51
MIT Class 6.S080 (AUS) Mechanical Invention through Computation 3-dimensional Expanding Structures

MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

MIT Class 6.S080 (AUS) Mechanical Invention through Computation 3-dimensional Expanding Structures

Page 2: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Mechanism – relation to base geometry

Linkages orthogonal to 3D surface

Linkages tangential to 3D surface

Page 3: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Transformable Typology: Expanding Shapes

Page 4: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Kinematic mode

Page 5: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Icosahedron

Page 6: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Radial expansion Points on expanding shape move radially outwards.

Page 7: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Turning surfaces into mechanisms

Helicoid

Page 8: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface terminology

Positive curvature

Zero curvature Negative

curvature

Surface normals

Page 9: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Original patent: angulated scissor

Page 10: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Original patent: expanding polygon

Page 11: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Original patent: 3d loop linkage (3-sided)

link hub

Hubs create out of plane connections between linkages

Page 12: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Original patent: 3d loop linkage (4-sided)

Page 13: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Original patent: 3d loop linkage (6-sided)

Page 14: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Original patent: expanding sphere

Page 15: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Original patent: expanding icosahedron

Page 16: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Mini Sphere

Mini sphere works with double scissor between hubs

Page 17: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Angulated scissor construction - review

Projection of scissor (angulated line) scales as scissor folds

Page 18: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Scissor frequency (between hubs)

As additional scissors are added, ratio of folded to unfolded size decreases

Greater Packing

efficiency

Increased Part count

(complexity) =>

Page 19: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Hub and link assemblies (4-sided)

Hub pair

Hub pair

To maintain symmetry, distance from hub to center scissor connection must be equal for all links going into a single hub.

Circles formed by center scissor connections

Page 20: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Hub and link assembly (3-sided)

Hub pair

Hub pair

Page 21: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Base geometry

For structures with single scissors between adjacent hubs, circle tangency is required.

Hubs are located at center of circles

Core polyhedron

Dual figure gives location of scissors

Page 22: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface made up of tangential circles

Page 23: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Link construction from base geometry

Construct links as shown

Page 24: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Wireframe

Centerline geometry of scissors

Page 25: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Scissors shown without hubs

Need to allow space for hubs to avoid interferences

Page 26: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Method to set hub geometry

Scaling method 1. Scale original

link length (A%) 2. Add line

extension (B%)

3. Insert scaled version back into base geometry

where A% + B% = 100%

Original version

Scaled version

Original version

Scaled version

(end points of construction line are same as original)

Red lines give wireframe hub geometry

Page 27: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Mini Sphere – single scissor version

Hub construction

Page 28: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Hub construction (alternate method)

B%

A%

Core polyhedron

Dual of core polyhedron

decompose => scale => recompose

Lines represent scissors (these expand/contract in physical mechanism)

Polygons represent hubs (these do not expand/contract in physical mechanism)

Page 29: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Double scissor construction

Construct a line whose end-points lie on original angulated line

Segments (composed as shown) provide wireframe geometry of links

Mid-point of constructed line

Page 30: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Mini sphere construction with double scissor

Mid-point of constructed line construct links

from line segments as shown Original base

geometry (single scissor)

Modified base geometry (double scissor)

Page 31: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Establish hub geometry

Original version Scaled version

For structures with 2 or more scissors between adjacent hubs, circle tangency is not required.

Page 32: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Wireframe

Page 33: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Product

Page 34: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface geometry => structural mechanism

• Surface Shape

Page 35: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface geometry => structural mechanism

• Surface Shape • Tessellation

Page 36: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface geometry => structural mechanism

• Surface Shape • Tessellation • Normal Vectors

Page 37: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface geometry => structural mechanism

• Surface Shape • Tessellation • Normal Vectors • Intersections

Page 38: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface geometry => structural mechanism

Page 39: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Surface geometry => structural mechanism

Page 40: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Korean Aerospace Institute

Page 41: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Korean Aerospace Institute

Page 42: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Expanding Sphere, CBIT Conference, Hanover, 2010

Page 43: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Expanding Sphere, CBIT Conference, Hanover, 2010

Page 44: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Expanding

Page 45: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Expanding Helicoid

Page 46: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Museo Interactivo Mirador, Chile

Page 47: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Bordeaux, France Smith Haut Lafitte

Page 48: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Suspended

Page 49: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Detroit Auto Show 2012

Page 50: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Hyperbolic parabaloid

Page 51: MIT Class 6.S080 (AUS) Mechanical Invention through Computationcourses.csail.mit.edu/6.S080/lectures/05_all.pdf · 2013-03-14 · MIT Class 6.S080 (AUS) Mechanical Invention through

Hyperbolic parabaloid