21
SUBPROGRAMA RAMON Y CAJAL CONVOCATORIA 2010 MINISTERIO DE CIENCIA E INNOVACIÓN The goal of this program is to obtain a fundamental understanding of interface phenomena in complex oxide heterostructures and the development of new complex oxide based devices at the two dimensional limit. Charge transfer at oxide interfaces have been recently shown to originate from diferences of the electrochemical potential and to cause electronic and orbital reconstructuction. We propose the control of charge transfer in heterostructures with tailored barriers (difference of the electrochemical potentials) using field effect devices. The use of induced charge from a field effect gate will be applied to study the ground state and excited states of superconducting films. We envisioned the research theme: charge effects and quantum order in complex oxide superconducting nano-films. Due to advances in growth techniques several complex oxide superconductor heterostructures can be epitaxially grown, with characteristic length scales less than 10 nanometers. These advances allow the study of interfacial phenomena in superconductor-insulating oxide heterostructures at the nanometer scale, which are essential to the pursuit of the research theme. The program will address the following intellectual and scientific issues: (a) Is it possible using the field effect to tune the properties of an underdoped cuprate in the pseudogap phase into the superconducting state? (b) Can field effect doping be used to determine whether the zero-temperature end point of the boundary between the pseudogap and the superconducting phases is a quantum critical point connecting two different superconducting ground states? (c) What is the nature of the pairing fluctuations associated with this critical point? The main experimental tools planned to address these issues include: Epitaxial growth techniques, Nanofabrication of Field Effect Transistors Devices, Atomic Force Microscopy and Scanning Transmission Electron Microscopy, Low Temperature Electronic Transport measurements, and Synchrotron Radiation (Diffraction and Spectroscopy) experiments.The broader impacts of the proposed work program include the generation of useful devices and device concepts that would benefit the society as a whole. Javier García-Barriocanal (JGB) has a strong scientific background and a multidisciplinary education. He finished his Master Degree in Chemistry in September of 2000 focusing on General Chemistry. To complete his education in Materials Science he obtained a Masters Degree in Materials Engineering, and afterwards an Advanced Studies Diploma (DEA) in Solid State Physics. In November 2007, JGB received his Ph.D. degree in Physics at the Faculty of Physics of the University Complutense of Madrid, being awarded with the distinction: ¿Ph.D. with Honours of the course 2007-2008¿.Between January 2004 and January 2008 the researcher worked at the Applied Physics Department of the Physics Faculty (U. Complutense) for the Ph D work. At that time he was awarded a 4 years University Staff Training Fellowship from the Spanish Ministry of Education. He combined his Ph.D studies with teaching duties and other research activities supervised by Jacobo Santamaría at the Physics of Complex Materials Group (GFMC). During the time of the Ph D, JGB acquired important skills in epitaxial growth of complex oxides, magnetotransport characterization at cryogenic temperatures and nanofabrication using electron beam lithography. After the completion of his Ph.D., he got a two years position at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), to work at the Spanish Collaborating Research Group (CRG) Beam line BM25 (SpLine). This position was funded with a Fellowship for Specialization in Large Facilities of the Ministry for Science and Innovation. This position has given JGB the opportunity to design and conduct experiments in several neutron and synchrotron radiation beam lines mastering a wide variety of techniques [Grazing Incidence X Ray Diffraction, Polarization Dependence Soft X Ray Absorption Spectroscopies (X Ray Magnetic Circular Dichroism and X Ray Linear Dichroism), High Energy X Ray Diffuse Scattering, High Resolution Powder Diffraction Single Crystal Neutron Diffraction, Neutron Polarized Reflectivity]. At the ESRF JGB has been in charge of experiments as ¿main proposer¿ and has had the opportunity to foster international collaborations with first rank scientists of their respective fields. JGB has gathered experience in a wide variety of techniques including growth, nanofabrication, magnetotransport and structure and magnetic characterization using synchrotron and neutron radiation, which allow facing complex problems and designing experiment covering a multiplicity of different facets. He has published 34 papers (3 of them in publication process). JGB has made important contribution on interface effects in complex oxides heterostructures. An example is the enhancement of the ionic conductivity in strained interfaces which has produced a first author publication in Science (which has been highly cited) and an invited Review Paper in Chemphyschem. His work in interface effects in strongly correlated systems has produced a first author article in Advanced Materials as well as several co-authored papers in reputed journals such as Phys. Rev. B, Appl. Phys. Lett. ¿ JGB has participated in 7 different research projects, contributing with his work in 56 conferences and technical meetings. He has been the lecturer of four invited seminars and he is a called regularly as referee of Physical review Letters. Resumen de la Memoria: Resumen del Curriculum Vitae: Correo electrónico: [email protected]m Titulo: Fenómenos Intefaciales en Heterostructuras Superconductoras Referencia: RYC-2010-06737 Area: Ciencia y Tecnología de Materiales Nombre: GARCÍA BARRIOCANAL, JAVIER

MINISTERIO DE CIENCIA E INNOVACIÓN SUBPROGRAMA RAMON Y CAJAL€¦ · experiments as ¿main proposer¿ and has had the opportunity to fost er international collaborations with first

Embed Size (px)

Citation preview

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

The goal of this program is to obtain a fundamental understanding of interface phenomena in complex oxide heterostructures and the development of new complex oxide based devices at the two dimensional limit. Charge transfer at oxide interfaces have been recently shown to originate from diferences of the electrochemical potential and to cause electronic and orbital reconstructuction. We propose the control of charge transfer in heterostructures with tailored barriers (difference of the electrochemical potentials) using field effect devices. The use of induced charge from a field effect gate will be applied to study the ground state and excited states of superconducting films. We envisioned the research theme: charge effects and quantum order in complex oxide superconducting nano-films. Due to advances in growth techniques several complex oxide superconductor heterostructures can be epitaxially grown, with characteristic length scales less than 10 nanometers. These advances allow the study of interfacial phenomena in superconductor-insulating oxide heterostructures at the nanometer scale, which are essential to the pursuit of the research theme. The program will address the following intellectual and scientific issues: (a) Is it possible using the field effect to tune the properties of an underdoped cuprate in the pseudogap phase into the superconducting state? (b) Can field effect doping be used to determine whether the zero-temperature end point of the boundary between the pseudogap and the superconducting phases is a quantum critical point connecting two different superconducting ground states? (c) What is the nature of the pairing fluctuations associated with this critical point? The main experimental tools planned to address these issues include: Epitaxial growth techniques, Nanofabrication of Field Effect Transistors Devices, Atomic Force Microscopy and Scanning Transmission Electron Microscopy, Low Temperature Electronic Transport measurements, and Synchrotron Radiation (Diffraction and Spectroscopy) experiments.The broader impacts of the proposed work program include the generation of useful devices and device concepts that would benefit the society as a whole.

Javier García-Barriocanal (JGB) has a strong scientific background and a multidisciplinary education. He finished his Master Degree in Chemistry in September of 2000 focusing on General Chemistry. To complete his education in Materials Science he obtained a Masters Degree in Materials Engineering, and afterwards an Advanced Studies Diploma (DEA) in Solid State Physics. In November 2007, JGB received his Ph.D. degree in Physics at the Faculty of Physics of the University Complutense of Madrid, being awarded with the distinction: ¿Ph.D. with Honours of the course 2007-2008¿.Between January 2004 and January 2008 the researcher worked at the Applied Physics Department of the Physics Faculty (U. Complutense) for the Ph D work. At that time he was awarded a 4 years University Staff Training Fellowship from the Spanish Ministry of Education. He combined his Ph.D studies with teaching duties and other research activities supervised by Jacobo Santamaría at the Physics of Complex Materials Group (GFMC). During the time of the Ph D, JGB acquired important skills in epitaxial growth of complex oxides, magnetotransport characterization at cryogenic temperatures and nanofabrication using electron beam lithography. After the completion of his Ph.D., he got a two years position at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), to work at the Spanish Collaborating Research Group (CRG) Beam line BM25 (SpLine). This position was funded with a Fellowship for Specialization in Large Facilities of the Ministry for Science and Innovation. This position has given JGB the opportunity to design and conduct experiments in several neutron and synchrotron radiation beam lines mastering a wide variety of techniques [Grazing Incidence X Ray Diffraction, Polarization Dependence Soft X Ray Absorption Spectroscopies (X Ray Magnetic Circular Dichroism and X Ray Linear Dichroism), High Energy X Ray Diffuse Scattering, High Resolution Powder Diffraction Single Crystal Neutron Diffraction, Neutron Polarized Reflectivity]. At the ESRF JGB has been in charge of experiments as ¿main proposer¿ and has had the opportunity to foster international collaborations with first rank scientists of their respective fields. JGB has gathered experience in a wide variety of techniques including growth, nanofabrication, magnetotransport and structure and magnetic characterization using synchrotron and neutron radiation, which allow facing complex problems and designing experiment covering a multiplicity of different facets. He has published 34 papers (3 of them in publication process). JGB has made important contribution on interface effects in complex oxides heterostructures. An example is the enhancement of the ionic conductivity in strained interfaces which has produced a first author publication in Science (which has been highly cited) and an invited Review Paper in Chemphyschem. His work in interface effects in strongly correlated systems has produced a first author article in Advanced Materials as well as several co-authored papers in reputed journals such as Phys. Rev. B, Appl. Phys. Lett. ¿ JGB has participated in 7 different research projects, contributing with his work in 56 conferences and technical meetings. He has been the lecturer of four invited seminars and he is a called regularly as referee of Physical review Letters.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Fenómenos Intefaciales en Heterostructuras Superconductoras

Referencia: RYC-2010-06737Area: Ciencia y Tecnología de Materiales

Nombre: GARCÍA BARRIOCANAL, JAVIER

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Research in metal nanoparticles has been a field of intensive work during last years due to their applications in electronics, catalysis, medical therapeutics and diagnosis. Recent developments have boosted the synthetic control, structural characterization and theoretical understanding of their properties. All these advances are perfectly justified by the identification of applications that can be realistically implemented in the near future, amongst which chemical and biological sensing are probably the most attractive ones. These applications are mainly based on the sensitivity of the optical response of metal nanoparticles (localized surface plasmon resonance, LSPR) towards changes in their local dielectric environment. It is well known that the size, shape and composition of metallic nanoparticles play an important role in regulating these optical properties. Anisotropic structures give rise to a red-shift in the LSPR which finds application in (bio)diagnosis. Moreover, it is known that the presence of tips in the nanostructure amplifies the electric field near the nanoparticle surface, which makes these nanostructures to be very useful as surface-enhanced Raman scattering (SERS) substrates as a consequence of the large increases in sensitivity reached.Thus, my current research is partially focused on the study and improvement of the optical properties of anisotropic metallic nanoparticles, specifically metallic nanostars, due to their particular shape with many tips. As a consequence of their special optical properties, this kind of nanoparticles are suitable for being codified with SERS codes and used as sensors in biological systems.On the other hand, in the last few years the generation of ultrafine polymeric nanostructures is a hot topic in modern nanotechnology enabling the obtention of revolutionary structures with potential applications as electronics/optical devices, (bio)sensors, data storage... Recently, block copolymer self-assembling systems have attracted strong interest in nanofabrication since they spontaneously generate Highly-ordered structures with nanometer precision. Thus, my research is being also focused on the obtention of well-ordered block copolymer films and matrixes with embebbed or surface-disposed metallic nanoparticles with suitable optical properties to be used as (bio)sensors, SERS substrates or photonic crystals. Control over the nanoparticle self-assembly and ordering of the nanoparticles in the copolymer nanostructure and the ability to tune the spacial arrangement and characteristics of the copolymer microdomains throughout the variation of external andinternal variables (substrate modification, polymer structure, temperature...) confer a wide flexibility to achieve those hybrid constructions with the desired properties.

After completion of my BSc in Physics at Universidade de Santiago de Compostela (USC) in 2001, I began my PhD under the supervision of Profs. Victor Mosquera and Pablo Taboda in the Colloids and Polymers Physics Group at de Condensed Matter Physics Department of this University. My research during these years was focused on the determination and quantification of the interactions between biopolymers and amphiphillic drugs and the use of block copolymers as drug solubilization, delivery and release systems. This period finished with the defense of my PhD Thesis in February 11th 2005 with the maximum qualification. In October 2005 I moved to the New Materials Group at the University of Pais Vasco, supervised by Prof. I. A. Katime, for six months with a Postdoctoral Fellowship granted by Xunta de Galicia. During those months I developed a research focused on the analysis and determination of different nanostructures formed by block copolymers in both aqueous and organic media. In April 2006, I joined as a Ministerio de Educación y Ciencia (MEC) Postdoctoral Fellow the Organic Materials Innovation Centre (OMIC) at the School of Chemistry of the University of Manchester under the supervision of Prof. Steven G. Yeates. During two years, I became familiar with block copolymer systems through anionic and atomic transfer polymerization routes, and the used of polymers as modifiers of the surface and rheological properties of inks and the manufacture of metallic nanoparticles able to be used in ink-jet printing processes for the performance of microelectronic circuits. In September 2008, I join Colloid Chemistry Group at University of Vigo headed by Prof. Luis M. Liz Marzán as a Juan de la Cierva researcher in which I am developing a hot topic research on the obtention and use of anisotropic metallic nanoparticles as (bio)sensors and the manufacture of hybrid nanoparticle-polymeric nanostructures also abe to be used as multiplex sensors and photonic crystals. Derived from my research, I have published 42 papers in international scientific publications (5 more submitted or in preparation for submission) with high impact factor (within the 25% best) in the fields of Chemical-Physics, Polymers Science, Chemical and Physical Engineering or, Atomic & Molecular Physics, being the first, second and/or corresponding author in 25 of them. I have also received more than 175 cites (h index = 8). For their impact index and journal¿s quality I emphasize 1 J. Mater. Chem., 7 J. Phy. Chem. B, 5 Langmuir, 2 Biomacromolecules, 1 Phys. Chem. Chem. Phys. and 1 J. Phys. Chem. C Lett, amongst others. I have participated or still participate in several research projects funded by the Plan Nacional of I+D+i (Materials Science Programme) Xunta de Galicia and private companies. In addition, I have presented 17 oral communications in international and national meetings, and given several seminars in different Universities. I am also referee of several journals as J. Phys. Chem. B, and Frontiers Biosc. Related to teaching, I have been lecturer of ¿Chemical-Physics¿ at the School of Technical Engineering of the University of Vigo and of the Colloids and Interfaces Science and Technology PhD Programme at the University of Santiago de Compostela.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Nanostructured Materials for (Bio)sensing and Photonic Devices.

