generators toMagneto-acoustic Waves," in 9th Symp. on Engr Aspects of MHD, Univ.of Tenn. Space Inst., Tullahoma, Tenn.

Flinders University of South Australia, 1974. "Physics and theEnergy Industry," Bedford Park, Australia, January, CONF-740137,INIS-mf-2006.

Folsom, B.A., 1978. "Environmental Assessment of Advanced EnergyConversion Technologies," EER Corp. presentation to EPA-IERL,Cincinnati, OH, May 17.

Fushini, K. et al., 1973. "Construction of a Small-scale MHD Test Plant(ETL MAR VIT)," Engineering Aspects of Magnetohydrodynamics, Univ.of Mississippi, pp. iv-l.l-iv.1.6, March 26, CONF-730311.

116

Page 123: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Gadda, "Recent Experimental Results Relating to the Seeding of MHD

Combustion Gases," SM107/207, in Electricity from MHD, IAEA, Vienna.

Gannon, R.E., S.K. Ubhayakar, C.W. Von Rosenberg, Jr., D.B. Stickler,

and F.A. Hals, 1968. Application of the Rapid Devolatilization of

Coal in MHD Power Cycles, Symposium on Engineering Aspects of MHD,

Gaponov, I.M., L.P. Poberezhskii, 1975. "Study of the Electrical

Conductivity of a Plasma in Combustion Productions, (An SSSR MoscowInst. Vyspokikh Temperatur)," 45 p. ERDA-tr-186.

General Electric Company, 1975. "Study of Advanced Energy Conversion

Techniques for Utility Applications Using Coal or Coal DerivedFuels," Vol. II, Oral Briefing on the Results of Task I at NASA

Lewis Research Center, Cleveland, OH, May 20, NAS3-19406.

General Electric Company, 1976. "Comparative Study and Evaluation ofAdvanced Cycle Systems," General Electric Corporate Research and

Development, Schenectady, NY, May. PB-254-392, EPRI/AF-158.

General Electric Company, 1976. "Energy Conversion Alternatives Study -

ECAS - Phase 1," NASA, CR-134948.

General Electric Company, 1976. "Energy Conversion Alternatives Study,

Phase II Report," NASA Report NASA-CR-134949, General Electric Co.,Schenectady, NY, December.

General Electric Company, 1976. "Study of Advanced Energy Conversion

Techniques for Utility Applications Using Coal or Coal DerivedFuels," General Electric Report, February 17.

General Electric Company, 1977. "Coal/Open-Cycle Magnetohydro-dynamic/Steam System." in (NASA, 1977).

Gilbert Assoc. Inc., STD Research, 1976. "Baseline Power Plant OverallPlant Design Description," ERDA, MHD Power Generation Program,December.

Goldenburg, S.A., et al., 1975. "Experimental Investigation of the Effect

of the Excess Fuel Coefficient on the Electrical Conductivity ofPotassium-seeded Hydrocarbon Fuel Combustion Products," Electricity

from MHD, Vol. IV, Vienna, Austria, pp. 2239-2248, July 24.

Golyashevich, S.L. et al., 1975. "Investigations of Coal Combustion for

MHD Conversion of Energy," 6th International Conference on

Magnetohydrodynamic Electrical Power Generation, Vol. II,Washington, DC, pp. 321-334, June 9, CONF 750601-P2.

117

Page 124: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Gubarev, A.V., I.G. Nosov, 1970. "Study of the Efficiency of ElectricPower Generation at Thermal Electric Power Plants with Faraday-typeOpen-cycle MHD Generators," Institut Atomnai Energii, Moscow, USSR,IAE-2021.

Hals, F., L. Keefe, 1964. "A Method of Seed Recovery in Coal Fired

MHD Power Plants," 5th Symposium on Engineering Aspects ofMagnetohydrodynamics," Cambridge, MA.

Hals, F., W.D. Jackson, 1969. "MHD Power Generation: Economic andEnvironmental Implications," 10th Symposium on Engineering Aspectsof Magnetohydrodynamics," Cambridge, MA, pp. 136-141, March 26,CONF-690348.

Hals, F., P. Lewis, 1972. "Control Techniques for Nitrogen Oxides in MHD

Power Plants," Engineering Aspects of Magnetohydrodynamics, Argonne,IL, pp. VI.5.1.-VI.5.10.

Hals, F.A., et al, 1974. "Auxiliary Component Development Work at AvcoEverett Research Laboratory Inc.," 14th Symposium on EngineeringAspects of Magnetohydrodynamics, Tullahoma, TN, pp. II.3/1-13, April8-10.

Hals, F.A., et al., 1975. "Development and Design of High-TemperatureAir Preheaters and Techniques for Emission Control of NitrogenOxides for Open Cycle MHD Power Systems," 6th InternationalConference on Magnetohydrodynamic Electric Power Generation, Vol.II, Washington, DC, pp. 267-288, June 9, CONF-750601-P2.

Harris, L.P. and R.P. Shah, 1976. "Energy Conversion Alternatives Study(ECAS) General Electric Phase II Final Report, Vol. II AdvancedEnergy Conversion Systems -- Conceptual Designs: part 3, Open CycleGas Turbines and Open Cycle MHD," NASA-CR 134949-II-3, December.

Hart, A.B., et al., 1964. "Some Factors in Seed Recovery," InternationalSymposium on Magnetohydrodynamic Electric Power Generation, Vol. 3,pp. 1348-64, July 6-11.

Hauser, L.G., 1973. "Assessing Advanced Methods of Generation,"Westinghouse Electric Co., Arch. Energiewirt., 17(20), pp. 989-999.

Heywood, J.B., G.J. Womack, 1969. Open-Cycle MHD Power Generation,Pergamon Press, Ltd.

Hoover, D.Q., et al., 1966. "Feasibility Study of Coal Burning MHDGeneration," Westinghouse Research Lab., March, PB 235 460.

Hoover, D.Q., et al., 1976. "Energy Conversion Alternatives Study(ECAS), We-stinghouse Phase I Final Report, Vol. III, Open-CycleMHD," Westinghouse Research Labs., NASA CR-134941, 425 p., February.

118

Page 125: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Horn, G., and E.M. Hughes, 1967. "Engineering Aspects of

Magnetohydrodynamic Power Generation," Trans. Inst. Chem. Eng.,

London, T-182-9, June.

Hughes, E., et al., 1974. "Control of Environmental Impacts from

Advanced Energy Sources," EPA, March, EPA-600/2-74-002.

Jackson, W.D., et al., 1970. "Critique of MHD Power Generation," J. Eng.

Power, 92, pp. 217 -3 0 , July.

Jackson, W.D., et al., 1973. "Coal Fired MHD for Central Station PowerGeneration,- 6fh Annual Frontiers of Power Technology Conference,Stillwater, OK, pp. 4/1-17, October 10-11.

Jackson, W.D., et al., 1974. "The Role of the Office of Coal Research in

the NationaT Program for MHD Development," in (NSF, 1974), pp. 17-26.

Jackson, W.D., et al., 1975. "Consideration in the Development of Open

Cycle MHD Systems for Commercial Service," 6th InternationalConference on MHD Electric Power Generation, Vol. V., Washington,DC, p. 21, June, CONF-75061-P5.

Jackson, W.D., et al., 1975. "MHD Power Generation - Technology Status

and Development Plan," Institute of Gas Technology Symposium,Chicago, IL, June 23.

Jackson, W.D., P.S. Zygielbaum, 1975. "Open Cycle MHD Power Generation -

Status and Engineering Development Approach," American Power

Conference, Chicago, IL.

Jackson, W.D., 1976. "MHD Electrical Power Generation: Prospects and

Issues," AIAA 9th Fluid and Plasmadynamics Conference, San Diego,

CA, July, AIAA 76-309.

Jackson, W.D., et al., 1976. "Design Considerations for a Coal-Fired

2000 MW (th Open Cycle MHD/Steam Baseload Powerplant," 3rd US-USSR

Colloquium on MHD Electric Power Generation, Moscow, USSR, October20-21.

Jackson, W.D., et al., 1976. "Development of a Baseline Reference Design

for an Open CycTe MHD Power Plant for Commercial Service," 15thSymposium on EAM, Philadelphia.

Jackson, W.D., et al., 1976. "MHD Power Generation 1976 Status Report,"

IECEC, pp. TO-6-1019.

Jackson, W.D., et al., 1977. "Status of the Reference Dual-Cycle

MHD-Steam TPwerPlant," 16th Symposium on Engineering Aspects ofMHD, Pittsburgh, PA, May 16-18.

119

Page 126: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Jackson, W.D., et al., 1977. "Design of the Montana MagnetohydrodynamicsComponent D-eveTopment and Integration Facility," 12th IECEC, pp.988-994.

Jahnig, C.E. and H. Shaw, 1976. "Environmental Assessment of an 800 MWeConventional Steam Power Plant," Exxon/GRU.1.DJAD.76, Exxon R&E, 54pp., September.

Jedrzyowski, Zb., St. Andrzejewski, 1966. "Study of Cycle Diagrams ofPower Plants with MHD Generators," International Atomic EnergyAgency, 20 pp., July 4, CONF-660704-81.

Joint Publications Research Service, 1975. "First Joint Soviet-AmericanColloquium on the Problem of MHD Energy Conversion," JPRS-63794, 254pp., January.

Joubert, J.I., et al., 1976. "Kinetics of Regeneration of Spent Seed

from MHD Power Generation Systems," 15th Symposium on EngineeringAspects of MHD, Philadelphia, May 24-26.

Kantrowitz, A., R.J. Rosa, 1974. "MHD Power Generation," AmericanPhysical Society Topical Conference on Energy, Chicago, IL, February.

