75
!"#$% Marco Cirelli NewDark 5 February 2016 IPMU, Kashiwa, Japan Minimal Dark Matter, reloaded Based on: Cirelli, Fornengo, Strumia ‘Minimal Dark Matter’, NPB 2006 +… Cirelli, Sala, Taoso, JHEP 2014 Cirelli, Hambye, Panci, Sala, Taoso, JCAP 2015

Minimal Dark Matter,research.ipmu.jp/seminar/sysimg/seminar/1628.pdfKolb,Turner, The Early Universe, 1995 Ω X ≈ 6 10−27cm3s−1 σ ann v Boltzmann eq. in the Early Universe: Weak

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • !"#$%

    Marco Cirelli(CNRS LPTHE Jussieu Paris)

    NewDark

    5 February 2016IPMU, Kashiwa, Japan

    Minimal Dark Matter,reloaded

    Based on: Cirelli, Fornengo, Strumia ‘Minimal Dark Matter’, NPB 2006 +…Cirelli, Sala, Taoso, JHEP 2014Cirelli, Hambye, Panci, Sala, Taoso, JCAP 2015

  • IntroductionIntroduction

  • IntroductionIntroductionDM exists

  • IntroductionDM exists

    galactic rotation curvesweak lensing (e.g. in clusters)

    ‘precision cosmology’ (CMB, LSS)

  • IntroductionDM exists

    galactic rotation curvesweak lensing (e.g. in clusters)

    ‘precision cosmology’ (CMB, LSS)

    But: what is it?

  • weakly int., massive, neutral, stableMost likely a

    relic particle.

  • weakly int., massive, neutral, stableMost likely a

    has the correct relic abundance today!

    Kolb

    ,Tur

    ner,

    The

    Early

    Univer

    se, 1

    995

    ΩX ≈6 10−27cm3s−1

    ⟨σannv⟩

    Boltzmann eq. in the Early Universe:

    Weak cross section:

    ⟨σannv⟩ ≈α2

    w

    M2≈

    α2w

    21TeV

    ΩX ∼ O(few 0.1)⇒

  • Most likely a

    has the correct relic abundance today!

    Kolb

    ,Tur

    ner,

    The

    Early

    Univer

    se, 1

    995

    ΩX ≈6 10−27cm3s−1

    ⟨σannv⟩

    Boltzmann eq. in the Early Universe:

    Weak cross section:

    ⟨σannv⟩ ≈α2

    w

    M2≈

    α2w

    21TeV

    ΩX ∼ O(few 0.1)⇒

    weakly int., massive, neutral, stable(or we would

    have seen it...)

  • Most likely a

    has the correct relic abundance today!

    Kolb

    ,Tur

    ner,

    The

    Early

    Univer

    se, 1

    995

    ΩX ≈6 10−27cm3s−1

    ⟨σannv⟩

    Boltzmann eq. in the Early Universe:

    Weak cross section:

    ⟨σannv⟩ ≈α2

    w

    M2≈

    α2w

    21TeV

    (or we would have seen it...)

    at least on cosmological time scales, i.e.

    ΩX ∼ O(few 0.1)⇒

    weakly int., massive, neutral, stable

    τ > tuniverse

  • Most likely a

    weakly int., massive, neutral, stable

    Popular candidates:

    Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification).As a byproduct, they can provide DM candidates at the EW scale.

    ...BUT:

    SuperSymmetric LSP, Extra dimensional LKP...

  • Most likely a

    weakly int., massive, neutral, stable

    Popular candidates:

    Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification).As a byproduct, they can provide DM candidates at the EW scale.

    ...BUT: (i) these theories are by now very uncomfortably fine tuned (the LHC did not find New Physics, at least yet)

    SuperSymmetric LSP, Extra dimensional LKP...

  • Most likely a

    weakly int., massive, neutral, stable

    Popular candidates:

    ...BUT:

    (ii) these theories have many parameters, DM phenomenology is unclear (scatter plots)

    Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification).As a byproduct, they can provide DM candidates at the EW scale.