Referencia: RYC-2010-06597Area: Ciencia y Tecnología de Materiales

Nombre: BARBOSA FERNANDEZ, SILVIA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Dr. Tamimi's research interests are in finding solutions to relevant clinical problems of dental patients through the development and application of new biomaterials. Many dental patients suffer from severe bone resorption due to tooth loss, infection and trauma, limiting their treatment options. Dr. Tamimi's research in dental surgery involves the development of treatment-specific biomaterials for dental bone augmentation, as well as new surgical techniques for this purpose. This research line includes the synthesis of new polymeric and ceramic biomaterials, the formulation of drug delivery systems for controlled release of bioactive molecules into treatment sites, and the use of blood-derived growth factors for tissue regeneration. In addition, Dr. Tamimi is conducting several clinical trials evaluating the performance of new biomaterials and surgical techniques in dental patients, under normal and pathological conditions.

Dr. Tamimi is a dentist who holds 2 clinical degrees, in Geriatric Dentistry, and in Implant-Prosthodontics, respectively, as well as a Ph.D. in Biomaterials that received the award for the best PhD thesis presented at the Faculty of Dentistry of the UCM University in 2006 (Premio extraordinario de doctorado). Dr. Tamimi helds a postdoctoral position at McGill University since August 2007. During his training, Dr. Tamimi worked in the Departments of Oral Surgery, Prosthodontics, Physical Chemistry (University Complutense of Madrid, Spain) and Pharmaceutical Technology (University of Parma, Italy), developing a multidisciplinary research profile and network. The career objectives of Dr Tamimi are to combine the background in materials science with his clinical formation in prosthetic dentistry to carry out research and education activities that fuses basic science with clinical applications.Dr Tamimi has 30 ISI scientific articles in the most important international journals in the field of Biomaterials, Material Science, Dentistry and Bone Research i.e.: Biomaterials (impact factor 6.6), Biosensors and Bioelectronics(impact factor 5.1), Journal of Controlled Release(5.7), Langmuir (impact factor 4.1), Acta biomaterialia (impact factor 3.7), Journal of Bone and Mineral Research (impact factor 6.4). Despite that most of these articles were published within the last 3 years, Dr Tamimi already has an h- factor of 5 (Scopus). Dr Tamimi received the VitalDent Foundation award for the best research in dentistry performed in Spain the year 2007. Dr. Tamimi has published 5 patents, 2 of which have been licensed to biotechnological companies.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Biomateriales

Referencia: RYC-2010-07309Area: Ciencia y Tecnología de Materiales

Nombre: TAMIMI MARINO, FALEH

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Low wear resistance and unsatisfactory corrosion behaviour of aluminium and magnesium alloys and poor adhesive bond strength, fretting and galvanic corrosion issues of titanium alloys limits the use of these materials in advanced transport, aerospace and energy applications. Further, in order to promote direct structural and functional anchoring of the prosthesis to the living bone, biomedical titanium implants require surface modifications, altering topography and chemical composition, which is vital for improvement of the implant life-time and acceleration of the healing process, ensuring better life quality.The proposed research line is a multidisciplinary project focused on combinatory use of surface modification techniques such as anodising, plasma electrolytic oxidation, electrodeposition, self-ordered nanotube fabrication and laser treatment to achieve innovative types of ceramic coatings for light alloys with improved tribological, photosensoric, adhesive bonding, corrosion resistant and bioactive properties through tailoring of the texture, nanostructure, morphology and composition of surface films. The improved surface performance yields numerous real and potential applications in the aerospace industry (fasteners, landing gear, aeroengine components with increased operating temperatures), gas and oil industries (gears and rotary pumps) and automotive industry (seat frames, doors, pistons), where light alloys are key players tackling environmental issues such as reduction of green greenhouse gas (CO2) emission and fuel consumption. In the case of titanium alloys, tailored surface treatments are also suited for improved photosensoric properties for solar-energy conversion applications and enhanced antibacterial properties, durability, osseoinduction and osseointegration in dental and orthopaedic implantology. The main objective of the research programme is to underpin the relation of the coating micro- and nanostructure, composition and morphology with its protective and functional properties and to develop a low cost enviromentally friendly surface treatment processes with advanced performance and functionality for light metal alloys for a variety of applications in transport and biomaterials industries.

Dr Endzhe Matykina received a Candidate of Chemical Sciences degree in 2002, following her First Class Honours MSc degree (best student in the course) in Electrochemical Engineering (1998) and First Class Honours BSc degree (best student in the course) in Chemical Engineering (1996) from Kazan State Technological University (KSTU, Russia). In 2006 the applicant completed a PhD on PEO of Titanium at the Corrosion and Protection Centre of The University of Manchester and was awarded postgraduate student of the year prize in 2007. During 2006-2009 she continued her research in Manchester as a Postdoctoral Research Associate within the LATEST Portfolio (Light Alloys Towards Environmentally Sustainable Transport) funded by EPSRC (U.K.) with £6M comprising 7 academic groups with world leading expertise on light alloys. In 2009 she was awarded a 3-year JAE Postdoctoral Fellowship of Spanish Ministerio de Ciencia e Innovación, and joined Departamento de Corrosión y Protección del Centro Nacional de Investigaciónes Metalúrgicas, Madrid, Spain, where she currently continues her research on advanced surface treatments of light alloys. During 2004-2009 the applicant took lead in directing research and co-supervising a group of young researchers including 2 PhD students, 3 postdoctoral visitors and 3 MsC students, particularly focusing on Plasma Electrolytic Oxidation (PEO). She has organised a PEO symposium of European Congress on Advanced Materials and Processes EUROMAT-2009, 7-10 September 2009, Glasgow, U.K. Her other credentials include First Prize in the International Bodycote Paper Prize Competition for the best presented paper (2006), the American Electroplaters and Surface Finishers Society (AESF) Research Grant (2001). She has 2 years of teaching experience of MSc Electrochemical Engineering Course (lectures and laboratory classes) at KSTU, Russia, and 3 years of demonstration of laboratory classes, e-tutoring of distance learning and lecturing (by invitation) in Corrosion Control Engineering MSc Course The University of Manchester, U.K.The applicant's interests focus on coating research and development for various applications in automotive, aerospace, and biomedical industries. She has an extensive experience in multiple aspects of surface treatment engineering, including fundamental knowledge of general chemical and electrochemical technology, obtained in leading light metals/surface treatment groups in Russia, U.K. and Spain. During her PhD and following postdoctoral research Dr. Matykina has participated in preparation of 5 National and European research grant proposals. One patent application is currently in preparation stage. She has experience in programs of knowledge transfer from innovative research and development into industrial applications and prototypes (Airbus, U.K). During her career she has established her own extensive network of international academic and industry collaborations and outreach contacts throughout various disciplines that ensures broad development of surface treatments for light metals and targeted new applications.Dr. Matykina has published 49 papers in internationally recognized journals of high impact factor, appearing as a leading and/or corresponding author in 27 of them; has presented 26 talks at international conferences and has given 5 invited talks at international workshops.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Advanced surface treatments for light alloys for transport and biomedical applications

Referencia: RYC-2010-06749Area: Ciencia y Tecnología de Materiales

Nombre: MATYKINA , ENDZHE

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Se presenta una línea de trabajo multidisciplinar que engloba disciplinas de la Ciencia y Tecnología de Materiales, la Electrónica y las Ciencias de la Computación. Se propone emplear Redes Neuronales Artificiales (ANNs) para caracterizar materiales a escala nanométrica cuando el entorno experimental es altamente indeterminado. Las medidas experimentales se harán con distintas técnicas de microscopía a escala atómica (SPM) en modo no-contacto para alterar lo menos posible los materiales: STM, AFM, Scanning Polarization Force Microscopy (SPFM) y técnicas especializadas derivadas de las anteriores (AF-STM, SPFM con Kelvin Probe Microscopy (KPM), 3Dmode-EFM). Los patrones de entrenamiento de las ANN serán generados de dos formas: 1) Resultados experimentales sobre materiales conocidos, 2) Datos teóricos realistas con software de simulación de SPM y cálculos de primeros principios (Siesta, VASP, cpmd). Se proponen las siguientes tareas: Caracterización de propiedades electrónicas de materiales con AFM y ANNs; Desarrollo de software que emplee ANNs para autoconfigurarse; Estudio de nuevos paradigmas bioinspirados; Construcción de dispositivos a medida para la caracterización de propiedades de materiales a escala nanométrica, y el reconocimiento individual de átomos en superficies con STM.También se propone desarrollar nuevos métodos de caracterización de grafeno y CNTs de forma local a escala nanométrica. Conseguir este objetivo supondría poder verificar el correcto funcionamiento de futuros dispositivos basados en estos materiales sobre el propio producto final, y descartar los dispositivos individuales que no cumplieran los requisitos mínimos. Una caracterización individualizada también podría realizarse antes de iniciar el proceso de construcción y evitar un trabajo inocuo sobre material defectuoso. Se propone estudiar las ventajas que aportarían las ANNs recibiendo información tanto de SPFM como de KPM; la aplicación de técnicas experimentales que combinen AFM y STM para medir la conductividad del grafeno y CNTs, y emplear SPFM-KPM para medir la distribución de carga del grafeno y sus efectos ante la incidencia de ondas electromagnéticas.

Se presenta un CV multidisciplinar que incluye Ciencia y Tecnología de Materiales, Nanotecnología y Ciencias de la Computación. Licenciado y Doctor en Física de la Materia Condensada por la Universidad Autónoma de Madrid (2003). Durante mi doctorado adquirí amplia experiencia en métodos de simulación de SPM aplicados a la caracterización local de propiedades conductoras de materiales a escala nanométrica. Tras una breve estancia en el laboratorio de Nuevas Microscopías de la UAM, donde colaboré en la caracterización in situ de la conductividad de CNTs y ADN, realicé una estancia 30 meses (2004-2006) en el grupo del prof. Miquel Salmeron en la Materials Science Division del Lawrence Berkeley National Laboratory (USA). Allí adquirí conocimientos sobre distintas técnicas de caracterización de materiales y superficies a nanoescala como SPFM, AF-STM y KPM. Trabajé en el estudio del momento dipolar sobre escalones atómicos en cuasicristales (Al-Ni-Co), los fenómenos de movilidad y disolución de iones Na+ y Cl- sobre superficies planas de NaCl y las inestabilidades mecánicas producidas por los fenómenos de capilaridad en materiales hidrofílicos. En el 2005 realicé una estancia de 6 meses en la UAM donde trabajé en hidrofobicidad local de superficies. En el 2006 inicie una estancia en el Nanoscience Technology Center en Orlando, donde estudie las interacciones de O y H en superficies Pd(111) con cálculos de primeros principios. En el 2007 colaboré con el Instituto de Ciencias de Materiales de Madrid en la simulación de fenómenos superficiales que involucran campo eléctrico. En la actualidad trabajo en la Escuela Politécnica Superior de la UAM. Mi trabajo actual involucra el uso de algoritmos de Inteligencia Artificial y clustering para mejorar el rendimiento en tareas de clasificación de las distintas técnicas de SPM. Gracias a estos algoritmos se está consiguiendo la clasificación de nanomateriales en sistemas altamente indeterminados (forma de la punta y distancia punta muestra desconocida). En colaboración con la empresa Nanotec Electrónica estoy desarrollando métodos de caracterización a la nanoescala que serán incluidos en el software WSxM. Otra colaboración con Deutecno S.L. tiene el objetivo de construir dispositivos basados en SCM que estén diseñados a medida (tanto el hardware como el software) para la caracterización de propiedades eléctricas de nanomateriales. Durante estos años he participado en 7 proyectos de investigación relacionados con la caracterización de nanomateriales (2 europeos) y un proyecto de innovación docente. He colaborado con los grupos del Prof. J. J. Greffet en la Ecole Centrale Paris, del Prof. L. -W. Wang en el LBNL y J. Fraxedas en la UAB. Soy coautor de 19 artículos en prestigiosas revistas internacionales (indexados en el JCR, 17 de ellos en el 25% con mayor impacto de su area). Soy primer autor en 13 de ellos (en uno publico en solitario). Estos artículos han recibido más de 350 citas proporcionándome un índice h=12. Además tengo un capítulo de un libro, 2 artículos no indexados y uno en fase de evaluación. Mi trabajo ha sido divulgado en más de 50 comunicaciones a congresos (aproximadamente la mitad internacionales), donde 15 han sido presentaciones orales y 3 charlas invitadas. Estoy acreditado por la ANECA como profesor titular de universidad y tengo más de 800 horas de experiencia docente reglada.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Caracterización y manipulación de nanomateriales en sistemas altamente indeterminados usando técnicas de Inteligencia Artificial. Aplicaciones sobre Grafeno y Nanotubos de carbono.