Kantrowitz, A., 1977. "The First 20 Years of MHD Development,"Conference on High Temperature Sciences Related to Open-Cycle,Coal-Fired MHD Systems, Argonne, IL, pp. 289-298, April 4-6,ANL-77-21.

Karr, C., Jr., et al., 1974. "Composition of Fly Ash from a Coal-FiredMHD Generator with Potash Seed," J. Inst. of Fuel, Vol. 52, pp.177-80.

Kiepeia, J.E. (ed.), 1975. "Sixth International Conference on

Magnetohydrodynamic Electrical Power Generation," Vol. II, ERDA,Washington, DC, 336 p., June 9-13, CONF 750601-P1, P2, P3, P4, P5,P6.

Kirillia, V.A., et al., 1967. "The Prospective Economics and ThermalEfficiency Tf Erge Scale Open Cycle MHD Stations," Phil. Trans.Roy. Soc. London Ser. A., 261, pp. 394-400, July 6.

Klepeis, J., and J.F. Louis, 1971. "Disk Generator Applied to Open CyclePower Generation," Proc. of the 5th International Conf. of MHDElectrical Power Generation, Munich.

Kolb, G., et al., 1974. "Applied Magnetohydrodynamics No. 13.

Theoretical Bases of MHD Energy Conversion with Combustion Gases,"Inst. fuer Technische Physik, Kernforschungsanlage Juelich G. m.b.H., 215 p., March. Jul-1055-TP.

120

Page 127: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Kontos, J., 1969. "System Analysis and Simulation in Magneto-hydrodynamics," NTIS # DEMO-69/2, May.

Kuehne, W.D., et al., 1972. "Applied Magnetohydrodynamics Volume 9.

Calculation f the Characteristic Quantity of the Working Gas of theMHD-Combustion Gas Generator," Kernsforschungsanlage, Juelich, W.Germany, 124 p. Jul-874-TP.

Lane, J.A., 1974. "Outlook for Alternative Energy Sources," Energy

Research and Development Administration, Washington, D.C., 36 p.CONF-75-614-1.

Levi, E., 1978. "MHD's Target: Payoff by 2000," IEEE Spectrum, pp.46-51, May.

Lindsay, W.T., E.V. Somers, W.S. Emmerich, 1964. "Fixed NitrogenBy-Products in Open Cycle MHD Generators," Westinghouse ResearchLabs., CONF-640701-38, 7 pp.

Little, A.D., Inc., 1975. "Benefits/Costs of Advanced Power CycleResearch: A Mid-1974 Analysis," Final Report, Cambridge, MA, 83 p.,December. FE-1756-1.

Louis, J.F., 1968. "Disk Generator," AIAA Journal, 6, 9, p. 1674.

Louis, J.F., (ed.), 1971. "Open Cycle Coal Burning MHD PowerGeneration; An Assessment and a Plant for Action," MIT, Cambridge,MA, June.

Louis, J.F., 1974. "MHD: Systems and Characteristics," in (NSF, 1974),

pp. 27-30.

Louis, J.F., 1975, 1976. "Critical Contributions in MHD Power

Generation," Annual Report, Quarterly Reports, MIT, E(49-18)-2215

(ERDA), FE-2215-1, 2, 3.

Louis, J.F., et al., Open Cycle Coal Fired MHD Power Generation, Final

Report for the Period 21 May (1971) - 31 May (1975), Dept. ofAeronautics and Astronautics, MIT, prepared for ERDA Fossil Energy

Contract No. E(49-18)-1209, Vols. I and II.

Marston, C.H., et al., 1976. "MHD Generator Investigations," General

Electric Company, Philadelphia, March (AD-A023 417), November(AD-A032 790).

McGrath, I.A., M.W. Thring, 1964. "Open Cycle Magnetohydrodynamic Power

Generation," J. Inst. Fuel, 37, No. 287, pp. 525-30, December.

Migra, R.P., et al., 1976. "Comparative Evaluation of Phase I Resultsfrom the-negy Conversion Alternatives Study (ECAS)," NASA,February, NASA TMX-71855.

121

Page 128: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Millet, J., 1968. Electricity from MHD, Proceedings from WarsawSymposium, pp. 2979-2990.

MIT, 1975. "Open Cycle Coal Fired MHD Power Generation," Final Report,Cambridge, MA, 701 p., July 31.

Mori, Y., "Cycle and Efficiency of Large Scale Open-Cycle MHD PowerPlants", in Proc. of 5th International Conf. on MHD Electrical PowerGeneration, (Munich, 1971).

Mori, Y., T. Taira, 1972. "Kinetic Study of Oxides of Nitrogen in MHDPower Plants," Engineering Aspects of Magnetohydrodynamics, Argonne,IL, pp. VI.7.1-VI.7.6.

Mori, Y., T. Taira, 1973. "Reduction of Nox Concentrations in MHD SteamPower Plant Systems," 13th Symposium on Engineering Aspects ofMagnetohydrodynamics, Stanford, CA, March.

Mori, Y., K. O. Atake, S. Irobe, and T. Taira, 1975. "Decomposition ofNO on Alumina Surface under Reducing Conditions for Emission Controlof NO in MHD Power Plants," CONF-750601-P1, pp. 61-76.

Mori, Y., et al., 1975. "Prediction of NO Concentrations in MHD Power

Plants by Axi-Symmetric Two Dimensional Analyses," Tokyo Inst. ofTech., CONF-750601-P1, pp. 77-89.

NASA Lewis Research Center, 1976. "Comparative Evaluation of Phase IResults from the Energy Conversion Alternatives Study (ECAS)," NASATMX-71855, February.

NASA, 1977. "Evaluation of Phase 2 Conceptual Designs and ImplementationAssessment Resulting from the Energy Conversion Alternatives Study(ECAS)," Cleveland, OH, NASA TMX-73515, April.

NSF, 1974. "NSF-OCR Engineering Workshop on MHD Materials," MIT,November 20-22.

Nedospasov, A.V., et al., 1976. "Thermophysical and ElectrophysicalProperties of-o-ustion Products with Seed," Inst. VysokikhTemperatur, Moscow, USSR, 68 p., September. ERDA-tr-183.

Novosadov, V.B., 1976. "Errors of Measurement of Plasma Temperature inMHD Generator Channels," 35 p., October. ERDA-tr-184.

Nowacki, P.J., 1968. "Recent Developments in the Direct Conversion ofHeat into Electricity by Means of Magnetohydrodynamic ElectricalPower Generation," Neue Tech., 1-, No. B1, pp. 3-24, February.

Olds, F.C., 1971. "S02 Control: Focusing on New Targets," PowerEngineering 77(8), pp. 24-29.

Oliver, D.A., P.H. Byer, 1972. "Physical and Economic Models of an OpenCycle Coal Burning MHD Power Generation," Gas Turbine LaboratoryReport No. 197, MIT, Cambridge, MA, June.

122

Page 129: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Patel, N.J., et al., 1976. "Influence of Coal Type and Drying upon MHDPower Plants and Components," 15th Symposium for Engineering Aspectsof MHD, Philadelphia, PA, May 24-26.

Penny, M.M., et al., 1977. "Development Status and Environmental Hazardsof Several Candidate Advanced Energy Systems," 12th IECEC, pp.646-654 (also EPA/IERL-Ci-092, 1976).

Pepper, J.W., et al., 1970. "NO Concentrations in MHD Steam Power PlantSystems," 1ith Symposium on Engineering Aspects ofMagnetohydrodynamics, Pasadena, CA.

Pepper, J.W., et al., 1972. "NO Concentrations in MHD Steam Power PlantSystems," Engineering Aspects of Magnetohydrodynamics, Argonne,Illinois, pp. VI.6.1.-VI.6.5.

Pepper, J.W., C.H. Kruger, 1973. "Accurate Modeling of NO Decompositionin MHD Steam Power Plant Systems," Engineering Aspects ofMagnetohydrodynamics, Univ. of Mississippi, pp. VII.2.1.-VII.2.3,March 26, CONF-730311.

Pepper, J. and O.S. Yu, 1974. "The Application of Open Cycle MHD in anElectric Utility System," Proceedings of NSF-OCR EngineeringWorkshop on MHD Materials, MIT, November 20-22.

Pepper, J.W., et al., 1974. "NO Concentrations in MHD Steam Power PlantSystems,"-T4th Symposium on Engineering Aspects ofMagnetohydrodynamics, Univ. of Tennessee Space Inst., Tullahoma, TN,pp. 111.5/1-2, April 8-10.

Pepper, J.W., 1974. "Effect of Nitric Oxide Control on MHD-Steam PowerPlant Economics and Performance," Stanford Univ. SU-IPR Report No.614, December.

Pepper, J. and O.S. Yu, 1974. "The Application of Open Cycle MHD in an

Electric Utility System," in (NSF, 1974) pp. 31-46.

Pepper, J.W., 1975. "Effect of Nitric Oxide Control on MHD-Steam PowerPlant Economics and Performance," Stanford Univ., 127 p.

Petrick, M., et al., 1976. "Experimental Two-Phase Liquid-MetalMagnetohydro-ynamic Generator Program," Argonne National Lab.,Argonne, IL, 102 p., November, ANL/ENG 76-04.

Pomeroy, B.D., et al., 1978. "Comparative Study and Evaluation ofAdvanced Cycle Systems," General Electric, EPRI Report AF-664,February.

Poncelet, J., L. Lozano, 1968. "Chemi-ionization and MHD: The Effect ofC02 and Additives," Electricity from MHD, Vol. IV, Vienna,Austria, pp. 2141-2159, July 24.