    (i) these theories are by now very uncomfortably fine tuned (the LHC did not find New Physics, at least yet)

    SuperSymmetric LSP, Extra dimensional LKP...

  • Most likely a

    weakly int., massive, neutral, stable

    Popular candidates:

    ...BUT:

    (ii) these theories have many parameters, DM phenomenology is unclear (scatter plots)

    (iii) DM stability is imposed by hand (R-parity, T-parity, KK parity)

    Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification).As a byproduct, they can provide DM candidates at the EW scale.

    (i) these theories are by now very uncomfortably fine tuned (the LHC did not find New Physics, at least yet)

    SuperSymmetric LSP, Extra dimensional LKP...

  • Minimalistic approach

  • Minimalistic approachOn top of the SM, add only one extra multiplet X

    and systematically search for the ideal DM candidate...

    =

    X1

    X2...

    L = LSM + X̄ (iD/ + M)X if is a fermionX

    if is a scalarXL = LSM + |DµX|2 − M2|X |2

  • Minimalistic approachOn top of the SM, add only one extra multiplet X

    and systematically search for the ideal DM candidate...

    =

    X1

    X2...

    L = LSM + X̄ (iD/ + M)X if is a fermion

    if is a scalar

    X

    X

    gauge interactions the only parameter, and will be fixed by .ΩDM

    (other terms in the scalar potential)

    (one loop mass splitting)

    L = LSM + |DµX|2 − M2|X |2

    X

    X

    , Z, γ

    [g2, g1, Y ]

  • weakly int., massive, neutral, stableThe ideal DM candidate is

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    spin

    3

    The ideal DM candidate is

    6( is similar to )4

    α−1

    2 (E′) = α−12 (M) −

    b2(n)

    2πln

    E′

    M

    n ≤ 5

    n ≤ 7

    these are all possible choices:for fermionsfor scalars

    to avoid explosion in the running coupling

    X =

    X1

    X2...

    Xn

    (actually, including 2-loops, for real (complex) scalars) n 6 (n 4)

    Di Luzio, Nardecchia et al., 1504.00359

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    spin

    3

    The ideal DM candidate is

    1/2

    3/2

    0

    1

    1/2

    0

    1

    2

    0

    Q = T3 + Y

    e.g. for : T3 =⎛

    + 12

    1

    2

    ⎠n = 2 ⇒ |Y | =1

    2

    ≡ 0

    Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

    e.g. for :n = 3 T3 =

    +10−1

    ⎠⇒ |Y | = 0 or 1

    etc.

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    spin

    3

    The ideal DM candidate is

    1/2

    3/2

    0

    1

    1/2

    0

    1

    2

    0

    Q = T3 + Y

    e.g. for : T3 =⎛

    + 12

    1

    2

    ⎠n = 2 ⇒ |Y | =1

    2

    ≡ 0

    Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

    e.g. for :n = 3 T3 =

    +10−1

    ⎠⇒ |Y | = 0 or 1

    etc.

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    0.43

    1.2

    2.0

    2.6

    1.4

    1.8

    2.4

    2.4

    2.5

    2.5

    5.0

    8.5

    The mass is determined by the relic abundance:

    M (TeV)

    for scalarX

    for fermionX

    M

    (- include co-annihilations) (- computed for ) M ≫ MZ,W

    X

    X

    X

    X

    X

    µVµV

    µ

    X

    X

    (- include co-annihilations) (- computed for ) (- computed for ) Z,W(- computed for )

    X

    X h

    hX

    X f̄

    f

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    3.5

    3.5

    ΩDM =6 10−27cm3s−1

    ⟨σannv⟩∼= 0.24

    3.2

    3.2

    ⟨σAv⟩ ≃g42 (3 − 4n

    2 + n4) + 16 Y 4g4Y

    + 8g22g2Y

    Y 2(n2 − 1)

    64π M2 gX

    ⟨σAv⟩ ≃g42 (2n

    4 + 17n2 − 19) + 4Y 2g4Y

    (41 + 8Y 2) + 16g22g2Y

    Y 2(n2 − 1)