Referencia: RYC-2010-06417Area: Ciencia y Tecnología de Materiales

Nombre: GÓMEZ MOÑIVAS, SACHA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

The hope for hydrogen progress in energy applications supposes first new modes of production and then implies that high temperature fuel cells (which convert the hydrogen energy into electricity) present a higher efficiency and durability. For this last issue, some efforts are being made to lower the production costs or to enhance the device life by exploring a novel paradigm such as the use of proton conductors instead of classical oxygen conductors. Such proton conductors could also been used in electrolysis cells or for hydrogen separation, making the research in this field highly promising from the applications point of view. Most of actual proton conductors suffer from problems of stability in H2O or CO2 containing atmosphere, being based on perovskite materials with a Ba/Sr atom as A site cation. This limits their use in fuel cells working on classical fuels (which constitute actually the first market opportunity) or in electrolysis cells for syngas production. This problem of stability also limits their use in permeation membrane for hydrogen separation since the widest market for this application concerns steam reforming H2 production. In this project, we want to develop new proton conductors that will be resistant in H2O and CO2 containing atmospheres and to apply such materials to real devices. These materials will be for instance based on fluorite derived compositions for which significant proton conduction has been observed recently (in particular from the author's group in Paris) and for which the stability is much greater than that of perovskite compounds.This Project will be organized in the following sub-tasks, all of them being developed by the candidate:- Formulation of novel proton conductors- Modeling of diffusion properties - Development of original shaping routes- Test of devices (laboratory scale)The final objective is (1) to develop the knowledge around proton conductors in order to propose a strategy for new formulations (2) to play on the microstructure of the as-obtained material to create original functionalities (3) to insert these novelties in devices such as electrolysis or fuel cells and to test them in real conditions. The good development of this project wil be based on the experience acquired by the candidate in the field of fuel cells during the last 8 years. The project will also take benefit from the collaborations already working between the candidate and several important groups in the field at the european level, such as Truls Norby's Group in Norway.

I have worked on the influence of composition, structural and micro(nano)structural properties of nanomaterials on their functional properties such as magnetoresistance, gas sensing properties and transport properties for fuel cell applications. I have tried to have on these topics the widest possible vision of the problems. This led to me to acquire some very diversified skills such as elaboration of nanomaterials by chemical routes, the use of large instruments facilities for structural determination (ESRF, ILL), the use of different modelling tools (finite elements, resistor networks and energy minimisation) till the development of electrical measurements. In this last case, I have been involved during one year in the mounting of a platform for the measurements of electrical properties of materials for fuel cells. I have mounted and managed several research programmes as coordinator since my nomination as a tenured researcher at the CNRS. In 2005, I proposed and obtained a 3-years project in the framework of the "young researchers" programme of the French National Research Agency. This project concerns the suitability of the use of nanomaterials in Solid Oxide Fuel Cells. In 2006, I obtained a grant from the Oseo Anvar Innovation agency for recent works on proton conducting materials. In December 2006, I created a new "Scientific Operation" in my laboratory, which is called "Materials for hydrogen technologies". I am the head of this team in which are implicated eight persons. I also participate as an elected member to the laboratory council and I am the responsible for the Agenda 21 (sustainable growth) organization for research activities in the laboratory.All my activities show that I have some abilities to drive a high level and original research, to manage research projects, that I have some sense of organisation, some willing to develop my research activity and to situate it at an international level. From the scientific and human point of view, I think that I am an open-minded, inquiring, multidisciplinary and passionate person. Besides, having originally a physics-based education, I now really have a mixed chemistry-physics approach for the scientific challenges I deal with. I try to read a lot, in particular articles far from my subject, thinking that the analogy between research fields is probably the better way to bring new ideas. My work has been recognised recently by the attribution in 2008 of the Jean RIST medal by the French Society of Metallurgy and Materials.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Nuevos conductores protonicos i aplicaciones

Referencia: RYC-2010-06911Area: Ciencia y Tecnología de Materiales

Nombre: DEZANNEAU , GUILHEM

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Accommodating the greater surge for polymeric materials that persist in the environment for years even after their disposal is challenging. Insufficient infrastructures/facilities and lack of awareness among consumers are having dramatic direct/indirect impacts on the eco-system. This demands the need to address these direct/indirect concerns to ensure a safe ecology. This actually forms the fundamental basis of the proposed research. In line with the National Research Priority area on ¿Nanoscience and Nanotechnology - New Materials and New Industrial Processes¿, the proposed research aims to design, understand and develop the next generation of ¿green¿ polymer nanocomposites, which are environmentally friendly (halogen- and phosphorus/phosphate-free) and depending on the application, exhibit (a) superior thermal stability higher ignition resistance, minimized flame spread, containment of flame and combustible/degradation products in forced combustion conditions. Innovative strategies will be adopted to tackle the current scientific/technological and socio-economic hurdles in fire retardancy and food packaging industries. For e.g., a novel combination of conventional melt compounding and electrospinning technologies will be used to coat a porous functional biodegradable nano-fibrous barrier reinforced with 'natural' nanoparticles onto recycled polymer (waste from bottling industry) to address the issues with active and sensitive foods.

Aravind graduated in 2003 with a Master of Science degree in Chemical Engineering from the Louisiana University, USA. Then, he moved to Sydney, Australia in 2004 where he was awarded highly competitive research scholarships by the Australian Government and the Sydney University for higher studies. In 2007, Aravind obtained a Doctor of Philosophy degree in (Materials) Engineering from the Centre for Advanced Materials Technology (CAMT), Sydney University, under the guidance of Professor Yiu-Wing Mai. After the PhD, Dr Dasari continued to work at CAMT as a post-doctoral fellow for another two years before assuming the current position of Researcher at IMDEA Materials early 2009. Dr Dasari was a key researcher/collaborator/principal investigator in many projects on polymer blends and composites/nanocomposites in understanding the processing-structure-property relationships of these materials, their deformation/failure mechanisms, thermal stability/flame retardancy, barrier and tribological response. He has published several research papers on these aspects in peer-reviewed international journals (including Materials Science and Engineering ¿ Reports, Macromolecules, Acta Materialia, Nanotechnology, Polymer and Composites Science and Technology), four book chapters and participated in many national/international conferences/workshops. He also closely interacts with international authorities in the field. The quality of his contributions to science and engineering of advanced materials is well reflected by h-index of 18 to-date from 2003. Based on his standing in the field, he was included in the 10th Anniversary Edition (2008/2009) of ¿Who¿s Who in Science and Engineering¿ and invited to contribute a research monograph by a prestigious publisher (currently in progress). Besides, Dr Dasari was also a Casual Lecturer at the Sydney University from 2007-2008, Visiting Scholar at Hong Kong University of Science and Technology (HKUST) during April-May 2006, student/early career researcher committee member of Australian Research Council¿s Australian Research Network for Advanced Materials (ARNAM) from early 2005-2007, a member of the prize judging committee at the ARNAM workshop in 2006, and currently acts as a referee for many international journals in the general area of composites science and nanotechnology.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Eco-benign and Multi-functional Polymer Nanocomposites

Referencia: RYC-2010-06432Area: Ciencia y Tecnología de Materiales

Nombre: DASARI , ARAVIND

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Structural metallic materials for applications in air at temperatures beyond 700° C for gas and steam turbines and 1200°C for turbine blades would be attractive not only from industrial, environmental and socio-economical standpoints. They are also a major challenge for the materials science community and closely related fields to search for and subsequently develop alloy systems, which may be able to fulfil the goals by utilising the basic principles of physical metallurgy. The main objective is to develop a new generation of Ni-base alloys with a superior combination of properties either for steam and gas turbine or aeroengine applications. The optimisation and development of alloy design and processing technologies will supported by both the experiments and the computational thermodynamics calculations. These will include high strength, microstructure stability, creep and oxidation resistance at elevated temperatures coupled with good ductility and fracture toughness at room temperature. Considering that the new approach will be presented, the acquired knowledge will be original and brand new. The emphasis will be put on: processing for properties and microstructure control. The processing for properties will be focused on: (i) solidification behaviour of alloys at both near the equilibrium (directional solidification) and far from equilibrium conditions (as-cast and rapid solidification); (ii) role of the second phase in the strengthening and toughening mechanism, as well as, the influence of its morphology on the same; (iii) creep and fatigue properties at high temperatures; (iv) thermal stability of alloys and (v) oxidation and corrosion resistance with and without coatings. On the other hand, the following mechanisms of microstructure control will be explored throughout the research: (i) the influence of the temperature gradient as the processing parameter on the microstructure will be established; (ii) the possibility of templated growth will be explored in order to obtain various geometrical arrangements of the reinforcing phase; (iii) using the phenomenon of the coupled growth zone, the completely eutectic structures will be produced from off-eutectic compositions by changing the undercooling of the solidification front; (iv) microalloying as a mean of either intrinsic strengthening mechanism (solution hardening) or an extrinsic one (precipitation hardening) of the matrix and/or the reinforcement and (v) macroalloying with Cr with the aim to extend the existing eutectic lines into eutectic troughs, which will introduce another degree of freedom, i.e, it will allow to tune the volume fraction of the phases. Considering that the fixed volume fraction of the constituent phases is the major drawback of the eutectic alloys, this novel approach will revolutionize the field of high temperature materials based on eutectics. The investigations will aim at achieving a superior combination of conflicting requirements concerning manufacturability, mechanical performance and chemical endurance. The obtained results are expected to have great impact on aero- and automotive industries as well as on the power plant section of the energy generation industry, whereas the innovative concepts like templated growth or off-eutectic growth will contribute to the new knowledge in the science and technology of advanced materials.

Having graduated in metallurgical engineering at the University of Belgrade, Yugoslavia, I started my master studies at Department of Materials Engineering, Faculty of Mechanical Engineering, State University of Campinas (UNICAMP). The Project ¿Microstructure and mechanical properties of the Ni-Si eutectic alloys¿ was financed by The National Council for the Support of Research, Brazil. During my PhD at the same institution I worked on several projects dealing with processing, microstructure evolution and properties characterisation of alloys of several systems including, Al-Nb, Ni-Al-Nb, Ni-Al-Mo, Ni-Al-Ta and Ni-Al-V. However, the emphasis has been put on the project concerned with Ni-Al-V system. The investigations included phase diagram studies, processing routes, mictrostructural behaviour, and mechanical and oxidation properties of the Ni-based alloys. For this purpose I have been awarded Doctoral Fellowship by the Research Foundation of São Paulo State (FAPESP), Brazil. The PhD entitled ¿Fabrication and characterization of in situ composite materials in the Ni-Al-V system¿ has been supervised by Prof. Rubens Caram. I defended it in July 2002. The quality of the undertaken work is best reflected in the 5 publications and several congress presentations based on the thesis.After obtaining PhD, I worked a year as a postdoc at the Department of Fabrication Technology, Faculty of Mechanical Engineering, UNICAMP. The topic research was investigation of Ti-Al-Cr alloys for automotive industry. The main aim was to evaluate phase diagram, constitution and composition range of orthorhombic Ti2AlCr phase, and its influence on mechanical properties of γ-TiAl-based alloys. In 2003 I joined the department of Materials Technology at the Max-Planck-Institute for Iron Research (MPIE) in Düsseldorf, Germany, as a postdoctoral research scientist. For this position I got a prestigious postdoctoral fellowship of the Max-Planck-Society for the advancement of Science. There, I was involved in several projects devoted to development of novel alloying concepts, processing and/or joining technologies and microstructure control by thermo-mechanical treatment. Materials of interest ranged from heat resistance steels for steam turbines, over Ti aluminides as lightweight construction materials, to Ni-based alloys for high temperature applications. In October 2006, I switched to the Department of Interface Chemistry and Surface Engineering, MPIE, where I got the position of the Head of the Laboratory. For the needs of a large project on nanotechnology I was in charge of setting a new laboratory. The project was focused on novel combined method for producing self-organised metallic nanostructures. Since then, besides managing the laboratory, my activities include project management, as well as guidance of PhD, Master, Bachelor students and interns. So far, I have published 38 papers in several peer-reviewed journals. The high quality of publications is manifested by the h-index of 9 (and more than 170 citations) as per the Scopus database. In all the publications I took an active role, being of which, the first author of majority papers. Regarding project experience, I have participated in more than 15 projects at all levels, from entry to complete management. Based on my scientific track record, position in the field, and contributions to the science and technology of advanced materials, I was selected for the 2010 Edition of ¿Who¿s Wh

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Beyond Ni-base superalloys

Referencia: RYC-2010-07300Area: Ciencia y Tecnología de Materiales

Nombre: SRDAN , MILENKOVIC

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

My present research interests focus on magnetism of nanostructured systems on surfaces. The continuous research on the miniaturization of magnetic systems for nanotechnological applications such as ultrahigh density magnetic recording, or spintronics has lead to increasing efforts on nanostructuration of magnetic entities such as inorganic magnetic nanoparticles or single molecule magnets on surfaces. Albeit notable success has been achieved on the nanostructuration, several topics remain unclear. Interface effects are crucial on the magnetic behaviour of nanoscale magnets as nanoparticles, systems characterized by a very high surface/volume ratio. In this regard, an open field of study is the environment effect on the magnetic properties of individual nanoparticles, such as the substrate surface, or the exchange and dipolar interactions in self assembling processes on surfaces. On the other hand, magnetic nanodots or domain walls, obtained by nanolithography techniques on thin films of different inorganic materials such as manganites, show a wide and rich variety of phenomenologies intrinsically different from those of the domains they separate. Thus, they have a strong potential to be used to make new magnetoelectronic devices at unprecedented small scale. Highly sensitive sensors such as nanoSQUIDs or nanoHall sensors are not yet able to detect the weak magnetic signal coming from individual nanostructures as the ones hereby presented, and moreover lack the required nanometric resolution. In this regard, I propound the application of powerful emerging nanotechnologies such as Scanning Probe Microscopy techniques (SPM) beyond the well known Magnetic Force Microscopy (MFM), for the detection of the susceptibility of magnetic nanostructures, and the study of new magnetic phenomena such as magnetoresistance on nanostructured surfaces at the nanoscale level. For this, I define the following specific goals, which even though spread over many different materials, rely on the SPM experimental techniques as a common denominator, and the new insight that the nanoscale level resolution of these techniques offer:i) Magnetic detection of magnetocristalline anisotropy on isolated inorganic nanoparticles deposited on surfaces, with mean diameter of about 10 nm, and in self-assembled monolayers, using Scanning Probe Microscopy techniques. ii) Directly measure domain wall properties and, if possible, to manipulate them in order to produce new devices.