123

Page 130: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Powell, C.A., 1974. "Utility Requirements for MHD Power Generation," in(NSF, 1974), pp. 7-16.

Powell, E.M., R.C. Ulmer, 1974. "Controlling Emissions fromFossil-Fueled Power Plants, Combustion 45, No. 7, pp. 24-34, January.

Reeder, J., R. Buende, 1973. "Basic Equations and Fundamental Data forCombustion MHD Generators, " Max-Planck-Institut fuer Plasmaphysik,Garching Munich, R.F. Germany, 225 p., July. IPP-IV-60.

Research and Education Association, 1975. "Chapter 46, MHD PowerGeneration" in Modern Energy Technology, REA, New York, pp.1359-1412.

Rikov, A.I., et al., 1975. "Development and Study of High TemperatureMaterials for Various Components of MHD Installations," Inst.Vysokikh Temperatur, Moscow, USSR, 51 p., ERDA-tr-185.

Rockwell International Corp., 1976. "MHD Combustor Design Study," FinalReport, Rockwell International Corp. Rocketdyne Div., Canoga Park,Calif., 440 p. May. TID-27144.

Rosa, R.. et al., 1970. "Advanced Peaking Power Plants," 11th Symposiumon Engineering Aspects of Magnetohydrodynamics, Pasadena, CA.

Rosa, R.J., 1975. "MHD Power Generation Development Program," AVCOEverett Research Lab., Everett, MA, 227 p., June. PB-243-233.

Rudins, G., 1974. "U.S. and Soviety MHD Technology: A ComparativeOverview," Rand Corp., Santa Monica, CA. AD-A0004-614.

Sarofim, A.F., 1977. "Combustion and Characterization of Coal,"Conference on High Temperature Sciences Realted to Open-Cycle,Coal-Fired MHD Systems, Argonne, IL, April 4-6, ANL 77-21.

Seikel, G.R., et al., 1971. "The Potential of Nuclear MHD Electric PowerSystems," NASA, 12 p., NASA-TM-X-67829. N71-24578.

Seikel, G.R., et al., 1976. "A Summary of the ECAS Performance and CostResults f NWFD Systems," 15th Symposium Engineering on Aspects ofMHD, Philadelphia, May 24-26.

Seikel, G.R., and L.P. Harris, 1976. "A Summary of the ECAS MHD PowerPlant Results," 3rd US-USSR Colloquium on MHD, Moscow, USSR, October21-22, NASA TMX-73481.

Shaw, H., 1978. "Environmental Assessment of Advanced Energy ConversionTechnologies," Exxon R&E presentation to EPA-IERL, May 17.

124

Page 131: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Shaw, H., W.C. Cain, 1977. "Environmental Considerations in AdvancedEnergy Conversion Technology Assessments," 12th IECEC, pp. 655-660.

Sheindlin, A.E., G.I. Rossievskii, 1972. "Analysis of FactorsInfluencing the Thermal Efficiency and Economic Vitality ofElectric-Power Stations Using Open-Cycle MHD Generators," ForeignTechnology Div., Wright-Patterson AFB, OH, 18 p., September,AD-753708.

Shumiatskii, B. Ya., et al., 1976. "Studies Conducted at the U-15

Facility (IV)," Inst. Vysokikh Temperatur, Moscow, USSR, 60 p.,ERDA-tr-182.

Siniasky, N.A. and I.A. Yavorsky, 1968. "The Effect of Phase Changes inMineralized Composition of the Inorganic Part of Natural Coals onthe Electrical Conductivity of a Colloidal Plasma," Electricity fromMHD, IAEA, Vienna, SM 107/186.

Solbes, A. S.W. Petty, 1977. "Progress in Channel Development for DirectCoal Fired MHD," 12th IECEC, pp. 1004-1014.

Somers, E.V., D. Berg, and A.P. Fickett, 1976. "Advanced EnergyConversion," in Annual Review of Energy-1976, pp. 345-368.

Sonju, O.K., J. Teno and T.R. Brogan, 1970. "Comparison of Experimentaland Analytical Results for a 20-MW Driven Hall Configuration MHDGenerator," 11th Symp. on Engr. Aspects of MHD, California Inst. ofTech., Pasadena, California.

Sporn, Philip, Arthur Kantrowitz, 1959. "Large Scale Generation ofElectric Power by Application of the Magnetohydrodynamic Concept,"Power, Vol. 103, pp. 62-65.

STD Research Corp., 1971, 1972, 1973, 1974. "Realistic Modeling andPerformance Prediction of MHD Generator Channels," Progress Reports,Pasadena, CA, May 17, 1971, Febraury 16, 1972, March 16, 1973,January 15, 1974, FE-1211-T-1, 2, 3, 4.

STD Research Corp., 1977. "Open-Cycle MHD Systems Analysis," AnnualReport, EPRI, March, RP-640-2.

Tager, S.A. and J.M. Henry, 1976. "Fuel and Combustion," US-USSR text onMHD.

TRW Defense and Space Systems Group, 1976. "TRW 25 MW/sub T/Staged MHD

Coal Combustor Conceptual Design Study," Redondo Beach, CA, 363 p.,June. TID-27145.

Tempelmeyer, E.D., et al., 1977. "Investigation of Factors Influencing

Potassium Seed Recovery in a Direct Coal-Fired Generator System,"16th Symposium for Engineering Aspects of MHD, Pittsburgh, PA, May16-18.

125

Page 132: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Teno, J., et al., "Research Studies and Development of MHD Generators andAccelerators," AVCO Everett Research Laboratory Report.

USSR Institute for High Temperatures, 1974, "Influence of Ash on theOperation of MHD Generator Channel in the U-02 Facility," 20 p.ERDA-66.

USSR Institute for High Temperatures, 1975. "Principal Results ofScientific Research Done for 1974," Moscow, 62 p. ERDA-tr-162.

Way, S., 1964. "MHD Power Generation," Combustion: 36, No. 3, pp.34-41, September.

Way, S., 1967. "Problems of the Coal-Fired MHD Power Plant," in Advancesin Plasma Dynamics, T.P. Anderson and R.W. Springer (eds.),Northwestern University Press, Evanston, IL.

Way, S., 1971. "MHD Power Plant for Early Realization," 5thInternational Symposium MHD, Munich, W. Germany, pp. 615-26, May.

Way, S., 1974. "Combustion Aspects of MHD Power Generation," Chapter 10,Combustion Technology, edited by H.B. Palmer and J.M. Beer,Academic Press, New York and London.

Westinghouse, 1976. "Energy Conversion Alternatives Study - ECAS - Phase1," Vols. 1-12, NASA, CR-134941.

Witwer, J.G., 1976. "Costs of Alternative Sources of Electricity,"Stanford Research Inst., Menlo Park, CA, July, PB-255-765.

Wu, Y.C.L., et al., 1968. "Two Terminal Connected Open Cycle MHD

Generators," 9th Symp. on Engr. Aspects of MHD, Univ. of Tenn. SpaceInstitute, Tullahoma, Tenn.

Wu, Y.C.L., et al., 1974. "On Direct Coal-Fired MHD Generator," 14thSymposium on Engineering Aspects of MHD, April.

Wu, Y.C.L., et al., 1975. "Experimental and Theoretical Investigation ofa DirecCoal-Fired MHD Generator," 6th International Conference onMHD Electric Power Generation, Washington, DC, June 9-13.

Young, W.E., et al., 1967. "Recent Studies of Advanced Coal BurningPower Plants," 1967 Intersociety Energy Conversion EngineeringConference, pp. 485-492.

Young, W.E., et al., 1974-1975. "Magnetohydrodynamic Investigation forCoal-Fire en Cycle Systems," Monthly Prog. Rep. 1-20, OCRContract No. 14-32-0001-1540, Office of Coal Research, Washington,DC.

126

Page 133: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Appendix A MHD Economic-Environmental Simulation

A computerized model has been developed at the MIT Energy Laboratory

that has the capability of simulating the siting of many technologies

including MHD power plants. This model, AEGIS - Alternative Electric

Generation Impact Simulator, can be obtained from James Gruhl, principal

investigator, at the MIT Energy Laboratory. To date the sponsors have been

New England Electric System (NEES), Bradley Schrader program manager, and

Northeast Utilities Service Co. (NUSCO), Denning Powell and William

Renfro program managers.

Table A-1 shows the interactive nature of the program's input

routine. Table A-2 displays the listing of the input assumptions and

acts both as a means for the user to verify the assumptionsand for the

formal record of the simulation run.

The output from the OCMHD simulation is shown in Table A-3,

displaying the range of uncertainty associated with each of the 109

performance measures. Minus numbers, such as -1., or letters, such as

NA, are indications that these are performance values that are not

predicted by the particular modules chosen by the user.

Table A-4 presents the code for identifying specific pieces of

information that the user may be interested in retrieving from the online

documentation. Tables A-5 and A-6 show the retrievals of all OCMHD power

plant information and LAMM health impact information. References are

almost all available in this report's bibliography. The AEGIS program

and bibliography will be available to the public late in 1978 upon

completion of the NEES-NUSCO Project.

127

Page 134: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-1 Input session for use of AEGIS program - terminal responsesare in CAPITALS, user responses are in lower case; this is anexample of the no-prompt option.