    128π M2 gX

    4.2

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    h

    h

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    2.7

    2.5

    25

    1.0

    Non-perturbative corrections (and other smaller corrections) induce modifications:

    (more later)

    ⟨σannv⟩ ! R · ⟨σannv⟩ + ⟨σannv⟩p−wave

    with R ∼ O(few) → O(102)

    full

    � �� ��� ��� ��� ��� ��� �����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    � !���"�

    ������������

    〈σ����〉

    !��� "�

    #

    �"� �����������! �

    ���������

    ��� ! ��� ���

    �!� �����������! �

    ���������

    ��� ! � ���

    � � � � � �� ������

    ����

    ����

    ����

    ����

    �� ���� �� ���

    ٠����

    �!� ����������

    �!����������

    ������ ! �σ

    ���

    �������������

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) EW loops induce a mass splittinginside the n-uplet:

    ∆M

    MQ − MQ′ =α2M4π

    {

    (Q2 − Q′2)s2W

    f(MZM

    )

    + (Q − Q′)(Q + Q′ − 2Y )

    [

    f(MWM

    ) − f(MZM

    )

    ]}

    with f(r) r→0−→ −2πr

    The neutral component is the lightest

    DM0

    DM+

    ∆M

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    537

    906

    534

    900

    X X

    W, Z, γ

    tree level

    2.7

    2.5

    25

    1.0

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch. List all allowed SM couplings:EL

    EH

    HH∗

    LH

    HH, LH

    LH

    HHH∗

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    e.g.

    e.g.1/2 1/2−1

    2 21

    XEH

    X

    e

    h

    XLHH∗

    1/2 −1/2 1/2 −1/2

    2 2 2

    dim=5 operator, induces

    Λ ∼ MPlforτ ∼ Λ2TeV−3 ≪ tuniverse

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    537

    906

    534

    900

    4

    2.7

    2.5

    25

    1.0

    (��H⇤H) dim=5, loop decayDi Luzio,

    Nardecchia et al.,

    1504.00359

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch. List all allowed SM couplings:EL

    EH

    HH∗

    LH

    HH, LH

    LH

    HHH∗

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    e.g.

    e.g.1/2 1/2−1

    2 21

    XEH

    X

    e

    h

    XLHH∗

    1/2 −1/2 1/2 −1/2

    2 2 2

    dim=5 operator, induces

    Λ ∼ MPlforτ ∼ Λ2TeV−3 ≪ tuniverse

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    No allowed decay! Automatically stable!

    537

    906

    534

    900

    4

    2.7

    2.5

    25

    1.0

    (��H⇤H)

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch.EL

    EH

    HH∗

    LH

    HH, LH

    LH

    HHH∗

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    537

    906

    not excluded by direct searches!

    and

    534

    900

    2.7

    2.5

    25

    1.0

    (��H⇤H)

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch.EL

    EH

    HH∗

    LH

    HH, LH

    LH

    HHH∗

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    537

    906

    not excluded by direct searches!

    and

    X

    N

    σ ≃ G2F M2NY

    2

    ≫ present bounds

    Candidates with interact as

    Y ̸= 0

    need Y = 0

    e.g. LUX

    X

    N

    Y

    Z0

    X

    534

    900

    2.7

    2.5

    25

    1.0

    Goodman Goodman Witten Witten 19851985

    (��H⇤H)

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch.EL

    EH

    HH∗

    LH

    HH, LH

    LH

    HHH∗

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    537

    906

    not excluded by direct searches!

    and

    534

    900

    2.7

    2.5

    25

    1.0

    (��H⇤H)

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch.EL

    EH

    HH∗

    LH

    HH, LH

    LH

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    537

    906

    not excluded by direct searches!

    and

    HHH∗

    4

    1/2353

    347 (LHH∗)S

    F

    HHH∗

    4

    3/2729

    712

    HHH

    (LHH)FS

    534

    900

    2.7

    2.5

    25

    1.02 1/2

    348

    342

    EL

    EHF

    S 1.0

    1540

    526

    HH, LH

    LH

    S

    F

    1S

    F

    (HH∗H∗H∗)537

    534

    2S

    F

    (H∗H∗H∗H∗)906

    900

    (��H⇤H)