In 2000, I graduated in Physics at the University of Barcelona and obtained a fellowship from the Ministerio de Educación y Ciencia to do a Ph.D in molecular magnetism on Single- Molecule Magnets and multifunctional magnetic materials at the Fundamental Physics Department of the University of Barcelona, which I obtained in 2005. The title of my Ph.D. thesis is "Magnetism on high spin molecules and nanoporous materials" and my adviser was Prof. Javier Tejada Palacios. I continued my research as a Postdoctoral Researcher at the Istituto di Struttura della Materia (CNR) in Rome, Italy (2005-2007) with Prof. Dino Fiorani, where I specialized in the study of magnetic nanoparticles systems and Exchange Bias effects. Since 2008, I am a Postdoctoral Researcher at the Centre d'Investigació en Nanociència i Nanotecnologia CIN2 (ICN-CSIC) in Bellaterra (Spain), where I hold a Juan de la Cierva grant. My principal research activity is in the field of nanomagnetism and molecular magnetism. I have participated in about 10 research projects, and at the moment I am the principal researcher of a peer-reviewed and funded research project on the development of instrumentation based on Scanning Probe Microscopies, ultimately aimed at the study of magnetic properties. I have about 25 publications, most of them in the field of molecular magnetism, Single-Molecule Magnets and magnetic nanoparticles, in refereed chemistry and physics journals with high impact factors (1 Nature Materials, 1 JACS, 1 Andgewandte, 1 Advanced Materials, 2 Chemical Communications, 3 Inorganic Chemistry, 2 Physical Review B among others), altogether with more that 450 citations. I thus consider myself with experience in the design, the development and the search for funding of high level research projects.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:MAGNETISM OF NANOSTRUCTURES ON SURFACES; FROM ISOLATED NANOPARTICLES TO DOMAIN WALLS

Referencia: RYC-2010-06365Area: Ciencia y Tecnología de Materiales

Nombre: DOMINGO MARIMON, NEUS

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Hybrid light emitting devices (HyLEDs) are diodes composed by the combination of cheap nanocrystalline metal oxides and organic materials or molecules that can emit light upon applying an external bias. This new concept is considered the 3rd generation of diodes for low cost and environmentally friendly lighting and represents a real alternative to conventional LEDs and OLEDs in new low CO2 emission technologies for illumination. In this context, the project will be focused on obtaining not only state-of-the art efficiencies and stability on these new devices but also deeper fundamental knowledge on the materials properties at the nanoscale junction between the metal oxide and the organic materials, where all physical and chemical processes take place and have, therefore, a central role on the device performance. These studies will comprise a translucent metal oxide thin film and an optically active organic material (polymer, lumophores, etc...). The interactions between the semiconductor organic material and the semiconductor inorganic thin film will be studied in terms of: (i) Morphology through the variation of the structure of the metal oxide; (ii) Chemical engineering at the interface; (iii) Charge transfer processes upon external applied bias. These results will allow the control and optimization of the distances that free carriers (electrons and holes) have to travel before reaching the metal oxide/organic interface and recombine emitting light in complete HYLEDs as a result of the accumulated excess of energy. Additionally, the know-how obtained from the afore mentioned steps will be applied in the construction of devices with technological interest.

Currently, I am working at the Institut Catala d¿Investigacio Quimica (ICIQ) in Tarragona, Spain, in Optoelectronic Devices and, specifically, in Hybrid Light Emitting Diodes (Hyleds) and the charge transfer reactions occurring at their interfaces with the objective to improve final efficiencies. I joined the group of Prof. E. Palomares in ICIQ in 2007 as Juan de la Cierva fellow, where I initiated investigations of hyleds with potential technological applications, and I am responsible for this research program within the research group. Previously, I did my postdoctoral research on the applications of different mesoporous nanocrystalline transition metal oxide films and the synthesis and uses of new tin (IV) oxoalkoxoclusters under the supervision of Prof. C. Sanchez and Dr. F. Ribot, respectively, in the Université Pierre et Marie Curie of Paris, France. My PhD, directed by Prof. E. Coronado and Dr. J.R. Galan-Mascaros in the Instituto de Ciencia Molecular (ICMoL) of Valencia, Spain, dealt with hybrid molecular materials combining magnetic and/or optical properties. Therefore, I have strong skills in the synthesis of hybrid materials and their physical characterization by spectroscopic, electrochemical or microscopic techniques together with the preparation of optoelectronic devices and their photophysical characterization. The results of this multidisciplinary research have been reported in 35 publications in peer-reviewed international magazines such as Angew. Chem. Int. Ed., J. Am. Chem. Soc., Adv. Mater., Adv. Func. Mater., Chem. Eur. J., Chem. Commun., Inorg. Chem., J. Mater. Chem., Appl. Phys. Lett. and J. Phys. Chem. B. These works have been cited almost 500 times, and therefore, my h-index is 13. I have participated in several national and international research projects, including contracts with industry, and participated in numerous international conferences, giving 8 oral communications. In addition to my full time positions, I have made several stays at research centres in the UK, France, Portugal and Czech Republic. Furthermore, I have co-directed two masters theses dealing with photovoltaic devices (dye sensitised solar cells and quantum-dot polymer solar cells) and currently I am co-supervising a third masters student regarding the HyLEDs systems. Extended information is described in the attached CV.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Design and development of Hybrid Light Emitting Diodes (Hyleds): from fundamentals to applications

Referencia: RYC-2010-06787Area: Ciencia y Tecnología de Materiales

Nombre: MARTINEZ FERRERO, EUGENIA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

FUNCTIONALIZED NANOPARTICLES: DESIGN, SYNTHESIS AND IN VITRO ANALISI IN TRIDIMENSIONAL SYSTEMS.Improvements in design at the nanoscale, and the functionalization of nanoparticles' surfaces with a high degree of control have given rise to their use in a wide range of applications: in vivo sensors, drug delivery, contrast agents, biomarkers, and hyperthermia therapy among others. These bio-applications require that the materials maintain their activity and function in physiological conditions and that we completely understand and examine their biocompatibility and safety. Currently this evaluation is carried out in a petri dish (2D) and subsequently assessment is carried out in animals (3D). Environment influences cells' behavior, for example endothelial cells in a 2D system grow as monolayers, while in a 3D environment they create vessels. The development of a system to evaluate nanoparticles' toxicity in a 3D environment in vitro is both a central and fascinating objective of this project. A multilayer platform, previously developed in Prof. Whitesides' group, will be optimized. We will design nanoparticles with Dra. A. Roig - Materials Science Institute of Barcelona (ICMAB-CSIC) to obtain multifunctional nanoparticles for drug delivery and diagnosis. The penetration depth of nanoparticles will be computed with this multilayer 3D platform in physiological conditions. This project is highly interdisciplinary, ambitious and harmonizes my scientific experience and the expertise of the host group. Results envisaged will examine the nanoparticles' potential as drug delivery agents and improve the biomaterials toxicology testing platforms.

Licenciatura's degree (Spanish Degree equivalent to both Bachelor and Master) in Chemistry from the University of Girona in June of 2000 (1996-2000).Chemistry Ph.D. at the Materials Science Institute of Barcelona (CSIC). Thesis entitled "New derivatives of the dicarba-closo-dodecarborane which incorporate S, Se, N and P. Its catalytic activity and supramolecular properties", was supervised by Prof. Clara Viñas between Sep. 2000 and February 2005. My thesis was distinguished with the Extraordinary Prize of Doctorate of the Autonoma University of Barcelona. We studied and synthesized new carboranes compounds (clusters of boron, carbon and hydrogen), that contained rich elements in electrons (N, S, Se and P) for a plethora of applications. Results were published in Angewandte Chemie, Dalton Transc. and Organic Letters among others. I am skilled in Schlenck and chemical characterization techniques.Postdoctoral period in London under the mentoring of Prof. Molly M. Stevens (May 2005-March2008, Generalitat de Cataluña fellow). We obtained a protease sensor for medical applications; it has been published in J. Am. Chem. Soc and patented at the world level (PCT/GB2006/004459). This work initiated a biosensor methodology using gold nanoparticles and peptides, where proteases play a key role.Department of Materials Science and Engineering in Massachusetts Institute of Technology (USA). I spent six months working on a project to replicate complex patterns made by coiled coil peptides and peptides/DNA. We used peptides as building blocks similarly as DNA has been used in this field. We published those results in J. Mater. Chem. 2010 and they were highlighted on the cover of the journal.Currently I am a Postdoctoral researcher at the Harvard University in Prof. George M. Whitesides' Group. We are carrying out a project in the interface of Materials and Chemical Biology translation to solve problems applying creativity and new technologies (e.g., nanotechnology). We developed a tridimensional cellular platform for tissue regeneration, toxicology, cancer among others. These results have been patented and published at Proc. Nat. Acad. Sci. 2009.In brief, I have 16 papers (+ 4 manuscripts in preparation); I am first author of six of them in journals as Angewandte Chemie (IF 10.879), J.Am.Chem.Soc (IF 8.09), J.Mater.Chem (IF 4.65) and Proc.Nat.Acad.Sci. (IF 9. 38) among others, (H=6). I have 2 patents at World level from my periods in London and USA. I attended 24 congresses; I presented 7 oral presentations and gave two seminars in Berlin and Spain. During this period I supervised undergraduates, Ph.D. and master students and I successfully weaved a strong international network of top-level collaborators.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Nanopartículas funcionalizadas: diseño, síntesi y análisis in vitro en sistemas tridimensionales

Referencia: RYC-2010-06082Area: Ciencia y Tecnología de Materiales

Nombre: LAROMAINE SAGUE, ANNA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

There is currently a renewed interest in magnetic materials already well known by the scientific community. The reason for this revision has been the observation at interfaces in oxide-based heterostructures and superlattices of new properties and behaviours different from those observed in the bulk counterpart. Interfaces play a very active role in determining final properties of thin films and heterostructures. Understanding the physics of interfaces might lead to a better comprehension of the physical processes involved ending up in their control at will. In particular we have recently demonstrated the possibility to modify the spin polarization of an Fe layer in contact with a ferroelectric 1 nm thick BaTiO3 film by using purely electric fields [Science 10.1126/science.1184028 (2010)]. Moreover we have also shown that the strain between substrate and film in SrTiO3/La2/3Ca1/3MnO3 systems leads to an orbital and charge ordered state close the interface [Adv. Funct. Mat. 17, 3918 (2007)]. These results pave the avenue for new devices. From one side spin polarized currents are the basis for spintronic devices. Electrical control of such a devices will certainly lead to an enormous economic save in terms of power consumption but also offer new alternatives. On the other hand strain-control of orbital and charge ordering allows to envisage devices based not only on the spin degree of freedom (spintronics) but also on the orbital, i.e. orbitronics.The proposed research aims to understand and control the physics of interfaces of several oxide-metal interfaces. The samples will be grown by means of RF magnetron sputtering or pulsed laser deposition (PLD) at the materials science institute of Barcelona (ICMAB). Their structural, magnetic and electrical transport properties will be characterized by means of various techniques like, X-ray diffraction, atomic force microscopy, SQUID magnetometry and electrical transport measurements (PPMS). Understanding the electronic mechanisms responsible for these effects observed at interfaces requires the ability to study the behaviour of electrons at the interfaces, which are typically buried several nanometers below the surface, without interference from bulk electrons in each layer of the heterostructure. To reach this goal, synchrotron radiation techniques offering the possibility of using x-ray beams with tuneable energy and polarization are the ideal tool. Magneto-optical techniques in reflection (Kerr effect), soft x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray linear dichroism (XLD) can be used to probe the electronic structure, magnetic properties and orbital occupation at the interface on heterostructures of oxides taking advantage of the element specificity and shallow probing depth in the total electron yield (TEY) mode. This project is intended to profit of the 9 years candidate experience on synchrotron techniques (resonant scattering, Photoelectron emission microcopy (PEEM), XMCD, XAS, XLD) to get a deep insight in interface phenomena. We note that the new synchrotron ALBA will start to operate in normal user mode by the end of the present year. ALBA will have beam lines dedicated to those fields the candidate has nearly 9 years experience, (resonant scattering, Photoelectron emission microcopy (PEEM, XMCD, XAS, XLD...)