C:C

I---J

C:,,

C-< z. -<C 2-

C

C Z

: -Ca-U; t

LU -- C, C , Cr· : C,--.. -

- -- .J C_u c .C .U . Uu C: qW S

I-

CrC

Z

.C* C

_= C-' - E

1 41I- LU: _-a

C : C_U-I- - I(tC C -C CZO- C

C - ,.LL

C CL LL' -II :.- - · C iI.I- ' ,

L: C , CC C.. .. -- Z - Q' CC = , Ca- C _

« ,C CL

C- : -': C C C

- Cm U.- LL-L: = L: . 'C LUC (L-

Z C. aC--C C CC--wu = L .. -' C, LIC c .-= L c -c .

_U = LU.. C:

--- CLC- I- - C. ,

- Q..I-U..- ..-.- C

-- II II II I!,.~~_~ r'C

C:

C

:

v IIG"C

..

Z: i

II

C.C

1..

C rI--C.

CZ: I-.

D

C

LL:

II c CC: N

*f C 'C' G

!=s ,: .- : i

N i C lI < -

Q r , 1aC II Qv I·c. II _. v II oc C

N' 11IZ .c: r 11 oZZ iW .cc v-Ur,

N II N u-C r'- ~,c, Ni

1 <' N C r-: 0

II- CN 'C_U J-- · C', %cN c 11 N: N L_

C.: ZrII : 11 Lv r : ¢,, , --.112 c. ?: N Lr, --. ·- :

LU _ e: 411or II -Ii Nr-

11 1_ 1 U N -C N ", r-. CIL h IC N IC ,Cr.c r-1. N

LLNC. N- I: 4

<,: C C"; ,-I L' C I C 'W

N: N CCN N/I, r -: ~l .. C.

L- -Cq -- --

I _- -,-C

I4 N' Ct ' NJ cc;; tc c

128

Page 135: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-2 Display to user of the assumptions that will be used in thisparticular session.

C)>-0Ua-CoC CCL

.- C LL

LU.J<CC2:2:0

LL LC: ' :CC CC7 =

C2:

LLQ

-... .LL<0 L:: C~ > 1LLU< LUCl)~-H

L CL L C- LL C > C >>- < C: >- F

- HH<f C.. CH < CL HZ = ' C' /'' C CL L: C': C :

:-J C LL LL' C < C FL LU-: 2: C <:- 1 Li C.:t#XCX2:CLL CC* .C_ L;

C HZ L

J< C

L: _,-

C< -· CC

C a-CMC C.

<: 2 C

- CC2:C: Z-,:

*. LU

UCLr-LUlUHt L

> C 2: L: >-H C C <

-)- CL

H LL' < > LJ- LL C -_

C -' C CC _ _ C_

LZ Li L-:< C

L:CCZ

.t

C LL ZC: C

C2-:2: 4

cfC X

*-=CC C

( = C II(- ' F-- C' cZ

H C- --- Z L' -C, II

.- LLJCLL' L1

.r C; CL C

LL

129

-J

CCD-,

C/z

I

c oc cc

C: C. Z-- , C

I I

I C I ;\ UI - I LU

I C I 2:0

I _: I L ,

I C) I - LUI < I i G

I I_. _. _I~1~I~1~'I !

Page 136: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-3 Performance measures for- chosen for this simulation.

cC+

CC C 0C L - C Lcc C C,. ;x C =C C. -- C 0C

r- :} c: c. * U c . LA.0C: -*.-: r CC = _ r-

CC

-. C L N rr. cC.: :. cr -c . c -- - G q c 1-

Lr , I, r .W C --. V i. Co r:C C * . . . C·N i . r. W . 0 ,-

L Co. ·C LALn C.-i cc

tocLL'

C. c C 0. C C c C C,4 C CC C C Ccr c-C C c C, C C _t . oZ . CC _

r ., . , _~ r ., 1 C": cc tr.C C14 C

LC

*C r-C C C. 0 r-I CC- · L. (C CC r. L C CL CC C C r- ! · ·* , Kq r * · · · ' C: 1

C

LIC C c CC C C . N C C,

. c - Uc. Liu-n c Ln

C' ri · · · , * .- *r - .L, .C,: r-.' H

ALc

CCC

I I .--. :~( ~I: I Cf .

CE I _. L 0IC I-- FI 3- I = 0

I I -CI ~- 3 -I C I ; CLIC L ' C

I _ I - ' C -I C : <I ,, : .I .-I 1 -- C.: LI I : C .CLI LL I -_ C:

--

I-' .~-

LZ-

:-C: W _-

Cr:~s A -I I

_ .'. _ VI C I. I L - ' - I L1 V ,:- ILL I

U C IC 1

U C IL C :_'"

I C I

0( 0 C L I CC IC IL' I

CCCC

O

C CC

C cC= c-C_ C=

C

C -,1

C .CC

C-

CLL

UC-

-

LL

C WL

the technology/site options

C C)·CC

C C CC .LA LA

C C C* C C

*

C Oc CC LUALA

CC=C:C C C

C-. otCCc Cr-* W LA.

C CCC C

C,- C,

C C C

C. C

00 Cr-I W., L i

LU

J I

C LU I-'I C- C- I C .L I -- I LUJ I

L V I I>- I L I

--- C - I II I C. V-I-_I > I C C . I - II - 1 CJ C- I C- I

I - I C: _.C L I

I e I H C I C 3

I C - II a I

., o C--r '. U.

C C -4m. HH l

C: C C

.. Ln

W. Ln a,LI i i1U

C C C C

h, r-! r-- t

C I C CC~ t

00G. C :C C C C

c: l_

-' r- ccC- t-. a .

I_ C LA C'

A cG>-

OVLU>

LU0LL ' CC<- H

C_I-LL -' L-

0=

00_ _U23=-

(CCC ·

LC" r- - C C

CC .(C LC

r. C ; Z :tr·. r. : UC :

*lf. CCL * _ CC.c .- CCC.- C C i.~

r,- 00 r-. -

I r-: cc .L Lno- · . C'J Cq

r- C. r-: . r-

C C' ' C Coc L. C~ * ·

r1 r, C'- C Cr C r L LA

IICIWI. I

,~ I LL |-I _ I /_

vi% IC 3I L I CI 2 I A;

Io: CI CC "-' CC V 1.

LL' IO I =3 i3--I_ C ,,

> I ,' C O

I 3 I< LU

130

I II II

I I

r I

I _c Ic |I -c I3 xc I. <: · 1, =c-4 3* CI! II II II II II II 3

I >-i I3 LU-~' I -I

I i 3l II II II I

I II C[C II II II I

II II II : I

I "'CU I I

I II I

I II II II !I IIC* I

1>00II trj

I IIC II II II II aa II !: I I

I 'C II C II - 1

I ! II* II II II I

I I

I C I

10 I ILWIT--J1I =C I

I < I,< ILU I -I cc:

I0..zi I

'--4'I -<aI <.>3.IVj II aI

O

C

Page 137: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Continued display of performance measures.

C C1+ ++

L..L LUlU!CC 'CCC 00CCC C, o LU C C N aC C LL;UCC.~ * ~~

· a, r-t.C-_.?c r-.* *C *~-~ C

CCC+

G- L G.C' 1 tCC;o -- C: C. * tt.C C-C - C -I - · C_ , L CJ 1' _I K . % ¢,F..UWI .· . . . . r -i - -. .C . oc Cc Lr. C.

OC · C I- C r' I- .· C . -C C C L N- UL C * J J o_ L: Oa c L CCP, ,I. :." =' -L . .- , ' :. - ,: --. r. J .- cC r

cc _: c_, c::C CC C C+ I I I IL.. L .L2L L;

" r . C- i-- Co,oo LI, C C L.

-IC .i- C r-: Lc r- rc - C. C. N,

--I L r-.C CCI + +

LU W LLWC * *CCCCCCC. C C C C C C C C Cr. C C, C oC CC oC OC ,C _ , * -.OC .C' 0C CC . "- CC '. C.*·C.C * * C. I-C. * C

CC+ +

o. _- C ~ ' C C t r . . . C' C C. - *L:, LC C C . T C C . L, ALn C. C: ·., U-, C: rC -

r- · · · · . lT. · ·C L C' r-,-CC * _ N r C- L- . CL U . _ I r 3 _ Ir C - C-", - ". L r C C. C , r -.t. ,- C- C: .u c r.H4v-lv-tv-ttALL *:<u.C> H. C -C * * L

c

c4

c Lr. C. . .

M .T.= - - - _

c_ C c C c_ c c

LLU LL LU L LU L LULr. KC. -. - VI C C'M C" oc I C -1 LA C C L C-, CL C L C U: L C4LU.C - i-- C- C , _

L L l t - ,., . -. C C C C C C C

Lr, LI L LU 2 LL t1W, v-i C -i I

t-I C .-r---I C:tV. C :- - -i C

CLV

C; A 1. L", cC r Ln Lr, Lu. O LA -- : eo; . - L L W - L N- C: C

*v-C * *C, t' *LU * CZ.· ·L CL oC C. CC C C C,: r.

C, IT., Ct: ., l'~, . C,. * OC C< C~ G OC-

UC - 1- . LI, _- . . .,CC C CCC C CC+ + + I I I I I I ILL 'i L' LLL IU I t LL LJC: C', *-I N- r . C f" r- C c CC r- c I Ln C- t' -.' t - ,r": (' C - ,-- oc r: C', C LU. WC - · O,? -, C. G C 'r- I- L Ltr C C C'. C ... N- - r- -I cNI* t I . * * - .* . . . .

