22
Athanasios Dedes Institute for Particle Physics Phenomenology (IPPP), Durham, UK YETI’05, IPPP, January 8, 2005 Minimal Supersymmetric Standard Model (MSSM) 1. What is and Why Supersymmetry (SUSY)? 2. What are the SUSY interactions ? 3. What is MSSM ? 4. How can I discover SUSY today? Direct SUSY Trileptons searches Indirect rare decay B s μ + μ - 5. Conclusions The present is a basic introduction to Beate’s talk that follows

Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Athanasios Dedes

Institute for Particle Physics Phenomenology (IPPP), Durham, UK

YETI’05, IPPP, January 8, 2005

Minimal Supersymmetric Standard Model

(MSSM)

1. What is and Why Supersymmetry (SUSY)?

2. What are the SUSY interactions ?

3. What is MSSM ?

4. How can I discover SUSY today?Direct SUSY Trileptons searches

Indirect rare decay Bs → µ+µ−

5. Conclusions

The present is a basic introduction to Beate’s talkthat follows

Page 2: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 1

What is and Why Supersymmetry ?

• Consider the Lagrangian of a free complex scalar field anda free Weyl spinor field :

L = i Ψ σµ∂µ Ψ + ∂µΦ∗ ∂µΦ

1 deriv 2 deriv

Ψ→ eiβ Ψ Φ→ eiγ Φ

Seen Unseen?←→

Question : Is there any symmetry relating the two ?

δΦ = a ξ Ψ

l Supersymmetry

δΨ = i a∗ ξ σµ (∂µΦ)

Supersymmetric masses and interactions :

∆L =∣

∂W(Φ)

∂Φ

2 −[ 1

2

∂2W(Φ)

∂Φ ∂ΦΨ Ψ + H.c

]

W(Φ) is an analytic function (superpotential)

IPPP, University of Durham 1 Athanasios Dedes

Page 3: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 2

Masses : W [Φ] = 12 µ Φ2

∆L = |µ|2 Φ2 − (µ

2ΨΨ + H.c)

... all fields entering a supermultiplet {Φ, Ψ} have the samemass...

↓Supersymmetry must be broken at our energies

↓∆LBreaking = M 2

0 Φ2

Interactions :

WReal World[Φ] = YD QL HD DR + YU QL HU UR

����

��� ���

� ��

��� ���

� ��

� � �����

� ��

� � �����

���� � ���� � �

���� ��� ��

IPPP, University of Durham 2 Athanasios Dedes

Page 4: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 3

More SM and SUSY interactions

We started with

L = i Ψ σµ ∂µ Ψ

+ ∂µ Φ∗ ∂µ Φ

IPPP, University of Durham 3 Athanasios Dedes

Page 5: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 4

More SM and SUSY interactions

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

IPPP, University of Durham 4 Athanasios Dedes

Page 6: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 5

More SM and SUSY interactions

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

IPPP, University of Durham 5 Athanasios Dedes

Page 7: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 6

More SM and SUSY interactions

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

+ iλ σµ∂µ λ

IPPP, University of Durham 6 Athanasios Dedes

Page 8: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 7

More SM and SUSY interactions

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

+ iλ σµ(∂µ − igAµ) λ

IPPP, University of Durham 7 Athanasios Dedes

Page 9: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 8

More SM and SUSY interactions

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

+ iλ σµ(∂µ − igAµ) λ

− 1

2

∂2W∂Φ ∂Φ

Ψ Ψ + H.c

where W = 12 µ Φ2 + 1

3 Y Φ3

IPPP, University of Durham 8 Athanasios Dedes

Page 10: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 9

More SM and SUSY interactions

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

+ iλ σµ(∂µ − igAµ) λ

− 1

2

∂2W∂Φ ∂Φ

Ψ Ψ + H.c

+ i√

2 g Φ∗ Ψ λ + H.c

IPPP, University of Durham 9 Athanasios Dedes

Page 11: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 10

N=1 SUSY Lagrangian

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

+ iλ σµ(∂µ − igAµ) λ

− 1

2

∂2W∂Φ ∂Φ

Ψ Ψ + H.c

+ i√

2 g Φ∗ Ψ λ + H.c

− |∂W∂Φ|2 − g2

2(Φ∗ Φ)2

where W = 12µ Φ2 + 1

3Y Φ3

IPPP, University of Durham 10 Athanasios Dedes

Page 12: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 11

N=1 broken SUSY Lagrangian

Local gauge invariance, global supersymmetry and supersym-metry breaking result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

+ iλ σµ(∂µ − igAµ) λ

− 1

2

∂2W∂Φ ∂Φ

Ψ Ψ + H.c

+ i√

2 g Φ∗ Ψ λ + H.c

− |∂W∂Φ|2 − g2

2(Φ∗ Φ)2

− M 20 Φ∗ Φ − B0 Φ Φ − A0 Φ Φ Φ + H.c

IPPP, University of Durham 11 Athanasios Dedes

Page 13: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 12

N=1 broken SUSY Lagrangian

Local gauge invariance and global supersymmetry result in

L = i Ψ σµ(∂µ − igAµ) Ψ

+ (∂µ − igAµ)∗ Φ∗ (∂µ − igAµ) Φ

− 1

4Fµν Fµν

+ iλ σµ(∂µ − igAµ) λ

− 1

2

∂2W∂Φ ∂Φ

Ψ Ψ + H.c

+ i√

2 g Φ∗ Ψ λ + H.c

− |∂W∂Φ|2 − g2

2(Φ∗ Φ)2

− M 20 Φ∗ Φ − B0 Φ Φ − A0 Φ Φ Φ + H.c

− M1/2

2λ λ + H.c

IPPP, University of Durham 12 Athanasios Dedes

Page 14: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 13

What is MSSM ?