The candidate holds 2 bachelors; physics (University of Barcelona 1998) and Materials Science engineering (Politechnical University of Catalonia 2001). It is worth to remark that the later was awarded with the maximum mark although the candidate did those studies while working full time for a consultant company abroad. In 2002 the candidate obtained the advanced studies diplom (DEA) and the "suficiencia investigadora" in materials science. The research was done at the materials science institute of Barcelona (ICMAB) supervised by Prof. Benjamín Martínez. Within this time his research was focused on investigating thin (single crystal) and thick (polycrystalline) films of lanthanum-manganates. Those are materials with technologically relevant properties which might open the door for new types of devices based on the spin degree of freedom (spintronics). Within that time the candidate acquired experience on: growth of films by RF magnetron sputtering, UV lithography and characterization of films by Atomic force microscopy, X-ray diffraction, SQUID magnetometry, electrical conductivity, etc. In 2002 the candidate accepted a contract at the synchrotron of Berlin (BESSY) to start a new thesis linked to the University of Potsdam. In Germany the candidate was in charge of developing new magneto-optical methods for investigation in magnetic materials. The candidate used those methods to continue investigating on lanthanum-manganites. As a result of this doctoral research period the candidate ended up with an outstanding record of 24 publications in peer-reviewed international journals of recognized prestige.Within the postdoctoral period the candidate has continued working regularly with the techniques he contribute to develop during the thesis as well as with X-ray absorption spectroscopy (XAS) and X-ray circular and linear magnetic dichroism (XMCD and XMLD). In addition the candidate has acquired now experience (2 years) in scanning tunnelling microscopy (STM), Resonant and non-resonant magnetic scattering as well as on Photoemission electron microscopy (PEEM).During the post-doctoral time, the candidate has led his own research in the different groups he worked. On his own, he developed collaborations with international research groups of recognized prestige from Spain, France, Switzerland, Sweden and Germany. These collaborations have turn out to be very successful. Although his youth the candidate presents an outstanding record of 32 peer-reviewd publications (9 as first author), to highlight 1 Science [10.1126/science.1184028 (2010)], 1 Advanced Functional Materials [17, 3918 (2007)] and 1 Physical Review Letters [87,067210 (2001)]. These collaborations are still active and as a result 3 papers are actually being revised by referees at Physical Review Letter while 2 at Nature Materials.Publications of the candidate has been cited ca. 400 times. His h-indes is 10. The candidate is also regularly referee of the following publications: Physical Review Letters,Physical Review B, Applied Physics Letters, Journal of Applied Physics, Nanotechnology, Journal of Physics D, and Solid State Communications. The presented project aims to profit of the candidates experience in both material research and used of synchrotron techniques for characterization.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Interface effects on complex oxides investigated by synchrotron radiation techniques.

Referencia: RYC-2010-06157Area: Ciencia y Tecnología de Materiales

Nombre: VALENCIA MOLINA, SERGIO

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

The research activities of this project are focused on the development and optimization of positive and negative electrodes for Li-ion Batteries and microbatteries and to evaluate their possible application in commercial electronic devices. The work is divided in two main lines: (i) application of the state-of-the-art in chemistry of materials to fabricate nanostructured electrodes using anodization, sputtering and electrodeposition techniques, and (ii) use of Li-ion batteries as surface/interface thermodynamic probes for electrode materials.Anodization can provide us the fabrication of self-organized nanotubes and oriented thin films as well as the synthesis of different nanostructured functional materials using the appropriate media and preserving the geometry of the initial substrate. The porous film will be formed by self-aligned nanotubes which will vary between 20-200 nm in diameter, and its growth will follow columnar distribution (from few to hundreds of nm). Sputtering technique will provides us the fabrication of thin layers with the controlled growth of monocrystalline epitaxial layers. These methods have a high scientific interest because it is possible to produce films of different stoichiometry and high purity, obtaining materials from a variety of different chemical and physical properties. The combination of anodization and sputtering will provide the desired nano-architectures. Moreover, electrochemical deposition will be used to grow functional nanostructured materials in the form of controllable size metal nanowires for example. Indeed, electrodepostion has to be explored in detail because it can be used as a supplementary process for the nano-architecturation on the templates.In the course of the search for better and high-performance batteries, the present and growing interest on nanometric materials is now leading us to consider differently the surface of the active particles. Although we are well aware of the existence of the energetic contribution nested on their surface, its impact on the electrochemical process taking place in a working accumulator when using bulk micrometric particles is commonly neglected. The energetic contribution of the surface is a very well documented parameter ruling many properties of solids, but in the field of electrode materials is still surprisingly not considered as a main parameter. Apart from punctual studies on some systems, no general strategy was to my knowledge undertaken to rationalize and generalize these electrochemical observations in the light of the surface energy. As a matter of fact, a battery can be viewed as a unique tool for such investigation. The change in size of the active particles cannot modify the former, but the free energy hung by the surface can contribute to the overall change in free energy of the reacting system, and therefore the potential of the battery. Based on the fact that any accurate measure of the potential of a battery is a direct measure of the free energy change, I can thus potentially probe the surface free energy and assess its surface tension in a direct and original way provided the studied systems are carefully selected. Gathering all these electrochemical-size data will constitute a reliable library to calculate surface energy data of various reacting system.

The research career of Dr. Gregorio F. Ortiz has been marked by a high and competitive participation as a collaborator in 12 projects at both National and European levels, during his pre-and post-doctoral period (2002-Present), in two of them as the researcher in charge. The latter two have been developed as Post-Doc in France from 2007 to the present. One was granted by Spanish ministry 'José Castillejo' and the other by the European 'Nanomaterial Program CNRS-MPG', proving his aptitude to manage them. In the latter call, his project was selected among solely 8 projects granted in the field of Materials in 2009. His most relevant scientific progress conducted to the development of nanostructuration of 1, 2 and 3D electrodes materials by anodization, sputtering and electrodeposition techniques for Li-ion Batteries applications. He proved that the nanoarchitecturation onto the current collector offers several advantages versus traditional preparation routes. These novel approaches were published in 2009 and resulted in high impact, as shown by the fact that his work is included in the top 5 most cited paper in Chemistry of Materials within the Multidisciplinary Materials Science category. From the European projects its worth noting his collaboration in the ALISTORE, LIBAN, MISSION and NEGELIA. In that period, he was able to consolidate his knowledge in Chemistry of Materials and designed positive and negative electrodes for Batteries in collaboration with companies such as Renault, Bosh, SAFT or Volkswagen. His PhD thesis was framed in a doctorate program with a quality mention in Cordoba (2002-2006). During this period he studied the nanostructuration of materials of different composition, such as carbonaceous materials and 3d metal oxides with layered and spinel-types structures. These results were obtained under Spanish Materials Programs (MAT) and in collaboration with companies, as REPSOL-YPF and National Institute of Carbon INCAR (Spain). Likewise, during his instruction period he did different stays in EU laboratories, e.g. at the Institute of Materials Science at the Technological University of Darmstadt (Germany) and at the CLRC Daresbury Laboratory (UK) studying surface of electrodes by XPS, and EXAFS-XANES in the Station 7.1 using a synchrotron radiation. He demonstrated competence in solid state techniques for the ex situ and in situ characterization of electrodes such as 7Li and 23Na NMR, EPR and 119Sn Mössbauer spectroscopy, among others. Summarizing, from his research activities it can be highlighted: (i) He is co-author of 32 articles (plus 2 submitted) published in indexed international journals (> 85% top quartile of the ranking) and one book chapter. He has contributed to 26 congresses (5 oral and 3 posters), two invited talks, and he is usual reviewer of different journals. In addition, he participated to European Patent Application with the group FQM-288. (ii) He is in constant alliance with relevant companies in the field (European Industrial Club ALISTORE) and recently with Nokia's research centre that can give a plus to all this research. As results of his academic activities (more than 240 h in teaching Chemistry and Master students), in July 2008 he obtained a positive assessment of Assistant Professor Doctor from the National Quality Assessment and Accreditation (ANECA) from Spanish Ministry. He is currently co-supervising Master and PhD students. All these aspects support the skills of the candidate

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Nanomaterials for Li-ion Batteries based on architectured electrode designs

Referencia: RYC-2010-05596Area: Ciencia y Tecnología de Materiales

Nombre: ORTIZ JIMÉNEZ, GREGORIO FRANCISCO MARIO

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

En la Ciencia y Tecnología de Materiales existe un interés creciente de cara al diseño de compuestos nano/mesoestructurados multifuncionales que faciliten nuevas áreas de aplicación de alto valor añadido. La presente propuesta se basa en el estudio, desarrollo y diseño de nanomateriales híbridos multifuncionales novedosos. Se trata específicamente del diseño y caracterización de sistemas inteligentes termo-reversibles de base polimérica que permitan la obtención de materiales electro- y termo-sensibles. La línea de investigación principal consta de dos partes diferenciadas y, a la vez, complementarias. En la primera, se pretende continuar en el desarrollo de nuevas estrategias basadas en el empleo de cristales líquidos (LC) ferroeléctricos con el objetivo de obtener materiales poliméricos capaces de pasar del estado opaco a transparente con una velocidad de respuesta rápida (milisegundos). La candidata cuenta con 4 años de experiencia en esta línea, en la cual ha empleado LC nemáticos confinados en una matriz termoestable (tipo epoxi), utilizando como tercer componente un copolímero de bloque (BC), considerando que uno de los bloques del copolímero permanece miscible con la matriz polimérica y el otro bloque miscible con el LC, para así conseguir sistemas termoestables nanoestructurados y termo-reversibles. En la segunda línea propuesta, se estudiará la integración de nanopartículas (NP) de tipo Au, TiO2 y BaTiO3, entre otras, en los LC o BC de cara a la obtención de compuestos híbridos inorgánico/orgánico con dispersión adecuada para su posterior acoplamiento a matrices termoestables, con el objetivo de mejorar tanto la termo-reversibilidad como la estabilidad térmica de los sistemas. Este concepto, orientado a minimizar la histéresis térmica, es absolutamente innovador y actualmente se consigue con materiales modificados exclusivamente con LC. Esta segunda fase se realizará en base a los métodos desarrollados por la Dra. Tercjak y colaboradores tanto para la funcionalización de NP de óxidos metálios con ¿brushes¿ de poliestireno y poli(metacrilato de metilo) como para la incorporación de nanopartículas de diversa naturaleza (Ag, TiO2, Fe3O4, etc) en BC de tipo estireno-butadieno-estireno o poliestireno-b-poli(óxido de etileno).

Ingeniería en Tecnología Química en la Facultad de Química de la Universidad Politécnica de Gdansk (Polonia)-19.09.1995 (homologado por el Ministerio de Educación). Doctorado en Ciencias Técnicas en el campo de Tecnología Química por la Universidad Politécnica de Gdansk-10.07.2000-Premio Extraordinario de Doctorado (homologado por UPV/EHU). Estancias post-doctorales: 08/2000-02/2001 (7 meses): Facultad de Ingeniería Civil de la Universidad Politécnica de Gdansk. Proyecto enfocado a la modificación de polímeros termoestables con cementos. 04/2001-10/2002 (18 meses): Max-Planck Institut für Polymer Forschung en Mainz (Alemania). Beca postdoctoral NANOZENTRUM (Prof. G. Wegner) "Synthesis of amphiphilic polyelectrolyte based on cellulose". 02/2003-07/2004 (18 meses): Grupo "Materiales+Tecnologías" / UPV/EHU / Donostia-San Sebastián (España). Contrato postdoctoral dentro de la red Europea RTN POLYNETSET financiada por la UE en su 5º Programa Marco. 01/2005-11/2007 (35 meses): Beca y el ultimo año contrato postdoctoral de Formación de Personal Investigador del Gobierno Vasco (Prof. I. Mondragon) "Redes termoestables modificadas con cristales líquidos, sólidos cristalinos y copolímeros de bloque para obtener nanoestructuras estabilizadas de aplicación en la mejora y diseño de nuevos dispositivos ópticos". 02/2008-actualmente Contrato de Personal Investigador dentro de Grupos de Investigación Consolidados UPV/EHU. "Ingeniería Macromolecular y de Nanoobjetos enfocada hacia la Generación de Materiales Multi-funcionales para Nuevos Desarrollos en Nanotecnología". Proyectos de investigación: 19 proyectos de investigación financiados tanto por la Unión Europea como por el Ministerio de Ciencia e Innovación y por el Gobierno Vasco. Publicaciones: 45 publicaciones científicas (además de 3 capítulos de libro y 1 libro como co-autor de 6 capitulos) con alto nivel de autoría (82% publicaciones en 1er, 2º y último lugar, en 11 de ellas corresponding author). Artículos más relevantes: Macromol. Rapid Commun. 26, 982 (2005), Macromolecules 39, 2254 (2006), Macromolecules 40, 4068 (2007), J. Polym. Sci. Part A Polym. Chem. 45, 925 (2007), J. Polym. Sci. Part A Polym. Chem. 45, 4744 (2007), Macromol. Rapid Commun. 28, 937 (2007), Macromol. Rapid Commun. 28, 2361 (2007), Acta Materialia 55, 6436 (2007), Nanotechnology 19, 155607 (8pp) (2008), Nanotechnology 19, 275701 (2008), Acta Materialia 56, 5112 (2008), Langmuir 24, 11216 (2008), Macromolecules 41, 9295 (2008), Macromolecules 42, 3386 (2009), Nanotechnology 20, 225603 (2009), Macromolecules 42, 6215 (2009), Acta Materialia 57, 4640 (2009), J. Am. Chem. Soc. 132, 872 (2010). Factor H 10. Congresos: 67 congresos tanto nacionales como internacionales, 27 de ellos comunicaciónes orales y 6 de ellos como INVITADA. Otros méritos a destacar: Codirección de tesis en curso. Experiencia docente en Universidad Politécnica de Gdansk en el campo de materiales poliméricos (un total de 570 h) en asignaturas: "Química de Polímeros", ¿Ingeniería de Materiales", "Aplicaciones de Polímeros", "Métodos de Ensayos de Polímeros", "Tecnología del Procesamiento de Polímeros", entre otras. Impartición de las asignaturas: Termodinámica/Cinética de Materiales, Estructura y Propiedades de Materiales Poliméricos en el MASTER OFICIAL de la UPV/EHU "Ingeniería de Materiales Renovables" con Mención de Calidad del MCyT.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:NUEVAS ESTRATEGIAS DE PREPARACIÓN Y CARACTERIZACIÓN DE MATERIALES POLIMÉRICOS TERMO-REVERSIBLES Y MULTI-NANO-FÁSICOS BASADOS EN COPOLÍMEROS DE BLOQUE, NANOPARTÍCULAS Y CRISTALES LIQUIDOS