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch.EL

    EH

    HH∗

    LH

    HH, LH

    LH

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    537

    906

    not excluded by direct searches!

    and

    HHH∗

    3

    534

    900

    2.7

    2.5

    25

    1.02 1/2

    348

    342

    EL

    EHF

    S 1.0

    0166

    166

    HH∗

    LHF

    S

    2.7

    2.5

    166 (HHH∗H∗)S

    1S

    F

    (HH∗H∗H∗)537

    534

    2S

    F

    (H∗H∗H∗H∗)906

    900

    1540

    526

    HH, LH

    LH

    S

    F

    4

    1/2353

    347 (LHH∗)S

    F

    HHH∗

    4

    3/2729

    712

    HHH

    (LHH)FS

    (��H⇤H)7 0 166S 25 (��H⇤H)

    9.4

  • weakly int., massive, neutral, stableSU(2)L U(1)Y

    2

    4

    5

    7

    1/2

    3/2

    0

    1

    spin

    3

    The ideal DM candidate is

    1/2

    0

    1

    2

    0

    M (TeV)

    348

    342

    166

    540

    526

    353

    347

    729

    712

    166

    166

    166

    166

    ∆M(MeV) decay ch.EL

    EH

    HH∗

    LH

    HH, LH

    LH

    (LHH∗)

    HHH

    (LHH)(HHH∗H∗)

    F

    S

    F

    S

    F

    S

    F

    F

    F

    S

    S

    S

    F

    S

    F

    S

    S

    (HH∗H∗H∗)

    (H∗H∗H∗H∗)

    537

    906

    not excluded by direct searches!

    and

    HHH∗

    3

    We have a winner!

    534

    900 (oth

    er te

    rms

    in th

    e

    scal

    ar p

    oten

    tial

    )

    2.7

    2.5

    25

    1.02 1/2

    348

    342

    EL

    EHF

    S 1.0

    0166

    166

    HH∗

    LHF

    S

    2.7

    2.5

    1540

    526

    HH, LH

    LH

    S

    F

    4

    1/2353

    347 (LHH∗)S

    F

    HHH∗

    4

    3/2729

    712

    HHH

    (LHH)FS

    166 (HHH∗H∗)S

    1S

    F

    (HH∗H∗H∗)537

    534

    2S

    F

    (H∗H∗H∗H∗)906

    900

    7 0 166S 25

    9.4

  • e.g. mixing with an extra state splits the 2 components of ; if splitting is large enough, NC scattering is kinematically forbidden...

    If you want to cure ill candidates...: introduce some mechanism to forbid coupling with anyway

    Y ̸= 0

    impose some symmetry to forbid decays (e.g. R-parity)...stability:

    X

    Z0

    Y

    Z0

    impose some symmetry to forbid decays (e.g. R-parity)...

    Y

    Z0

    X

    NN

    X′

    ...the case of SuSy higgsino...the case of SuSy higgsinomixing is with bino;

    even for pure higgsino, some mixing is ‘inevitable’

    due to higher dim operators

  • A fermionic quintuplet with ,provides a DM candidate with ,

    which is fully successful: - neutral

    - automatically stable and

    not yet discovered by DM searches.

    Recap:SU(2)L Y = 0

    (Other candidates can be cured via non-minimalities.)

    like proton stability in SM!

    M = 9.4 TeV

  • Detection and Phenomenology

  • 1. Collider searchesAt 9.4 TeV, no hope at the LHC.

    relax the mass constraint consider next-to-minimal cases (e.g. the triplet = pure wino) explore reach of 100 TeV future collider

    q'

    q

    c0

    c0

    g p±

    qq

    q'g

    W± c±

    c0

    c0

    p±' tra

    cker'

    Mono-X VBF Disappearing tracksq

    q

    q'

    q'

    c0

    c0

    c0

    di-jets + MET

  • 1. Collider searchesAt 9.4 TeV, no hope at the LHC.

    relax the mass constraint consider next-to-minimal cases (e.g. the triplet = pure wino) explore reach of 100 TeV future collider

    For triplet MDM (a.k.a. wino DM)

    Cire

    lli, S

    ala,

    Taos

    o 14

    07.7

    058

    For 5plet MDM

    Ostd

    iek, 1

    506.