C C CI + I

L' LU: La:C· * CCCCC CC C C CC C CC C C CC c C, U ccC C : CC r. ,C r ".N · ·C C.C OC C

I ~ v I-- CZ-C.tMC;<.~'* *G. C.2N'.,L . *G *-

C C CI + I

L: L L,'CCC .CCCCCLL C-2 C * C C . 0t LU-

C i -V_ C', C·C ~ l"'r ·C Cq Iv ·* **C.r _t *r¢S *

--I -- L C r-C CCC CI + +

LU LW WL L:- G LC - r C- :. C C _ I., - L. C *.C _,C. N, C Cc C: I" C .C- LU. LU, -. Lr ., --. I '",CI LC C r. C , W . . L U C C' C ', -I C -I CLCO -. lur. C -*' *L C · * C. C',- r-: *· L

·!. · · ·C C: i -_ ·* C C ' LTr. -' Cc C C C. · .OCCC- o r-: CCC -. *-, · L..

'-Ir-C - C'4 - : - C C LCCCC C C CC CCC C

I I I I I I I I + + +, LLU L L L U,' LL. L:LIL LU

N- :. .- a c L C,: -E ", L C,,: LU, C -C P-,.'C. ,-Ci --G. -, LUL C: r-, .- II Lr.

r^-" N- L r- Lr, cN r-, L c - L c c,,: -. c cc L r-a., N,'-. OcC a- 1-. , O C r -_ Cr. v4 L C, U _ . -i C,: N'. UC N- . N _- .c r. L C C

. . . . . . . . .. . . . . . . .. t ; . .

L L L Lu. ML tP. LAC CCC CCI I I I I ILL L. LL .L L LL

,i I CI ICC -; L: C

CL.: L LL 1. ' 1-

r-: L Lr,: A, U. LA L.:

C C.- Co C aC C. Lc. C cc P , C r-CrU, C: LA cN _

C *- *- *- *' * LA

LU LA Lr. LA L Ln LL

I I I I I L' L L L LL

-I o C M IAr-I - r-I C CLUL - C -: -I tN-. r V.' CN- v-I v- C,, · ·

UZ WC,,: -

C- or,C GNE. NC c

L tr.u L Lr. ML Lu. L0CCCCCC

LU N- C C: . - WLA C LU LU, o_ v

C -r. a C ci C LCLr. r-i i -: ci r'. MIIIIIII *

C;-L C:

C W. C. =

- --- C-W

C C C > L::-cC-'- LCI---- C.C LU < >- --J LU .i-- LU X C. C -C2C aC:CC. C-- i -

-J>- CC' C C:LL C C.:L-: <; =-= U U

C: C C.C <_ CEC U < LU -1 :- :

Z C-,/ LL: <C.

- -I- :--

A ZA C>- A AC-

C: >C-NCU>- A>- >- .C: A - C

v v> < A -- :V- F- ,c -C' C=< --- .c = C -v

O- CC ,: C-- C.C ~F-- C C - C CC I-: ,: tr U-

C -i LL C

c .. C C. L C C_ -C C; --I 1'A c.,i

C I--_ t7 C

C< C, , C C --;- .-C

<C _ C. C C C .=

N' -4 = v- ' CO C,m , C C H cc c<C

131

Table A-3

I I ICI .1 I

L LL LC CN (LCCC L ..-L. C C,. C A,

C C C CI I I I

LU L 1C- .t C~cc L, LC rr,, LU. ir," Cr-I t' CN ,CLA C ri ·-

* . * .

I I ILL LLr-I C CCc C. -i, -,, -i

c r- 0r* * -

C CCI + +

LU LL WC * *CCC C C L CLU C C C C.C. C I-i. r-L r- L^. V- U..·- ru . .

C C C C CC -> Cc C C

* C .CC C,0.2~ .

In u'% Ut' U'IC C C CLU L LU-. OU C C,-! O C. C'. C C CC

* . . .

C. CCC C C

C. -I LrC. Chi _t

* * *:

C =-Cx F- -C C

O C

C< CCCC- CU U

--C' Zv-1 r-I

Page 138: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-3 Completion of display; -1.0 values indicate information notpredicted by modules chosen.

,C : O C · C. CCC C C; C C cC CCC C · C C C CCCC C C C: CCCCC

r_ _ C : -C a a C C C C C C C C C C C Cr-· -* "I 1~; -i U. _-; : ; : r- I_;-: : r r

I I I I I I I I I I I I I I

COC C CoC C C CCCC CCC CC CC

I I I I I

C CI I

!r- LA Lna. · OC0. CCH. *'OL

*LA l-

Cj(CCI I

cO - C C 'C O C C W4

r-I cc · C · C

I I

F- cc . F-Ln -: Ln oC c PI In C

UIF c . * CC_-I * 04 * I_

* . _I _1 cc: W.

OC - L C C'CtC CN LA _ -4 -

ru- *HCs C *v eF * C'_I- *G:CC 0.

c C C aC C C C C C ' C CC C C C C C C C C C CC.CCCCCCCCCCC

*C C C C C C CCC· CCCCCCCCCC

CC C C C C C C C CC C C C C C C C C C C

C C C C C C C C C C

11 I 11111 I I I I

CI

LU4i. C4 -rl C LC

C CC F-- LA L-,

. e. ..-

C CI I

I 1_ n

C C C: C u-I- IC u-I r- *-

CJ * b: U

C" C C C C C C C C C C C C'W. C C C C C C C C C C CaC, C C C C C C C C C C CCCCCC CCCCCCCC

I I I I I I I I I I I I

1-CI

_. CCCC

r CC.

*1-C

C C C CCCCCC C C C C

u- .: ._: I _

C CC CCCC C

I I

C CCCCCC C

I

CCCCCCCC CC C C CC C C C C C CCC C C C C C C

I v I I uI ICICCCCC

CCCCCCC C

I I

C CCC CC C C

_3 : v-l l

CC C C CCCC C:C C C C CaC C C C CC

I I- I I1 uIcccccl

C CCCI I I I

WL LL LL _ W , cc " C Cc

C. CC: .r C. C C CW ., C' - C - .r*; * * * _: _-i

I I

O CCCI IIIII IW LWLLJC C OC C C : C CC"- cc LA C f- C r-

G-, Cr _I J: C tr. C, C, W. C) 7_i 4 IC -.CL. * * C -

C: = _ > > - c: - Cc

v vvvc Il- CCV v W L L V C C V·C~ .~CC--C - V

- F c lUc <C._ V W= <

<-CLL U-c W- L U- C C -- I--

=CCCCCC'C -CO VVLU < C C C F_ <C =C C

·.

L - F-- Cc LU - =-- \:¥L L CM. C LV C

- C < C H L U H V L U C H C C : LCC : a - <" CZ C < , - c : - LU C - C. L. - C:_._ ' _. _ -- - v ; - - C -- v C_ C-' - C -.C-.C --C , 'C c-, C _

-'- C -- C-'-C -vC .. _-_C ,

CL

.-

C < Vi LUC I- C -C -Cr- _-

_C

N. A

-C c c:LC CV -. (>

C <c C.- F- u- - C / C CCV<: : CL->- C .C- W - <-C --_ C C -I-. " c C I- UC. 0~

C__ c. =C. U:,C . CC.< --z>:C -v

132

C C CCC C CCCC C C C CC C CCC

-: I -i,- -I I I I I

UI I

1 11

C C Co CC C

-: .- I r-:I I

C CCC C CC C C

1CC 1I I I

C CCC CC CCC CCCCCCC C C C

I l i

C C C CCC C CC C C C CCC C C C

1l 1 1 : _I I I

C C C CC C-C C CCC C C C

I I I u I

LLI L'LIJC. C I'- .-_:I Ir _.-4i C. L. C_: .- . .* . l *.

tC :I W l 'C C CI I IL; L LL:_I cc '- r-

C . _IC L CC U C

cc-I.

L:(L C .L. C-- C.

C* C C

I

LICC C I.. t C C'-_; C -ICCC -CC .*.

. -I C.I

C CC

C C

rVI

1

C C' ·C CSC _:

u--c-

C CC CCCC. C

I

CCCCCCCCC

l C Cla, a u-= a

CCC CC CC C

I .

C C C,C CCC C C

I I I

C CCC C C

CCCl a- a

C CC CC OC C

I IcclI-CZ

C

CCc

*.

LU

c.o

C U C L

Page 139: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-4 Code and format for on-line documentation retrieval.

cc C cc

c cc .; .~

C>Z LL

C. C

c ccL u? Lc C.;

oc c- c

4 ·

<C - -

O.:

Z C. L C:c; :: I

_I z- LLL LL L

ClC

LL 4

Cc

LL

--Zi.;

-

H :-

Z IcL' Z F

F-- _LL: r _ L

v m = F --:'- M - -

II 1 II il II-: C', I - IM

C C CC C

LLJC

C

CLL_

C

/.:

H-

<-

C; C..IC -

C LL:II II II

U:C.;

- U)

- F-"'ccc c < c_L -<- v

(C-c~C' ICct Ir 1 L

"._ . ~c; _ :C LL=- II Ccc _ c,ct C--= C:

C =- 4 :

LL<: HC c- c Cii II II II

C- Cr: CsC s-.r-:-

-=ccL,..

- Z

Z.C-;

u

cfLUC>-e :

i- -

LL C.

Z C-, C CLC az C_

_ C

C C.; -CLu -

- C-V C;

ti-

cc

CC

c:t._I-

C

-LU CC

LC ( CC- L GL-C .

'-- C)-_ c- -<* LU = -

c C C:_ L CL' Z L:

'- L .C -IIC L

C -Z w-ClCZ- 0 Z

iLL-C-

CL, it-C--A LU z

cc -w

LL' C U

L 1 o

C_ -

_ cc

C- cc,

C- <LJ- C-C ---_C-i--

- c

- Cc:- ,,

* C,C LC; IcC

IcCCCLL1,L

: LZ C:

C

U:

CI-CC

cc

. < :

-Z C

-U) -I"'-; C- _

.- LA.-C I-

--cc- HZ -:a: C .