Referencia: RYC-2010-05592Area: Ciencia y Tecnología de Materiales

Nombre: TERCJAK , AGNIESZKA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Carbon nanohorns (CNHs) represent a new type of nanostructured carbon-based materials that have received less attention but with an important potential, due to the fact that they are exclusively semiconductors, are produced with high purities and in the absence of any metallic catalyst. CNHs exhibit high surface areas and porosity, are monodispersed materials and posses an homogeneous size distribution.The underlying motivation for the proposed project is the paired realization that carbon nanohorns (CNHs) display outstanding physico-chemical features but are extremely difficult to manipulate or functionalize without destroying their inherent structure. In their pristine forms (as-produced by many companies) most of these carbon nanostructures are completely intractable and insoluble in common solvents. It has been clearly demonstrated that the functionalization of carbon nanoforms increases their solubility and makes them easy to handle. This project proposes firstly an approach to prepare double-functionalized CNHs with a controlled, fast, eco-friendly and easily scale up methodology. Once the nanostructure is functionalized there is room for a high number of possibilities due to the fact that different anchor points to attach any other chemical are created. One of the possibilities is the growth of polar macromolecules at the surface of CNHs, other possibility is the attachment of previously-synthesized highly polar macromolecules. This strategy should remarkably enhance the solubility of the nanohorns in aqueous solutions, due to the incorporation of a high concentration of polar groups to the surface of the tubes The design of these new structures could provide a powerful means for controlling and modifying CNH-based receptor activity, energy conversion, transport properties, etc. The attachment of metal nanoparticles to carbon nanohorns is a new way to obtain novel hybrid materials with interesting properties for various applications such as catalysts and gas sensors as well as electronic and magnetic devices. Carbon nanohorns characteristics such as excellent electronic properties, good chemical stability, and large surface area make them very useful as support for nanoparticles in many potential applications, ranging from advanced catalytic systems through very sensitive electrochemical sensors and biosensors to highly efficient fuel cells. The candidate proposes synthetic approaches and types of assemblies, in which CNHs are decorated with nanoparticles and the possible applications of these new hybrids. The use of macromolecules as nanoreactors, stabilizers and templates for the preparation of the nanoparticles presents advantages, such as temperature and size control. Incorporation of two or more catalyst particles can provide greater versatility in carrying out selective catalytic or sensing processes.

The applicant completed her bachelor degree on Chemistry at the Universidad de Castilla- Mancha (UCLM) (mark 7.3/10, 4 years, third of her class), on her last year degree, she obtained a collaboration grant by MEC. Once she had finished her degree, she started working on a project for the optimization of the synthesis of the amiodarona chlorhydrate in collaboration with the company Algry quimica, S.A. On January 2000, the applicant began her PhD (supported by JCCM, 2 years grant + 2 years contract). During the development of her PhD, the candidate was involved in a high number of projects. Her first predoctoral stay was on the field of NMR under the supervision of Prof. T. Claridge, at the University of Oxford. One part of the thesis was performed in a short period of time in Uppsala (Sweden) with the Dr. M. Larhed. Enclosed on the terms of her thesis, two important collaborations were executed: one with the group of Prof. F. Cossío and the other one with the pharmaceutical company Janssen Cilag, S.A. In June 2005, she obtained the highest level of English in the EOI. In February 2006, she obtained the European PhD degree by the UCLM with the highest qualification Sobresaliente Cum Laude. Her first postdoctoral stay (granted by JCCM) was performed on the University of Graz (Austria) under the supervision of Prof. O. Kappe with the aim of the achievement of a comprehensive and well-design study of the ¿microwave effect¿. On September 2006, the applicant got a position as ¿Profesor Ayudante¿ (Teaching Assistant) at the UCLM. Due to this fact, she successfully combined some periods of teaching and postdoctoral stays. The applicant possesses the official recognition as ¿Profesor ayudante doctor, Profesor contratado doctor¿ by the ANECA and ACCUM commissions. Her second Postdoctoral stay (granted by JCCM) was performed under the supervision of Prof. M. Prato at the University of Trieste on the design of new nanomaterials for application in medicinal chemistry and/or material science. Once she had ended her postdoctoral stay, she combined her research on the field of Nanotechnology with her duties as assistant professor; teaching, following master¿s students, collaborating to establish the new degrees (co-author of three chapters of two students¿ books)¿ The candidate has participated in a huge number of international conferences with several oral communications and poster presentations. She is author of a high number of publications on peer-review journals that appear in the Science Citation Index (SCI) list such as JACS, Adv. Mater., Small, JOC, Molecular Diversity, Org. Biomol. Chem, ACS nano, Nanomedicine, JMC¿Some other articles has been submitted to prestigious journals as: Nature chemistry, FASEB J, PLOS Medicine, Nature Neuroscience, Nanoscale¿ The order of the author names in her thesis¿ articles follows an alphabetic order in agreement with the policies of her team (however, the candidate was the person who synthesized and characterized the compounds). Once she got her PhD degree, she started not only to perform the synthesis and characterization but also in some cases to design the projects. Four patents have been submitted due to a fructiferous collaboration with the company Nanodrugs S.L. As it has been shown, a multidisciplinar scientific formation has been successfully performed, as it is revealed by the high number of collaborations, predoctoral and postdoctoral stays on prestigious research centers.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:SUPRAMOLECULAR CHEMISTRY ON CARBON NANOHORNS FOR MATERIALS APPLICATION

Referencia: RYC-2010-06018Area: Ciencia y Tecnología de Materiales

Nombre: HERRERO CHAMORRO, MARIA ANTONIA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

I pursue fundamental understanding of the underlying science that enables the construction of multifunctional magnetic nanostructures by using innovative fabrication strategies based on laser-induced reaction-mechanisms. These nanostructures will combine in the same construct biocompatible nanoparticles with appropriate magnetic, photonic, delivery, radiological, biological and heat-absorption functionalities for their potential biomedical use in cancer teragnostics. Preparation of these multimodal nanoparticles need to overcome several technical issues in order to identify, and control the factors that govern the synthesis, surface functionalization, and nanoscale properties of these nanoplatforms, which determine their potential biomedical uses. In doing so, I will explore new synthesis strategies based on laser-matter photo-thermal mechanisms, such as gas-phase laser-induced pyrolysis and laser-ablation of precursor solutions. These techniques allow the synthesis of nanostructures under extreme conditions, which are not available by using traditional wet-chemical nanoparticle synthesis routes. In these laser-driven processes, the sequential alteration of the different chemical precursors will make possible the controlled grouping of several nanoparticles, with different functionalities, intro a single nanostructure. This will be achieved by using lasers emitting with different wavelengths and output power, combined with the use of several chemicals, which exhibit different nature and responses under the laser radiation. Simultaneously, studies on the structure, composition, surface, and nanoscale properties of these nanoparticles will be carried out. The effect of the physical parameters involved in the synthesis process, on the functionalities exhibited for these nanoplatforms will be explored in order to optimize their properties for each specific application. These experimental researches will be coupled to the development of theoretical models where the optimum application-specific particle attributes will be reached by modeling in order to guide the experimental studies. Finally, I will develop protocols to achieve surface modification of these nanoplatforms in order to obtain stable dispersion of them in biocompatible fluids. For this purpose functionalization with different biostablizing agents will be used. The ultimate goal of this proposal is the development of a new generation of multifunctional nanoplatforms, which will exhibit unprecedented potential for their application as nanovectors at cancer teragnostics interventions, such as: early detection and diagnosis of tumoral processes by using integrative multimodal molecular imaging diagnosis, tumor-thermoablation via combined magnetic/optical induced-hyperthermia therapy; and combined magnetic resonance imaging/optical imaging assisted tumor removal surgeries. They will also be applied in efficient and specific delivery of drugs. The novelty of this proposal is on: a) development of multifunctional nanoparticles with potential biomedical applications; b) development of innovative laser fabrication strategies that will enable monodispersity, colloidal stability, biocompatibility and in situ functionalization of these nanoparticles; and c) development of theoretical models to determine optimum particle/system attributes for their potential biomedical applications.

My research career has been focused on the on the fabrication and characterization of magnetic nanomaterials for their application as nanoclinics in biomedicine. 1997-1998, Research student at the Universidad Complutense of Madrid; 1998 Master on Geological Science at the Universidad Complutense of Madrid. (1999) Associated teacher in the department of Crystallography and Mineralogy of the Universidad Complutense of Madrid. 1999-2004 I joined the Particulate Materials Group of the Materials Science Institute of Madrid (CSIC) as Ph.D. student. Ph.D. Degree in 2004 with the Thesis: Synthesis of Magnetic Ultrafine Nanoparticles by Laser Induced Pyrolysis for Their Application in Magnetic Resonance Imaging. I was involved in the laser fabrication and characterization of magnetic nanomaterials for their application as contrast agents in Magnetic Resonance Imaging diagnostic technique. I performed several stays in foreign institutions (Institute ENEA-Frascatti, Laboratoire de Spectroscopie Mössbauer CEA-SACLAY, Laboratoire de Pyrolyse Laser of the CEA-SACLAY) where I gained experience on the laser fabrication of magnetic nanocomposites, as well as on the structural and magnetic characterization of these materials by using X-Ray Diffraction, Mössbauer Spectroscopy and High Resolution TEM techniques. November 2004, I was incorporated to the NEAT ORU and Thermochemistry Facility of the Universidad de California at Davis as postdoctoral researcher under the supervision of Professor Alexandra Navrotsky. During my postdoctoral stage, I gained an extensive expertise on the characterization of the thermochemichal properties of the nanoparticles by using calorimetric techniques, such as high temperature oxidative solution calorimetry or acid solution calorimetry. December 2005 I worked as laboratory supervisor for the company Geotecnia y Medio Ambiente 2000, S.L. August 2006, I joined the Particulate Materials Group of the Materials Science Institute of Madrid (CSIC) as Ph.D. student. During this period I worked on the on the preparation of magnetic nanoparticles for their use as nanoclinics in biomedicine. September 2007, I was hired by the Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) to work as Associated Postdoctoral Researcher at the Nanoporous Films and Particles Research Group. In January 2008 I was appointed scientific supervisor of the CIBER-BBN facility ¿Plataforma de RM y Nanopartículas II¿, which focuses on the synthesis of nanomaterials with potential applications in biomedicine. As head of this facility, I have intensely worked on the start-up of innovative nanoparticle fabrication routes by using laser fabrication techniques. During this time I carried out research stays at different worldwide laser fabrication facilities (State University of New York at Buffalo and Friedrich-Schiller-Universität, Jena). During my research activity I coauthored 31 (plus two in review process), 9 of them as first author, and many contributions to international conferences (18 contributions, 6 orals presentations presented by myself). These works have been cited in 312 times. I have actively collaborated in 12 Spanish and/or international Projects. All my researchers have been funded by personal grants or fellowships awarded in public calls. This factindicates my ability to attract independent funding.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Laser Fabrication of Multifunctional Magnetic Nanoplatforms for their potential application in integrative multimodal molecular imaging diagnosis and therapeutic interventions in cancer theragnostics