    0344

    5

  • 2. Direct DetectionNo tree level scattering. 1-loop and 2-loops:

    Cirelli, Fornengo, Strumia hep-ph/0512090

    Essig 0710.1668

    Hisano, Ishiwata, Nagata1007.2601

    Hisano, Ishiwata, Nagata, Takesano 1104.0228

    Hill, Solon 1111.0016

    Hisano, Ishiwata, Nagata1010.5985

    Farina, Pappadopulo, Strumia 1303.7244

    Hill, Solon 1309.4092

    Hill, Solon 1401.3339

    Hisano, Ishiwata, Nagata 1504.00915

    �nSI = 2 · 10�46 cm2

  • 2. Direct DetectionSensitivity Projections: Spin-Independent Interactions

    ��� ��� ��� � ��� �� ��� ��� ��� ��� ���

    ��� � �� ��� ���� �����!����!����!����!����!����!����!����!����!����!����!����!����!����!��

    ��!����!����!����!����!����!���!���!���!���!���!���!���!���!�

    �������� !���"��#

    ����!�������������������"��� #

    ����!�������������������"��#

    CDMS II Ge (2009) Xen

    on100 (2012

    )

    CRESST

    CoGeNT!(2012)

    CDMS Si!(2013)

    EDELWEISS (2011)

    DAMA SIMPLE (20

    12)

    ZEPLIN-III (201

    2)COUPP (201

    2)

    LUX (2013)

    DAMIC (2012)

    CDMSlite (2013)

    DarkSide-50

    (2014)

    CRESST (2015)

    Xenon1T

    LZ

    LUX 300day

    SuperCDMS S

    NOLAB

    DEAP3600

    XMASS

    DarkSide-G2

    SuperCDMS

    EDELWEISS

    CRESST

    Cush

    man

    et a

    l., 13

    10.8

    327

    PS: SD cross section equally challenging Hisano, Ishiwata, Nagata 1010.5985

  • 3. Indirect Detection

    8 kpc

    i.e. , , , , from MDM annihilations in MW halo.p̄ � D̄e+�

  • 3. Indirect Detectioni.e. , , , , from MDM annihilations in MW halo.�

    c

    c

    c±Z

    Z

    c

    c

    c±W+

    W-

    (channels for MDM with Y=0)

    W±, Z � p̄, e+, � . . .+

    , �

    , �

  • Enhanced cross section due to ‘Sommerfeld corrections’

    3. Indirect Detection

    Hisano et al., 2004, 2005Cirelli, Strumia, Tamburini 2007

    c

    c

    c±Z

    Z

    c

    c

    c±W+

    W-

    (channels for MDM with Y=0)

    W±, Z � p̄, e+, � . . .+

    Cirelli, Hambye, Panci, Sala, Taoso 1507.05519

    i.e. , , , , from MDM annihilations in MW halo.�

    , �

    , �

  • 3. Indirect Detection

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ��� ������� ������������ �����

    ������

    ������ ��

    ������ ��

    �� ����

    ����

    ����� ��

    ������

    ��

    ��� ��

    ����

    ��

    ��������

    �����

    ���

    FERMI diffuse galactic:

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    ! " # $ %

    &' ( ) !*

    !!!"!# !$ !% !& !'

    !(!) "* "! "" "#

    "$"%"& "' "( ")

    #*

    #! #" ## #$ #%

    +,- ./012345 60784/9:;294 8307?2;=>4 ℓ !>4?/448"

    3:;2;=>4!!>4?/448

    "

    *#!(* $!(*#(* $(*##* $#*#% $%

    *$"#"

    $%

    #%

    $!%

    #!%

    $$%

    #$%

    $)*

    #)*

  • 3. Indirect Detection

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ��� ������� ������������ �����

    ������

    ������ ��

    ������ ��

    �� ����

    ����

    ����� ��

    ������

    ��

    ��� ��

    ����

    ��

    �����

    ���

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ��� ������� ��������� ����������

    ��

    ����

    ��������

    ����

    �� ��

    �����

    ��

    �� � ��

    �� ��

    ����

    ��

    ���

    �� ��

    ��

    ��

    ��

    ��������

    �����

    ���

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    FERMI diffuse galactic:

    ! " # $ %

    &' ( ) !*

    !!!"!# !$ !% !& !'