Fields SU(3)C × SU(2)L × U(1)Y Φ Ψ

Qi,αr (3,2, 1

6)

u

d

L

,

ud

L

Dr,α (3,1, 13) dR , dR

Ur,α (3,1,−23) uR , uR

Lir (1,2,−1

2)

νe

e

L

,

νe

e

L

Er (1,1, 1) eR , eR

H id (1,2,−1

2)

H0d

H−d

,

H0d

H−d

H iu (1,2, 1

2)

H+u

H0u

,

H+u

H0u

Fields SU(3)C × SU(2)L × U(1)Y λ Aµ

V(R)3 (8,1, 0) G(R) , G(R)

µ

V(Γ)2 (1,3, 0) W (Γ) , W (Γ)

µ

V1 (1,1, 0) B , Bµ

IPPP, University of Durham 13 Athanasios Dedes

Page 15: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 14

What is tan β ??

tan β =〈H0

u〉〈H0

d〉or

tan β =vu

vd

IPPP, University of Durham 14 Athanasios Dedes

Page 16: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 15

How to Discover SUSY today ?

1. Start with your favorite Standard Model process

2. Supersymmetrize the intermediate legs of thisprocess

3. Decide whether you want the SUSY particles tobe produced in pairs or not i.e., R-parity symme-try on or off

4. Estimate the rate before you start typing...

Example : Electron-Muon Scattering

IPPP, University of Durham 15 Athanasios Dedes

Page 17: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 16

Trileptons

“Gold plated” mode at Tevatron

,

A. D, H. Dreiner, U. Nierste, P. Richardson, arXiv:hep-ph/0207026.

IPPP, University of Durham 16 Athanasios Dedes

Page 18: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 17

Bd,s→ µ+µ−�

��������

� �

�������

������� �

!#"

�%$'&($')

� �

*,+.-0/21'3546- ���7���

� �������

&98:$'&<;�$'&<=

1'>6? ;A@

� �

CS,P ∝ mµtan3 βM2

H3

f(MSUSY )⇒ B(Bs → µ+µ−) ∝ tan6 βM4

H3

!!

A. D., and A. Pilaftsis, Phys. Rev. D 67, 015012 (2003) [arXiv:hep-ph/0209306].

For a review see A. D., Mod. Phys. Lett. A 18 (2003) 2627

IPPP, University of Durham 17 Athanasios Dedes

Page 19: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 18

• Standard Model Prediction :

B(Bs→ µ+µ−) = (3.7± 1.2)× 10−9

B(Bd→ µ+µ−) = (1.0± 0.3± 0.3)× 10−10

• General MSSM prediction :

B(Bs → µ+µ−) = up to 10−5

B(Bd→ µ+µ−) = up to 10−6

• Tevatron CDF/D0 Run II experimental bound :

B(Bs → µ+µ−) < 5.8/4.1× 10−7 at 90% CL

• BaBar/Belle experimental bound :

B(Bd→ µ+µ−) < 8.3/16× 10−8 at 90% CL

...any evidence at Tevatron or at

BaBar/Belle

will be a SUSY footprint...

IPPP, University of Durham 18 Athanasios Dedes

Page 20: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 19

Correlation with the muon g − 2

M0 = 350 GeV,M1/2 = 450 GeV, A0 = 0 GeV, µ > 0

A.D, H. K. Dreiner and U. Nierste, Phys. Rev. Lett. 87, 251804 (2001)

IPPP, University of Durham 19 Athanasios Dedes

Page 21: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 20

Bounding M0, M1/2 and A0 from above!

MA <∼ 660 GeV with x = 0.5 fb−1

MA <∼ 790 GeV with x = 2 fb−1

MA <∼ 970 GeV with x = 10 fb−1 ,

A.D., and B. T. Huffman, Phys. Lett. B 600 (2004) 261 [arXiv:hep-ph/0407285].

IPPP, University of Durham 20 Athanasios Dedes

Page 22: Minimal Supersymmetric Standard Model (MSSM) · N=1 broken SUSY Lagrangian Local gauge invariance, global supersymmetry and supersym-metry breaking result in L = i ˙ (@ igA ) + (@

Minimal Supersymmetric Standard Model 21

Conclusions

1. Supersymmetry is a symmetry which relates particles ofdifferent spins.

2. It has a virtue of allowing non trivial interactions betweenfermions and bosons.

3. Our ignorance about the breaking of supersymmetry bringsthe unknown parameters : M0, M1/2, A0

4. A Realization of broken SUSY exists and called MSSM

5. Tevatron can see MSSM signatures today directly or indi-rectly. Examples are : SUSY trileptons and Bs → µ+µ−.

6. Supersymmetry will receive great support if a light Higgsboson is found. After all, there must be a reason whyNature decided to entertain us with particles of differentspin.

IPPP, University of Durham 21 Athanasios Dedes