Referencia: RYC-2010-07332Area: Ciencia y Tecnología de Materiales

Nombre: BOMATI MIGUEL, OSCAR

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

En los últimos años ha surgido un gran interés por nuevos dispositivos optoelectrónicos basados en conceptos de nanoescala, y particularmente en las células solares basadas en estos conceptos. Estos dispositivos se fundamentan en las propiedades electrónicas de nanopartículas semiconductoras de gap ancho (TiO2 y ZnO) sensibilizadas con un absorbedor de luz, y pueden dar lugar a avances tecnológicos importantes, relacionados con el ahorro y la producción limpia de energía. La reciente demostración del fenómeno de multiplicación de portadores en puntos cuánticos (QDs) abre las posibilidades de obtener eficiencias cuánticas superiores al 100% (más de un electrón por fotón absorbido) con este tipo de estructuras. Adicionalmente los QDs presentan coeficientes de extinción mayores que los colorantes convencionales y su band gap puede sintonizarse controlando el tamaño de la nanopartícula, los que los hace extraordinariamente atractivos para aplicaciones fotovoltaicas. Así la utilización de QDs como absolvedores de luz ofrece por tanto unas potencialidades indudables de cara a la obtención de células solares de mayor eficiencia y de bajo coste. La utilización de arquitecturas alternativas a las nanopartículas como nanohilos, nanotubos y la combinación de estos con nanopartículas, también será estudiada con el fin de optimizar la absorción de QDs en la matriz nanoestructurada y el transporte en el electrodo semiconductor. Para aprovechar las enormes potencialidades de estos dispositivos es necesario desarrollar las propiedades de los materiales e intercaras y establecer modelos físicos de su comportamiento. Proponemos una investigación experimental y teórica de los procesos físicos que regulan estos dispositivos fotovoltaicos con el objetivo de desarrollar células solares de bajo coste. Para ello se propone utilizar diversas técnicas fotofísicas de caracterización: curvas corriente-potencial, espectroscopia de impedancia, IPCE (Incident Photon to Current Efficiency), y también transitorios en dominio de tiempo, como extinción de voltaje a circuito abierto y transitorios de fotovoltaje superficial. Asimismo se desarrollaran modelos que permitan una compresión global del dispositivo. Se propone estructurar los retos de la actividad de investigación mediante los siguiente objetivos: 1. Estudiar los fenómenos electrónicos de generación, inyección, transporte y recombinación de portadores inyectados en nanoestructuras semiconductoras de gap ancho (TiO2 y ZnO) utilizando QDs (CdSe, CdTe, PbS, FeS2) como absorbedores de luz.2. Investigar la influencia de los procesos de transporte y transferencia de carga en distintas configuraciones de células solares nanoestructuradas prestando especial atención a la influencia de las nuevas arquitecturas en el rendimiento del dispositivo.3. Profundizar en las diversas líneas de optimización de este tipo de células solares que nuestro trabajo previo nos ha permitido identificar: absorción de QDs, contraelectrodo, electrolito, recubrimiento para disminuir la recombinación.4. Desarrollo de células solares de bajo coste basadas en puntos cuánticos y nuevas arquitecturas.

Nacido en 1974 en Valencia, obtuve la licenciatura en ciencias físicas por la Universidad de Valencia en 1997, y me doctoré por esta misma universidad en el año 2004. En febrero del año 2002, me incorporé con un contrato de ayudante de investigación al ¿Grupo de Dispositivos Fotovoltaicos y Optoelectrónicos¿ de la Universitat Jaume I de Castellón de la Plana (UJI), en el que he desarrollado mi carrera investigadora hasta la actualidad. En el desarrollo de carrera además de numerosas estancias cortas en varios centros de investigación (Tarragona, Sevilla, Barcelona, Alicante, Durham (Inglaterra)), he realizado varias estancias posdoctorales superiores a un mes Hahn-Meitner Institute de Berlín y en el N.R.E.L. (National Renewable Energy Laboratory) en Colorado (EE.UU.). También he realizado estancias en la Universidad de Electrocomunicaciones de Tokio (Japón) y en el LCMTR, del CNRS en Thiais (París), Francia.Fruto de mi trabajo de investigación tengo 51 artículos publicados o aceptados y 4 enviados, todos ellos en revistas de difusión internacional, además de la publicación con ISBN de la tesis doctoral. He sido primer autor en 19 artículos y segundo en 11, siendo corresponding autor en 15 artículos publicados y en 3 de los enviados. Entre los artículos publicados podemos destacar tres artículos publicados en Nano Letters (con 53 citas entre los tres), la segunda revista de nanociencia con mayor índice de impacto, 10.371. También se puede destacar el trabajo en J. of Am. Chem. Soc. 126 (2004) 13550, revista con un índice de impacto de 8.091, donde se desarrolla el método de extinción de fotovoltaje a circuito abierto para la caracterización de células solares sensibilizas con colorante (93 citas), el estudio de células solares de alta eficiencia sensibilizadas con colorante J. Phys. Chem. B 110, (2006) 25210 (79 citas), uno de los primeros trabajos en células solares eta (Physica E 14, (2002) 229 (29 citas) y la caracterización eléctrica de nanohilos de ZnO mediante espectroscopia de impedancias Appl. Phys. Lett. 89, (2006) 203117 (32 citas). Por último destacar el trabajo publicado en J. Phys. Chem. B 107, (2003) 758, que está dentro del 1% de los trabajos más citados en su campo (84 citas). El total de mis trabajos ha recibido más de 600 citas, de las cuales 343 durante los años 2008 y 2009, lo que da una idea de la actualidad de la investigación desarrollada.Adicionalmente, he participado en la presentación 41 trabajos en congresos científicos, todos ellos internacionales. De las ponencias presentadas 9 fueron invitadas y 15 orales. También he participado en 25 proyectos de investigación, siendo investigador responsable en uno de ellos, subvencionados tanto por entidades públicas (gobierno español, comunidad valenciana, comunidad europea) como por entidades privadas (Bancaja), entre los que cabe destacar el proyecto Consolider 2006 ¿Hybrid Optoelectronic and Photovoltaic devices for renewable Energy (HOPE)¿ dotado con 4 millones de euros. En estos proyectos he tenido una participación activa en su preparación y también en su desarrollo.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Nanociencia aplicada a dispositivos fotovoltaicos: Desarrollo de células solares de bajo coste basadas en puntos cuánticos.

Referencia: RYC-2010-07043Area: Ciencia y Tecnología de Materiales

Nombre: MORA SERÓ, IVÁN

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

This project is intended to develop the processing of magnetic and bistable molecules and nanoparticles for future application in molecular spintronics, quantum computing and information storage devices. Despite the great potential of such bistable molecules and nanoparticles, a few challenges still need to be overcome in order to guarantee their applicatibility. This includes, for instance, the ability to anchor them on different surfaces in a controlled way, and onto specific positions, while keeping their integrity. Moreover, it is essential to develop techniques which enable the measurement and modification of the properties of only one or few of these entities on surfaces.The main goal of this project is to synthesize single-molecule magnets and nanoparticles which will be patterned on surfaces by means of scanning probe nanolithography methods with the aim of preparing prototype nanoelectronic and nanospintronicdevices. These lithography methods use local chemical reactions or interactions for the nanofabrication process. A simple atomic force microscope can be tuned to achieve diverse nanolithography approaches. An interesting opportunity is to combine some of these techniques simultaneously to organize several molecules/nanoparticles at the same time. One step forward will be the upscaling of the processes for example by using conductive stamps.The measurement of the electronic properties of single molecules on surfaces often involves the application of scanning tunnelling microscopy (STM) and spectroscopy (STS). In the last years, these studies have been usually made possible by sublimating simple molecules onto substrates, which leads to different self-organized configurations on surfaces. However, the most appealing molecules for nanospintronic and nanoelectronic applications are inorganic molecules which cannot be sublimed, although they can be deposited from solution. Thus, this technique will be optimized. In this research line, different deposition approaches from solution will be used to organize bistable inorganic molecules on metallic, semiconducting and/or magnetic-conducting surfaces, followed by the investigation of their self-organization and properties by STM and STS.

Degree in Chemistry: University of Valencia 1999Advanced Studies Diploma: University of Valencia 2001PhD in Chemistry: University of Valencia 2004. Research Experience: I carried out my PhD at the Inorganic Chemistry Department under the supervision of Prof. E. Coronado and Dr. F. M. Romero. My PhD Thesis entitled "Magnetic Clusters and Bistable Molecules for Molecular Electronics: Design, Synthesis and Supramolecular Organization" dealt with the synthesis and complete characterization of new molecules like a new magnetic polyoxometalate with seven cobalt centres and some highly charges manganese complexes with single-molecule magnet behaviour. Moreover I worked on the organization and characterization of these and other bistable molecules on surfaces and their incorporation in mesoporous materials and semiconducting polymers.From January 2005 until July 2008, I was awarded several fellowships in order to develop my postdoctoral research project at the Max Planck Institute for Solid State Research (MPI-FKF) (Stuttgart, Germany). I worked at the Nanoscale Science Deparment, managed by Prof. K. Kern, under the supervision of Dr. M. Burghard in the Molecular Electronics Group. I worked in the synthesis of inorganic semiconductor nanowires and nanotubes, the electrochemical modification of individual single-walled carbon nanotubes with magnetic molecular materials and their incorporation in functional architectures for the measurements of the transport properties under magnetic field or for the formation of highly reliable molecular transistors. Moreover my background in chemistry allow me to participate in some collaborations like the study of charge transfer salts for reversible resistive memory switching devices.Since July 2008 I work as a Juan de la Cierva researcher at the Molecular Science Institute (University of Valencia). My project is based on the synthesis of magnetic molecules and nanoparticles and their organization and processing to give rise to nanostructured or multifunctional materials. During this period I have been working in a complete new research line in the group, the patterning of surfaces by means of local oxidation nanolithography (LON) with atomic force microscopy. The patterning is combined with the preparation of different self-assembled monolayers. The aim of this work is to anchor molecules or nanoparticles in specific positions of the surfaces. Experimental techniques: Chemical synthesis of metallic complexes, organic ligands, polyoxometalates, mesoporous materials and polymers. Crystallization techniques (layering diffusion, sol-gel methods). Preparation of Self-Assembled Monolayers (SAMs). Electrospray ionization mass spectrometry, electronic microscopy, infrared spectroscopy, confocal Raman spectroscopy, magnetic properties characterization and electronic characterization with electrochemical methods or transport measurements. Local oxidation nanolithography. Scanning Probe Microscopy.Teaching experience: Inorganic Chemistry practicum courses (Univ. of Valencia).Summary: 17 papers (plus 1 under review) in 10 international journals of high impact factor (3 of them with an impact factor higher than 10). My H factor is 10. My work has been cited more than 260 times. I have participated in 15 research projects and I have 16 contributions in conferences, schools and scientific meetings.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Surface Organization and Characterization of Bistable Magnetic Molecules and Nanoparticles

Referencia: RYC-2010-06339Area: Ciencia y Tecnología de Materiales

Nombre: FORMENT ALIAGA, ALICIA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

The reliability of optoelectronic devices such as solar cells and light-emitting diodes (LEDs) lies on understanding and tuning their electro optical properties. Usually, these devices are made up of different materials blended at the nanoscale, forming what is called ¿bulk heterojunction¿ .Therefore the relevant photo induced physico-chemical processes happen at this scale. To study these systems it would be ideal to use characterization techniques that allow, on the one hand obtaining the electronic properties with nanometric resolution and on the other, the possibility of performing simultaneously optical techniques. The Electrostatic Force Microscopy (ESFM), Kelvin Probe Microscopy (KPM) and Conducting Scanning Force Microscopy (c-SFM) are unique tools that fulfil the first requirement since the topography, the local contact potential and the dielectric function and the conductivity can be mapped with lateral resolution below ten nanometres. I propose to open an investigation line that combines SFM and optical related techniques to the study of the electro-optical phenomena that take place in photoactive materials by using a SFM mounted on an inverted optical microscope. This set up will be used to correlate the morphology and the electrostatic (ESFM) properties with the optical properties (Raman effect, fluorescence, reflectance, transmittance, etc) through the measurement of all these properties simultaneously. Implementing these techniques into an SFM will allow measuring non linear optics phenomena and Raman emission with a lateral resolution of a few nanometers, combining the high lateral resolution of the scanning force microscopy with the spectral capabilities and time resolution of the classical optical microscopy. This versatile technique can be applied to many very diverse systems such as quantum dots, inorganic optoelectronic devices or biological samples. However, my main interest will be the study of conductive polymers blends used in organic photovoltaic devices, such as plastic solar cells and OLEDs whose performance is intimately correlated with the constituent materials properties and their nanostructure within the device (phase segregation, percolation, interfaces topology, nanocontacts, etc).