; . LLZ-

aZ C,-; -t

<0-I' -<:, .C

C

O

---- : X IE·--:S L

11 ----- ---__ - - -- _^ - %cl C

L- - - _- - o -=·--- - - _ - C.II Z .… ---... I -- I

------ --C---~-'--- - ~ ------- -- --- C

133

i

I

I

>-

II

_ _ _

Page 140: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 On-line retrieval of Open Cycle Coal-Fired MHD data.

CZ- C

C Zi -

u- I -~.Cl C,

, C:

CWCH o'^ LL:

C--o 2-

H Co LICC C CC' C L

LLC

C -~cci-- C C,,C. < -I!.1 cZo

C= · Lcft \LL C

I "U ::ZI1_ -- - :1l C

.C *Cc - LL Cs LU:> -- -- .C- .: C: LJ-C -' LL. ' -L-

>_ - C _ L

C Q <C CC~:C C - C L_ 2

C C

r: t4.- C.C :

CC -= Z

C r-I C

u_

C cc

C o0 .

C CU-

CI CLL

CccC- LU

/)_ L .C -I., C L C.

+ C C

C

C

C -

. Lv- C

U% -- Ot. Lr

C L -tJ r~-- . .

O C'w, L

CN N I I

_- L. - .-- 'Ij C W C

C . _ I._ F

Gc: C c r--C_ C .- _ ,CI LU -C1

iC -s LL; ->-s-s

.un N C: C' s v- u -

C. C-LU: C

I- H U .f- H H C

= L: C C C: H' F

C C <L! L. <2: LU 2: L_. CL C_ C

Cv-i

I

-

cCI

L.U.sI_%

r. r-up CI r-c

Lr. Z

· C,. LL:

i: -L C

L. :

C-a_

Ccc

< ccLL: r:

Ct C V1 C_ CI CLI CC

-r - L; C7f(' C C C

': M c C I -:-. I L: LU- (c I - CC C

C. C:. C C C

< < ,-: L C- ': - cc c --4 : --

. ' If -H U LU:C C I N L; ::C7- C;- C Lr' C 4

<' Lo C t U

C 2 .L- - LL L

L < LU L <- -Cvvv~

CC X

r.-I cc CCI lc C

c - ' C C--C . OC r-I - cc< I u-I. - , C; .-- I ' %: IC .Lc: *c

r! C. C ; -- t l

¢ <K< C< LU CC CLUL VLC <C w <

_J _S o _ s _

C C r, =

CCCCCC

CCC C CCCCC

G C C C C

r-, cC4 . - G u C -I UmC C C C ri rq r- r-, r-' r-I -i u- v-i r-: -I r-iC-CCC-CCCCCt C C C Ct C C C C

C CCC CCCC CCCCCCCCCCCCCCCCCCC

LC v- 0C w-7- C r C'4 rn Z_ c C"J - r v-I -I Cu- v-=i U-I v-I u-I

u- v-- u-i u-i v--I -I u--i u-I u- ! C c' c C' C C "! CCCC

CCCaC; C -

C-CC. CLZ LCCC

C CC C- C

C CC CC-C

C C CCC C C C CCCCC C C C C C C C C C Cs

rm F; 'n 'h rr-, h% r' t. r, ~, ,

C C CCC C C C CC CCC C C a-r- C C- C C -C C C

134

C,:

CC

C4=

c:c=

vvv.vv_ vv

Page 141: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 (continued)

.

C(j.

I.I

C C.

· v Co

< C,LL:c OC

cc c~. ' ·

C -.. c c r-,;: _

- r, LL: C .

C C <' C I

I ~ -

- Cc c c c z --C:. , Ci- r - r; C C, "i -.

LL: Ij 4. 1,1LC C4. ,,-C <CL~LL:<r - C- --c: ._

>: cc 2 -: cc

,-.sC LL' ** .: I ;Sw

O-

C

·C :Z

LL r ,CC

t CL LAC U.F- _. C Wco< --W Z:,-: '.

LLH C>< Lc-...C ,',OC -c CCCI t .C ·* CC C C.C _; * .

c<: -< .-L.L:C I U, L.

c- ~ c: - c: t,.- < C C- 1--

C

r-I

C;

HC C: C. - C c= LLJ C; r C

I-: C C C r-: CC ,-C - ~

C ..C r-I -'

- c (_ r' - : ·<: C Ns

II --- H ,C

C: - LL . rl -

a _C: -t-L t. L

>--- L C L (< -c' C 2

C-

Iitr.

L,

4t

C'-II_l,

II.-N-

.<r-

C r-

;cU: CC' C

.-: .. -'

C 0c

C L G.-:

C Z

C W

. C:CCL'

,4.

C

is, C'e

* C.(N .0

r--

* C..

V! C * CU) · - 4.

r-: CT

C L

r-1

L;reLCI-:

- LC:

u-. r-.

_.--

< C

LL' CIcC

<. _C v

C <C

C1iv-q

C

cc!,'0c LL -C

'* *C --* -- -' .1

*II U --.!. C 4.I II C

-<'II C: ,r-:

II r '- tr

.

a.C

t--

-G. -r- < (uC

r-: C LC

C U-

<C LC

_ - C

(.

L: =

cILCFC

X .(C·

I C·

C LLC;_ LLI

i-- C -C

- C-,C,

11 C:

/2LL C:

OL:C C

_. C-' ri

--C

v' 4;

0 I Ni , C - C , - un L C rN cC* r-; Cr-i C C C, r -r4 r- r- r- r-i r-i r-1 r- C C

C C CCC CC" CC C CCCC C C CC C C C C C C C C C C

CL C C C C C_ C( C( C C C C CCCC CCCCCCCCCCCCCCCCCCCCCCCCCC

tr - 1./ C r-tC C C r- r-I

CCCCCC C C C C

C CCC C

CCC rC C

CN u- 1- V-I C- - -_ _ tr.

C C:C C C

C CC C-

C 00 CC- C

C -' , rN . M r-t C M C ru---I r- r-. - - r4- C C C -1 r--iL-. L, .L. L1 t 1U L(C UC f SC CC C C C C C C C CCCC~C t2. Ct~ .CT tC S- C C C ,,C C C C C C C C C O. CD~

C C C C C C C C C C OC_ c ~ C'. F' F'. C c-' F'.C:

135

LC,

C

-C

C Ccc W

C:

CF.H(CZC

I-c H1

*- Ir: CZ

-- L

CCr1 C--

C

i - -

r-: - c

* CCC HO-.C(-

i.

I,

Page 142: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 (continued)

r-

cc

C

% t.C :;ir. %. S

r;

N- .Ir

0.<

C

* -

C CC

,

C ZC

C CC <

LU' If

>- G L;I-- <,C- --- c O_ ,---- Ln

.C % CL · 1 c ,- rIrcr ' .', Wt r-,' ' I· h. - . C I

,-: r-. · II C -LI*- .. C C C

. - : LL LC L < % LJ U. C CC t" (. ·* N " ..J I

·*C r, < C· .c tCZ CC C)3 I42: 2-- 0, C

. ' r-. C.) u. It· (/ * C 8x1

C * O LL

C - I -.: .a

Gt C - = - _: CC C·aa < < - - ,C , r/<C CC< Z < C wC C < < C

C uuvvv~~~~~; 3:uuv,...

-J

CC

C- C

;

v:

U.:wL

I--

- LUC-.< C,

= r"

>.' C- -CLL := I

LLC C

C L

('

C CC CC: C C

a C~u

C

C

C",

Tr.

G

CC

CCCr-: -,

I a-t_ tf--

C c- C r- CC C. -: C:C,:; - %C':-_,-

1- .I

C- a

f4,% . r-'.

cc

C C

cc C Cr-

Lr -

C* r. *t. , C'C r. CC

Lr. a . Lr.C.- CCC C

t. C . C CCC C r- C

C_- CC: % C,:

Co,-n U U

C 0(C < - rr- r-(2cc c-

C'

C.C':

H

C.

-

--.

C,:

r-

tC- .7% _- - . a

1 - '( /C -' --t-. 1- LL:~ Hri CCC C a. C' L- C. CLA r C: L2C-e.- C - c

-- LLC-C C- . : LC < - L U -2< L N - 1' -- C :

tC C -' C r; -LL % -L- C L > C : . C C: LU <: -< < =

C._ - C: 2 L( L C2 C L U C <>-'L. >-C<

_< <<- - J

LU

C-C

C Cr-

(5..

-- cC x"Z.

"- C :CC u%

C C

,r-. (. , ccC- Fr. _ *. .C <C

*1- ccL

,.-. C L C

CrC C.

*<C_ CC- * C C

H -_

. _= -:D' ".