    !(!) "* "! "" "#

    "$"%"& "' "( ")

    #*

    #! #" ## #$ #%

    +,- ./012345 60789: 28;37928< 6=;>

  • 3. Indirect Detection

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ��� ������� ������������ �����

    ������

    ������ ��

    ������ ��

    �� ����

    ����

    ����� ��

    ������

    ��

    ��� ��

    ����

    ��

    �����

    ���

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ��� ������� ��������� ����������

    ��

    ����

    ��������

    ����

    �� ��

    �����

    ��

    �� � ��

    �� ��

    ����

    ��

    ���

    �� ��

    ��

    ��

    ��

    �����

    ���

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ������� ������� ��������� ����������

    �� ����

    ��������

    ����

    ��

    ��

    ����

    ��

    ��

    ��

    ��� �� ��

    ����

    ��

    ���

    �� ��

    ����

    ��������

    �����

    ���

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    FERMI diffuse galactic:

    ! " # $ %

    &' ( ) !*

    !!!"!# !$ !% !& !'

    !(!) "* "! "" "#

    "$"%"& "' "( ")

    #*

    #! #" ## #$ #%

    +,-./-0 1-2345/6 72,89: 48;5,948< 7=;.

  • 3. Indirect Detection

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ��� ������� ������������ �����

    ������

    ������ ��

    ������ ��

    �� ����

    ����

    ����� ��

    ������

    ��

    ��� ��

    ����

    ��

    �����

    ���

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ��� ������� ��������� ����������

    ��

    ����

    ��������

    ����

    �� ��

    �����

    ��

    �� � ��

    �� ��

    ����

    ��

    ���

    �� ��

    ��

    ��

    ��

    �����

    ���

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ������� ������� ��������� ����������

    �� ����

    ��������

    ����

    ��

    ��

    ����

    ��

    ��

    ��

    ��� �� ��

    ����

    ��

    ���

    �� ��

    ����

    �����

    ���

    ��!� � ��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� "�#

    ������� ������� ������������ �����

    ��

    �� �������� ��

    ����

    ����

    ������

    ����

    � �� �� ��

    ������

    ��

    ��� ��

    ����

    ��������

    �����

    ���

    relevant constraints but MDM 5plet not probed

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    FERMI diffuse galactic:

    ! " # $ %

    &' ( ) !*

    !!!"!# !$ !% !& !'

    !(!) "* "! "" "#

    "$"%"& "' "( ")

    #*

    #! #" ## #$ #%

    +,-./-0 1-2345/6 7289/-:;04:/ 40,=/ ℓ !=/>-//9"

    5;040,=/!!=/>-//9

    "

    *#!(* $!(*#(* $(*##* $#*#% $%

    *$"#"

    $%

    #%

    $!%

    #!%

    $$%

    #$%

    $)*

    #)*

  • 3. Indirect DetectiondSphs galaxies, search for continuum -rays:

    relevant constraints but MDM 5plet not probed

    ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉��!��� #�"

    ����������� ���� ����� ������������ γ$��� ���������

    ���� �!� �����������

    ���������

    �����

    �����"

    ���

    ���������

    ����

    ���

    FERMI: 15 dSphs, 6yrs, ‘Pass-8’ - 1503.02641

    HESS: 4 dSphs, incl Sagittarius - 1410.2589

    MAGIC: Segue1 - 1312.1535

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

  • 3. Indirect DetectiondSphs galaxies, search for -ray lines:

    relevant constraints but MDM 5plet not probed

    MAGIC: Segue1 - 1312.1535

    ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ������������ γ$��� ����

    �����!