Licenciada en Ciencias Físicas (2000). Doctora en Física (2004). Tesis realizada bajo la dirección del Prof. Cefe López en el Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC) con título ¿Caracterización óptica de cristales fotónicos basado en ópalos¿. Después de la obtención del título de doctor, disfruté de un contrato Juan de la Cierva en la Universidad de Murcia en el grupo del Dr. Jaime Colchero donde me especialicé en la caracterización de propiedades electrostáticas y de transporte a la escala nanométrica utilizando técnicas de campo cercano como ESFM , KPM y c-SFM al aire. Los estudios se centraron en muestras de polímeros conductores para aplicaciones en células solares orgánicas y en capas delgadas de ZnO crecidas a lo largo de direcciones no polares. Posteriormente realicé un post doc en el CINaM-CNRS (Marsella) donde apliqué estas mismas técnicas en pero en UHV. El objetivo era caracterizar las reacciones físico-químicas que tienen lugar en la superficie de nanoclusters metálicos depositados sobre soportes aislantes en presencia de diferentes gases con vistas a aplicaciones catalíticas. Actualmente trabajo en la Universidad de Murcia donde implento un sistema SFM combinado con un microscopio óptico para el estudio de fenómenos fotoinducidos a la escala nanométrica. TÉCNICAS DE CARACTERIZACIÓN: Microscopía de campo cercano (SFM, ESFM,KPM) caracterización óptica (reflectancia y transmitancia resuelta en ángulo), microscopía electrónica de barrido, espectroscopía Raman, difracción de RX, sistemas de ultra alto vacío, LEED, espectroscopía de masas. MÉTODOS DE CRECIMIENTO: Chemical Vapor Deposition, Metallorganic Chemical Vapor Deposition, spin-coating. DOCENCIA: 19 créditos de docencia repartidos en las asignaturas de Física del Estado Sólido y Teoría de la Materia Condensada impartidos en la Universidad de Murcia. Codirectora de la tesis de B. García-Pérez con título ¿.DATOS BIBLIOGRÁFICOS: 29 publicaciones (14 como primera autora y 5 como autora responsable) de los cuales 7 tienen índice de impacto >6.5 (1 Nanoletters, 1 Adv. Mater., 1 JACS, 2 Adv Func. Mater, 1 PRL., 1 Small). Número total de citas >360 h index 9.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Study of photo-induced phenomena at nanoscale in optoelectronic devices by combining SFM and Optics techniques

Referencia: RYC-2010-05900Area: Ciencia y Tecnología de Materiales

Nombre: PALACIOS LIDON, ELISA

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Los elastómeros son materiales únicos debido a sus propiedades elásticas. Éstas son adquiridas durante la vulcanización donde se crea una red tridimensional de entrecruzamientos. Sin embargo, los elastómeros deben ser reforzados para alcanzar las propiedades requeridas para los diferentes usos de estos materiales. El principal problema para estudiar la relación estructura-propiedades de estos materiales es la dificultad para obtener información local de una matriz tan compleja y en estado sólido. En los últimos años se ha demostrado que la espectroscopia de resonancia magnética nuclear (RMN) de bajo campo en estado sólido es una herramienta potente y versátil para el estudio de la estructura y dinámica molecular de elastómeros. Por esta razón los principales objetivos de este proyecto se basan en los dos campos de investigación mas importantes en ciencia y tecnología de elastómeros, la vulcanización y el reforzamiento de elastómeros. Para alcanzar los objetivos marcados se aplicará la espectroscopia de RMN de bajo campo, lo que constituye en si mismo una nueva línea de investigación en España. Los objetivos concretos de este proyecto son:i) Vulcanización. Estructura y dinámica de cadena en redes elastoméricas.-Vulcanización de elastómeros. Se estudiará la evolución de la red de entrecruzamientos a lo largo de todo el proceso de vulcanización atendiendo al sistema de vulcanización empleado, estructura del elastómero y temperatura del proceso, relacionando la estructura de la red con las propiedades del material. La estructura de red (defectos de red, así como número y distribución de entrecruzamientos) ejerce una importante influencia en la dinámica de cadena, por lo que se hace imprescindible el estudio de su evolución en cada etapa del proceso de vulcanización.-Vulcanización de látex de caucho. El principal objetivo en este campo será la combinación de los conocimientos en vulcanización de elastómeros y RMN de bajo campo para desarrollar una nueva metodología experimental capaz de evaluar de una forma sencilla y económica la relación existente entre vulcanización, estructura/dinámica y propiedades de estos materiales en estado látex.-Elastómeros iónicos con memoria de forma. Los elastómeros iónicos tienden a crear nano-dominios iónicos que actúan como entrecruzamientos proporcionando elasticidad a estos materiales. El objetivo es este punto es evaluar la estructura de red y dinámica molecular de estas redes elastoméricas con y sin la inclusión de entrecruzamientos covalentes capaces de crear redes interpenetradas. La inestabilidad térmica de estos nano-dominios iónicos produce una transición capaz de generar un nuevo tipo de efecto memoria de forma. Por tanto la caracterización de esta transición nos permitirá controlar este importante efecto.ii) Reforzamiento. Estructura y dinámica de cadena en nanocompuestos elastoméricos.El principal objetivo de esta línea será la modificación superficial del nanopartículas (grafenos y arcillas) para su estabilización basada en efectos estéricos. De esta forma se obtendría una dispersión estable de nanopartículas individuales capaces de reaccionar con la matriz elastomérica durante el proceso de vulcanización. Este proceso podría producir interfase caracterizada por una capa de polímero en estado vítreo (con dinámica impedida) que podría ser caracterizada a través del RMN de bajo campo.

Tras mi licenciatura en 2001 (Universidad Complutense de Madrid), mi actividad científica comenzó en mayo de 2002 dentro del Departamento de Química y Tecnología de Elastómeros (Instituto de Ciencia y Tecnología de Polímeros, CSIC). En el año 2005 me doctoré (Universidad Complutense de Madrid) y posteriormente (Abril-2006) me trasladé a la Universidad Martin-Luther Halle-Wittenberg en Alemania gracias a la beca de la Fundación Alexander von Humboldt de Alemania y Ministerio de Educación y Ciencia de España (28 meses). En esta misma universidad he realizado una estancia de 3 meses (2009-2010). En Agosto de 2008 me reincorporé de nuevo al Departamento de Química y Tecnología de Elastómeros gracias a un contrato JAE-DOC (3 años de duración).He disfrutado de 3 becas y 2 contratos, desarrollando/participando en 12 proyectos financiados tanto por organismos públicos como por empresas privadas, siendo el investigador principal en dos de ellos. La financiación total obtenida ha sido de 711 K¿.Mediante esta financiación he podido desarrollar diferentes líneas de investigación: estudio de la vulcanización de elastómeros, reforzamiento de elastómeros (compuestos convencionales y nanocompuestos) y aplicación de RMN de bajo campo al estudio de la estructura y dinámica molecular de elastómeros. Estos trabajos han aportado un total de 41 publicaciones (29 en revistas internacionales SCI y 12 artículos de divulgación para la industria en revistas no SCI) y 45 participaciones en congresos (30 de las cuales han sido orales y 4 conferencias invitadas).En cuanto a las publicaciones SCI (29) destacan 4 trabajos publicados en Macromolecules (la revista de artículos regulares de mayor impacto, IF:4.411, en el área de polímeros), 1 en Macromolecular Rapid Communications (IF:3.383), 2 en Polymer (IF:3.065) y 3 en Europen Polymer Journal (IF:2.248), todas ellas revistas consideradas de alto impacto en al área de polímeros. Soy el autor principal o primer autor en 13 de estas publicaciones obteniendo un total de 137 citas y un índice h=7. Desde 2008, fecha de finalización de mi estancia postdoctoral e inicio de mi propia línea de investigación he publicado 7 publicaciones con un índice de impacto medio de 3.36.Soy co-director de 2 Trabajos fin de Master, 3 Diplomas de Estudios Avanzados (DEA) y 4 Tesis Doctorales.He participado activamente en actividades de transferencia de tecnología, destacando la puesta en marcha de una nueva técnica de caracterización, la introducción de mejoras de productos en el mercado o en procesos en marcha a través de 4 proyectos de investigación/contratos y realización de numerosos servicios tecnológicos de análisis. Todo ello ha desembocado en 2 patentes, actualmente en curso.He desarrollado actividad docente en la Universidad Martin-Luther y en la actualidad soy profesor en el Master de Alta Especialización en Plásticos y Caucho. Soy miembro del Comité de redacción de la Revista de Plásticos Modernos desde Junio 2009 y responsable de 2 números en 2010. Soy evaluador de diferentes revistas internacionales.Finalmente, he iniciado una nueva línea de investigación basada en el empleo de espectrómetros de resonancia magnético nuclear (RMN) de bajo campo en estado sólido para la caracterización de redes poliméricas, gracias a la compra del primer espectrómetro instalado en España con estas características y configuración.

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:STRUCTURE AND CHAIN DYNAMICS IN ELASTOMER NETWORKS AND NANOCOMPOSITES

Referencia: RYC-2010-06498Area: Ciencia y Tecnología de Materiales

Nombre: LÓPEZ VALENTÍN, JUAN

SUBPROGRAMA RAMON Y CAJALCONVOCATORIA 2010

MINISTERIO DE CIENCIA E INNOVACIÓN

Nanoporos, nanopipetas y nanoelectrodos constituyen una nueva generación de dispositivos para la detección y separación específica de moléculas. Los nanoporos con cargas eléctricas fijas presentan clara relevancia tecnológica porque muchos procesos de separación y detección de moléculas cargadas en disolución necesitan poros con aberturas nanométricas, pudiendo integrarse en estructuras con un gran número de unidades dispuestas en paralelo. El transporte a través de nanoporos es un tema de relevancia, no sólo por la importancia de los canales iónicos de las células, sino también por los procesos de separación y reconocimiento molecular con estructuras nanofluídicas capaces de implementar diversas funciones. He participado durante los últimos años en el desarrollo de nanoporos asimétricos que presentan rectificación empleando como base materiales poliméricos y membranas delgadas. Mediante una colaboración multidisciplinar, hemos diseñado, construido y simulado dispositivos iónicos (en particular, diodos nanofluídicos) que controlan el flujo de iones y moléculas cargadas a su través gracias a la forma del poro y su distribución de carga fija. Dispongo de una sólida experiencia experimental y teórica, así como unas buenas relaciones personales, adquiridas en las colaboraciones mantenidas con reconocidos grupos españoles y centros extranjeros de prestigio. El principal objetivo de la línea de investigación propuesta es desarrollar nuevas propiedades funcionales y aplicaciones de nanoporos asimétricos poliméricos aprovechando esta experiencia. En particular, estudiaré el diseño e integración de los nanoporos en dispositivos capaces de procesar información que puedan realizar funciones lógicas elementales en aplicaciones analíticas y farmacéuticas, así como en celdas electroquímicas de almacenamiento de energía. Se estudiará también la relación entre los procesos de transporte de carga en nanoporos biomiméticos y los observados en canales iónicos biológicos mesoscópicos, con énfasis en la posible aplicación a la detección y separación. Los canales iónicos son de interés en Ciencias de la Salud y, además, pueden permitir la integración de funciones altamente especializadas en procesos tecnológicos e industriales.

FormaciónLicenciatura en Física por la Universidad de Valencia (1998). Expediente medio de 2.68 obtenido siempre en primera convocatoria.Título de Doctor en Física (2003) por la Universidad de Valencia, calificación Sobresaliente Cum Laude.Cursos de formación específica en: Electroquímica (Helsinki University of Technology y École Polytechnique Fédérale de Lausanne, 2000 y 2001), Nanoquímica (Universidad Politécnica de Valencia, 2002), Fotoquímica (Holland Research School of Molecular Chemistry) y Cálculo Científico (Universidad Jaume I, 2004).Formación en centros extranjeros:- Universidad de Kuopio (Finlandia, 2000 y 2002): Aprendí los protocolos para el cultivo de monocapas de células MDCK y realicé experimentos y análisis de permeabilidad de compuestos farmacológicos.- Universidad de Warwick (Reino Unido, 2003): Aprendí la técnica de Scanning Electrochemical Microscopy (SECM), que permite obtener información local de las propiedades de una superficie por medio de procesos de difusión de iones y su reacción con ésta, y a utilizar el programa comercial de cálculo Comsol Multiphysics.- Universidad de Maryland (EE. U.U., 2005), aprendí la técnica de reconstitución de canales iónicos en bicapas planas de lípido, una metodología experimental pionera que permite el estudio sistemático de las propiedades de transporte de canales iónicos y porinas bacteriales en un entorno más controlado que la membrana celular. Actividad investigadora- 28 artículos publicados en revistas de alto factor de impacto (factor impacto medio 2.69) que han recibido una media de 8.8 citas por artículo, 2 artículos aceptados para su publicación y 2 en revisión- 2 capítulos de libro (1 publicados y 1 en prensa)- 15 presentaciones en congresos, 7 nacionales y 8 internacionales- He trabajado en 9 proyectos de investigación con financiación de la universidad (2), nacional (4) y de la Comisión Europea (3)- Revisor de revistas como J. Membrane Science o J. of Applied PhysicsLíneas de investigación:- Efectos de tamaño iónico en el transporte a través de membranas. Dirigida al estudio del transporte de compuestos a través de la ruta paracelular en cultivos de células, para optimizar el diseño de fármacos.- Estudios con la técnica SECM: Propagación lateral de carga en metalopolímeros, de aplicación en sensores y dispositivos electrónicos. Estudio de la adsorción de iones plata en una monocapa de lípidos, con implicaciones biológicas y tecnológicas.- Transporte iónico a través de nanoporos: (1) Análisis del transporte en nanoporos sintéticos cónicos, con implicaciones tecnológicas como el diodo fluídico o biológicas por su parecido a los canales iónicos. (2) Estudio del transporte a través de diversos canales iónicos y porinas: el canal celular de potasio KcsA, el canal PA63, involucrado en la infección por la toxina del ántrax, la porina PorA de la bacteria N. Meningitidis, causante de la meningitis y la porina OmpF, de una bacteria parasitaria del intestino.¿ Electrónica molecular: Estudio de sistemas con nanopartículas metálicas funcionalizadas para implementar puertas lógicas, un dispositivo de procesado de señales y una memoria asociativa.DocenciaHe impartido docencia en las Universidades de Valencia y Jaume I de Castellón en asignaturas experimentales (laboratorio) y teóricas (teoría y problemas) en primer, segundo y tercer ciclo (máster).

Resumen de la Memoria:

Resumen del Curriculum Vitae:

Correo electrónico: [email protected]

Titulo:Transport in nanopores and ion channels: functional properties and information processing

Referencia: RYC-2010-06606Area: Ciencia y Tecnología de Materiales

Nombre: CERVERA MONTESINOS, JAVIER