_ tZ(C

cV.c r -1-h C C5CG.- ; -(2'~ ~.2.G'-<

L~'r !-- F-C, L LU:

5- LL5 _...' · ·

<-C C CtL<C Ct, __

_- LU L

LU

CL

,GL_:

CF-U,..-t-

CN n _ - U'% C HHl r-I -H H H CC C C C C C-.CCCCCCC CD Ct C-- C- CCCCCC

GCt C C GC

CHH HCC- r- r- r- CCCCCCCC C C C CCCCCCN . r,'. F-4. Pf.d, V ACCCCCC_ rC C-- r-

Ci C

CCocCCt_ C'

CCCC,--~

r-q O,: r,r; H ,HC C C (- CN' N2. N^.C CCCCC

.- t r-4 C, C r- c' Cr- r CC HC C C H-I0: o C CC C CC CCC C r-i r!- Ct(C Z C. t LCZ (.2 C.C C C C CC C CN-'. te r1'.' rl- II NA. I. VC CCCCC C CC C CC CC C C

C r-I C' NN C rHC r H H C HH rH :: - H C-,: C: C'

I r- rH H_ r-: v-I

CCC;

r-i 4 r- CC: rI r-i rI-

r-' -: H HC .C . I? L (.: (c c. C .CCC C C C C C C C C C"'% V'% V' .G I.. V % C % I C

CC C C C C c C C C C CC C CC C C.CCC Ca

136

Ln

u

C

C C

r-

(Cr-: <c,C ;

'o >---

C: - C

_ - 5'-. 5.. -,': .C J' -- C

(C: C. C

< C C <-- L C C_ .U

-4

C

C. C

- r0

---

C z

0L ULU2 r-

..' C·

LCC C)LLt C<_-. _-

---

Page 143: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 (continued)

rtU-'.

I..- C\IW.2 C':

C, -L- r( C

< <2l Cr -Cu\2; c: Z: CC

nr_ -( (LC

, Z - rLL r -: C:

C C '_

- C ZiL-C:C -r-

* I-- CC *C

C L CL.

r u' Z - C

. C r - C C cC C

M n Z CuS11. * - . I'

--. f2 I. r-: -

r-,. = ( C -u .C-

': . " .U -'

- U -C : -- LU. - C _ =. I,.~

. C L 1: LL o"C

. C - 2£ ._ C:C C LL 0' C

C (:

n -.t r-{ C,4 mr. C r-i r-ii-I r-ICCC rH CC- -t,- C C C _1 -P C1r-H H r- -I r- H r r:

LC L L L ( (Z LCCCCC C C C CI'' p .. r" Vr !. I ,CC C- C C- C CC C C C C C

CU

C

(e,

- C0< -

C HC3 CC c~

.C (,Cg-

- <C

" -. s MLLC- .r -...

·-- , cc - . c. cr

c o c~ (,- 4. v*

Cr C; LC -- -rl-0 C 0 LU

C %

C U _' '

C (C:_CL __: C.C < , ,:c -c; - L

i LL CU L

<C : = Cc- UL U<L<cZZ 0

C(r,

C

um-

LL CZ

i:

r- C -- L

uC L

· r, M:

C

C 0C

C C.

(_CL

C) C

C. U, c

C OPLU02

<

CHM

LiC l-

>< LLL

'- -

C C; Li =

0 - II -I- C _-

' -! C2 X(r ,

C CcC 02

.C:c-

a, .- C¢_c

G CJ

c L £2 LU

'£ L2

C><L

-- : C

C.C1 4 1 C ,r

r- r r r-i C C C C C C C Cr-I t-iUt.. L. U% (LC (C C r'- I- CC CC o0 Cc oCrH- t-- r-I -I r-I r--I r-4 rHi r -I --i r r-H r-I

G C£ C Cc CCCO CtT C)C C C _C CcCCC£2CC £CCC C CC £ C C C C C C C C (C C C C

GC C. C C C C C C C Ga

C-

a/

U-.

c:

C

- C, C2

...r-C C r- --* 02 C

C c - r4. r

(2 - -

<1 CCC_ 2 . 0 0

cC -W

i'. *CLC

LL'

r; · _ C;UL ,L: C LL C,r-: .ZU

C -

-LLS- C C LL, ,--

C. ( *I-I

C C

C , - 4X CLLr- . . L C LL' *-: c r L.

.C r-.C * :

cc - - < >-oC H Z _ C-

_. _s -'3'- C -'- c -

G. O'. r: Z 09(r -{. C-Jr.% %o I (rd Z IV , c Cc2 C; C rN L: C

( 0n -. cu c. Lc c4 C C L IL!C

-LU - 2^ : 6- -a- C C _- V.',2 C L 1-- .=' -c2 Cr_ , !-- ': c:, .G . -:

,_' Zo , , _ -- F- C F- Ca_ L. c _ G C- .C_ , -u u L u-- LL' .Lu

C Lu ' X : CC CL

Cs: V _j- m Ct l_ OC G.r-I -t,-- r- r-l r- r-t --cc OC cc cc C C C: o02n -- rn rn- r-] r- r r,-

CC CCCCC CC C C_- C -a-

-i C,4 r C',4 r-i CNCC CCC CC C: CH --

rI r- C q C,, "12 (1 U;1

CC£ C C2

CCI', C

C_ C C

137

C

t-

C

L,.

02

C7;C

ZCi-

LL:CL

O_

. .

C r C C r C r-i C -

Page 144: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 (continued)

C C C CC * C C .f

U _C * C

w-i Cq LC *-i ri-q u-i v-

C C C

C LI'. U 1 C. N- CLk r

-JC:

C rLL:

L CCL -LL

C

I-- I

- 0

cc\CTL

o LU- % --

C:Cc .I C; o- >- CC C-

C C

LC C C C:_- C. C C, U., -'

C. < L- IL

.cL±*C C :-- r- c tLU 2 P - - -C ._:~ LLU _ ' C U?

cC. 2Z .*. 0

w - t q L (Y =CT - * C/

H c C- 0 : v: '

- C r.~ c : oCC r-. ~. C.r- L' * ..:H- c: *Cc C

L: S' C C- CC - C : . I C: . C

L C Ci G CC L: L _ r: :C - _:

_. _ fLL C- > 2 :0 - C c _

-L C _ C- c C .: Z_

L : 2J ' - C- CC; C' Cf vv vv CL U(C ~ cC _,,-, , C

C c;

C C(C LC C,i,. - ·

LCgc

C C-- C

IL: G

C CI--

LUC C( C<CCr c) (N

C-CC:< CC- (--c LCC , C

C-C

C-c

-c- ,cc-cc

1 1"-- CCt C11 C:

a,\-

-- -C --= r- Fc a

-. , C: -- C- C' IL <

r- LL: LL: C -

-Z ,.U LL -- .. .- %. _ C C

<C -J L '-C

- C __C LLUC C2 _2 : =

_, , .,, , , c,: _ L.c u_

C: C C C* C: C<: I -

CN L r. ·.t- L . *

uL- r- 0

C r U--r-i -i

C ('q

cc t.Co (C r-I

* - Ci-- * c

I- _ I-IC LL LL

(, C C

.:' c- .c cC- cc - r;--.C C r-! -

L-

- U-

C:U:

U-< UF ..C r-;

LL: 4 --

- -,

LU C c,cc L:. LC% ' C LC; % ...

C -

-- H-

C

C L2

c L'

L C.C:. ,

C C C

I C Lr OCc

C C C Ca- a * * *

* -C' cc i, C

C C C1- C * *

o* c -i -i -i

S C C C O

* - ri- -I ft

C.; C- -I

LL ULC C

0':

I'-

-- C:-4<

: -L

C C-C.

Zr-I

: :0

C-,-4C L<C:

C'- >< C.-C

0 U , I I

-I - ,t

<- N C

: H

-' C -:C C-iLLc -LL 4.. 4.I.2: 0 1. s 0• rK' 0• 2

L -5 _ G C _cZ Lu C< :< 2 C C0

I.. C r- C r-i N r- C, v-I C r-I CNI C C C r-I r-i r r- C C C r-t r- r- r r-r-! -I r-! r- ri -H C: C; % I,% N t. pN t P.C( CN C C' C C N C CN C( CN C C( ( C (NCC C C LC

CC CCC . cN C) lr

C C CG CN-A% iI, W I N- !'A I'- I'CCCCC CCC zGC GC G

c C:

C: (N

CC r-,: C CL L U. U.L UC' C C C' C(

c CC Lz C C C C L =C CCCC C C C CCC

C C C C_ C C C C

C CGC C C C CCC

' --l C r-i C --; 0-I' -,-I C -Ic c c c C C C r-: C r-I C -I C

L= c- c; cc c C C C C r-f r4 "U t e

C C'. CC CC,: C4 tr. C " C , iI W, fz ,

C C C C C_ C CD 4. C C C CD C) C?

C. C C: C C C C C C C

138

C a C

-.t cC

ccc~c

. _.. :

Page 145: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 (continued)

CC C

CC* C C

C c cq

C- C C

W. r-1, CCC

C_ r_ C

.4 C~ Lnc: r r' c

C c cC

l c .f

Z

c c:V- ( -..

CC

i--Z

C CJC-.

-. C'. -

C

c J C C.-c < . <* c , LI. Z

CC Cc C C,: c C

ZC >

C *2· C

t1. L C

CC.CLL

4, r- LL:

2

C c C C CCu- v- v-I r-- -I C

C ,

ZLU

C C>U~. C--I. tri C

Cc LL

C .

C.

c cE.-CC-- ,- C

C

O C LUC C C C C J ~-1 C

i I I I I LL - I-t - r: : - : 1L L r-:

\> > - " c: > O. c c c cc ON,

2 2 _ ,_ _: 2C C C C -: - C_ _' _ _ _ c_ --

C ( C CC CJ CV - -L L U:C LU: < L -- L -C; _ rZ - 0 H

C'LU

' -:

L;

C C

C 0C C * _ C;

_*C C CC C c C C.1- P- r: r- 0c

C C C C CC C - -t

i; U: cc cc r-

C C C C C

V. Ir. u. u. c

LLC:

vI --i -H LC .C

a:r

C C C:~ C C--C:C

.... UC C

C C,: C C C C ·t-. r- v- . --q Cq C III I -: C,-:

C ,:r : §B

v-- r-

C _ C: G:< C: r:_,. " '" -_..r- .0: -

, -C C UC LL ~L

_ a: 2:' Q:C- C.: -" ~ -CL C Ct C; C CS: C Z i" C; C. c

H- < --C C9· C :

r-:

C

-_

.C2_-

CCCCC

Ce

c 1r

C -Cc-cr-, C -- -- rc.

C• <

C (7.C ,-C:- *0 C CC C *VI VI C V L (- - - Vr C

r-

2-

-C:

C

r:

F- F-C') o<

CC *<C C

c <

C C. - I--

HC H

'- Lr.C C

-- -,L

C2

-- C !

C. C Cr-- (2 1- r ,-; -- ~_ C ,- C:J F- C. 2C C v-I:' LU H

-F cU C G CC /_l-- II < - J C

C< C ---, -- C

< C' <

-J

- C_ LUJ _

mn

.J -J

- cl- -

<_ <

C CC= ; C' d

C

C FHV.

C<C<<C

c/)

C-

LL:

C

L'

;_

C rC : C rI C r C r I C C_- C r-ih C

r- C -- C r- C r-iC -- C C r-I C -C C r'.. - Lf% LU, I. Cc C Oc; Ccc ( G: CC C C

L L LC : C Lc - c -C : C -(Z'C C. C-- 4 C C -C! C C C C C -_ C , C-- _ -

C C C C C C C C C C C CC C C CCCCCC CCCC CC Cc1-' -2 1__ F__ 1_: 1' 1__ 1-' 1-' 1__ 142 1_-2 1_2 E_-2 - ___

r- C-IC) r-iC uH v-C C '4-- C"C v-i C --i C -i C7 vI C C v-i

v- -: C C'i 142 1-2 -I -. L, L L2-=f .= ~- ~f~ =

C-- C C CC C C C C C

Cz C C c C a c c- c, c c

r-- C C C C Q CLu' -.' C LC ' t- i CC.L2 CL CC CC r- C. C;

O C a C C C C. C_C C C C C C C CG-1- 1- C -12- G 4 CG -C

139

Page 146: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 (continued)

CC C,m-i

I-_ :

c :- ec- CC LL

C <CC C C

· c: · C 0

Cc - C - -: CC

wU Z

·e _ * C Cc C Fc

* o - CC - CCm C c CL

-<- c C<Lu <',c C C : C' Cc Zr <_ C~--c -- : c

C _-- -" C

C C C- -Ce: *-- - : t rc'. ( _ 4 = 0C C;: -

CC -C (C .-FC · ..C . r-: LL C Z_ C< C.CC aC CE2- _-) ,- C:· c--C - C,- 2 -2 -HC-: ..2 C L k: E- !---cC ,= - L F C r:

~'F C - oC: C --- C2 I C C' L. r- IC -.-- C 1 .C C C r-, C; r-C: -- C ' _ _C.. : 14c C-- l- LL&' I.- - C - C-'C i: Lu -. i-C: LL' _. C' <:

.-. C _ ._ C C C Lu C C C

C C ,H_-: L2 C, ... E

. C - _ i C C

c CL C C C' C - C;. 0 LP L-: H C LC v-_ - L C C --

S _ `-. - ,0 -0 -0 -L

C C-, C C

C:CC

C,-4C

C

UL-r-: C,--=

V^

LuCC

(':=

C'c.CC

C:I-

CZ0< C-

cZC C

CO LC2 -'CC CC C,'? L C

i --

- Lo

C'( C-- C: Lu H

L2C-= -I, L

/;

CHL C CC CC:L-- CC-

0

C C

< ccC-cLI C I

C oC- ,-

Z C:LL' C:

* r-*- LL

C I

C C (' LL;C; · C < _

C C- L_ C CC C I CtH C '.L:

C CC.

C · (J3 -- CC LL I C L

Lu

-;

-

C-.

. Lu_ Cc<

C -:LL_; /\C -

LL LL!>- L C '

. -' c

.cc --

C C .C < _-Ct. L_ G.. < -

c. c:

C. :*-Hc

IiCC

C..

r-IC

I,,-qC

. LL'O C CC C L. C . J C r- : C

, I -L<CC -52 U; L X r- * o1 v:C CLL: I C*C Xr- i .2 C-' . LL: LL -

-r-

r - Oc n:cu -- C- LL C<J ; . ' -: C- t -Ci C,: 3v C_ -; _

c,, : C , I _:CC -: :C C -

< C L-< 4:C< ' -4 C. L C C,Cr C a-> -- cc - -- < u ,' --: F-._ _ _LL C= ,I Z<

- >- I-- cc cCGl-

Lu5 CDC" C , -, =%<C-': C =-CCC a

>-

C

r-.

I_

c:-4

CC.

C.LLC

CCr:LL

C(.

C

L:

CL

LL uLC

LLU

<J LtC.-C ;

C -

C . CI.: V. (C,

CZ

-C

< Cv C CLL -C'CC LL-

- C

LU -C-

-C:-- CC'C C -

C--C

C -C_ C .-i

LL .< <IL 0 -< <

CL C CLU'- r

-{

! ;t'

C C. .1

C~ CcLU

Ci-

LU

>- - C-; --.-- I eL

-F cLL -c -

_ > C U- Ic IL.: (C I-- - Ln C-nC<: v - C -

C C *\- I '", ----C C

C C C. O S 1A H (N * C- 1i4

r- r-: C -

C C: _ _. ..;

* -t 1: f- CNr-. CT LU r

C. C. H C:

C. <C CC-c

H H C,. f-A X- CC C C C C r-.C CCCC

L u L L, u% %l~ ,C C C CE CC, C C C C C

L .i t-, f- f- _ fC C C C: C CCCl, , CC

'H HHc, CC r-I,LA L,

:C C

CCC C

CN , r-H r-C C C CC- H CU_ ","

L, IF I' fn-AC C C CCC C C CC

f- rH C r- C" v- C: f - - CC C C C C C C C C r-IrN' _I~- _t LA LA C :C CLm Ln L, L LUn L AL% AL umL

CI C C L- U C; U C CC C C CC O C C C C CN b) n NII , P, tn fr V c b)

C C C C C C C C C CC C CCCCCC C

H'I CN -tILn C r(i CAC C C C r-I r- r- v-IN-N-N-- rN - N-N 1-N -

Ln Lf', L LAC C d C_ CCC CCCCC C CCC._~- C GC C

Li LA Lr,tC C CC CC

C C C

r-IoCOCC CC

C C

, CCLZ(:

140

C-

C

C

c-CHC

ccocrc

_I .

;, C,

,r:

,. <

C r-lr! -ICC C

C CCCC C

V,%.. I .

Page 147: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

Table A-5 (continued)

cC

C

: CL

C rC L

ULLc c

C' C I

U u',C

C--ILLI

- f-. -cLL : {Z

L C

CZ IzLL:C *l. I- -;

C:h > F

CL t

LLU

C.

-.JC_

C-

CLLJ

C_C(/cC ,

C C

LL C

< ;C z

CI-

CTLULL

C

LL:C

iLL

CCC--

C:

CLL

..d'

C

L:

CCLn

LL:ULA

LA

ILU

t Cr:C/ ,-: 3

= < >< c,C LL .!O_ V r-I3

C I -

CC.C' -Ct _ F

0LC

C L( ;'_

'. CIu v-tte Ct -

Ctc :+

i% C -t CN IC -I C C C

C C C C, C

C;2 CCC C C C C

CC CCCC CCC C

LU2

~._ -a- <0-- C-

-Ca:

ctC C' LL' L C2:

ZLAL- : :C

GC

<; < CC C

C:'CLU

".; <c,

-* (. c-

C O*tn c= xtc fC

v> uc

L, C

C-

C

Cr

LUcc ·CINI cc

* (N C - cc

C C, C L

c C L: C CL

-- * --CU2 c G r, c . C

-C .L-- - Cu *:C cc' , . _-- LU - L

-* C C-: L CL Ca , C, < C C <

C C U C/ CGC C C C' &. _ LUC t- : * L-

CDLIM LLJU , Li0( 2 _ _ -- V C

C L v- ,1w. e

C

-o r- CN F, C r-I CNIC C C r: CC

C, CC C C r r-LA 2; cs(2 c(;2:2 (C) C C CC C CCC C C CCCCr G~ G~r G, G," IG,

<C r-I c C r-- C4 Cr--C C r -i C C r-rl C" , C"! c N.

C C C Cq C C C

C C C C C C, CrCCCCC CC

141

Page 148: MIT Energy Lab Report #MIT-EL 78-018 November 1977 · 2019-04-12 · MIT Energy Lab Report #MIT-EL 78-018 ... of the market for OCMHD could be as large as 90% (Pomeroy, et al., 1978)

On-line retrieval of documentation of LAMM health impact model.

Cc_- cc -~ w. .

r- W -

C I- Z CC.C -:C

(r, a.; C_ X -_r. C "' C- C

s<. Z cZ a.c ci. _C+ ,

-C -C. CL.'- CL' .. C r. ,,C' C I' IC C; I :L . CC X--

_C, > r' C- C<

-C <= F- +L 1: -- C ;-4 - _- - C 11 ,--C ._ (O %LL +

CC C CE CC C:-- -- *C C C -",'

j C r_ < > >

C-� I-*-_ % ZC LL:-CL: WZ - C C- <

- _ a: - C: , L L W

W= --C<--_, C.CL C; c --' -- CI r LL C - WJ Zto C W u-I , -

O C C, C C C< + +

CC= C C C C C C C C CCC C C C CDCC Cr. W". h"r I . he" th:,, . "', 1' tG C CC C C CG C C CC C'CC C C C C- C C o, r-: -I --: r- r-' - -I -ICC" CC C C _C

142

Table A-6