    �����

    ���

    ���������

    ����

    ���

    NB large uncertainties in dSPhs ‘J factor’, i.e. DM-brightness

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    e.g. Bonnivard et al., 1504.02048

  • 3. Indirect Detection�

    FERMI: 1506.00013

    HESS: 1301.1173

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    MW center area, search for -ray lines:

    ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    �������

    ��� �������

    ���

    ���

    ����

    ���

    ���������

    ����

    ����

    ����

    ����

    ����

    ���

    ����

    �����

  • 3. Indirect Detection�

    FERMI: 1506.00013

    HESS: 1301.1173

    Uncertainties in DM profile:

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    e.g. Cirelli et al., 1012.4515

    MW center area, search for -ray lines:

    ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    �������

    ��� �������

    ���

    ���

    ����

    ���

    ���������

    ����

    ����

    ����

    ����

    ����

    ���

    ����

    �����

    10-3 10-2 10-1 1 10 10210-210-1

    1

    10

    102103104

    10¢¢ 30¢¢1¢ 5¢ 10¢ 30¢ 1o 2o 5o 10o20o45o

    r @kpcD

    r DM@Ge

    Vêcm

    3 D

    Angle from the GC @degreesD

    NFW

    Moo

    Iso

    Ein EiB

    Bur

  • 3. Indirect Detection

    MDM excluded if cuspy MDM not probed if cored

    FERMI: 1506.00013

    HESS: 1301.1173

    Uncertainties in DM profile:

    Cire

    lli, H

    amby

    e, P

    anci

    , Sal

    a, T

    aoso

    150

    7.05

    519

    e.g. Cirelli et al., 1012.4515

    MW center area, search for -ray lines:

    ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    �������

    ��� �������

    ���

    ���

    ����

    ���

    ���������

    ����

    ����

    ����

    ����

    ����

    ���

    ����

    �����

    10-3 10-2 10-1 1 10 10210-210-1

    1

    10

    102103104

    10¢¢ 30¢¢1¢ 5¢ 10¢ 30¢ 1o 2o 5o 10o20o45o

    r @kpcD

    r DM@Ge

    Vêcm

    3 D

    Angle from the GC @degreesD

    NFW

    Moo

    Iso

    Ein EiB

    Bur

    Consistent conclusions in: Garcia-Cely et al. 1507.05536

  • Bonus trackSome interesting recent extensions:

    - millicharged MDMDel Nobile, Nardecchia, Panci 1512.05353

    assume Y = ! " 0, -> implies stability -> for suitable !, no DD

    relic abundance constraints

    - decaying MDM, if " < MPlanckDel Nobile, Nardecchia, Panci 1512.05353

    -‘natural’ MDMFabbrichesi, Urbano 1510.03861

    -> observable consequences in gamma rays

    MDM induces (at 2-loops) mh corrections => small hierarchy prob -> supersymmetrize it!:

    - fermion/boson cancellations restore naturalness - stability preserved by SuSy

  • Bonus trackSome interesting recent extensions:

    -MDM and vacuum stabilityCai,Ramsey-Musolf et al., 1108.0969 Cai et al., 1508.04034

    -asymmetric MDMBoucenna, Krauss, Nardi 1503.01119

    -non-thermally produced MDMAoki, Toma, Vicente 1507.01591

  • ConclusionsThe DM problem requires physics beyond the SM.

    Introducing the minimal amount of it, we find one fully successful DM candidate:

    massive, neutral, automatically stable.

    fermionic quintuplet with , mass = 9.4 TeV

    - too heavy to be produced at LHC, - challenging in next gen direct detection exp’s, - tested by indirect detection (ữ ray) exp’s:

    Its phenomenology is precisely computable:

    SU(2)L Y = 0

    (Other candidates have different properties.)

    - excluded if cuspy - not probed if cored

  • ConclusionsThe DM problem requires physics beyond the SM.

    Introducing the minimal amount of it, we find one fully successful DM candidate:

    massive, neutral, automatically stable.

    fermionic quintuplet with , mass = 9.4 TeV

    SU(2)L Y = 0

    ! "#$ %& "#$

    '()*#+,-./,#

    /)'0 1234

    567

    89+2#+.

    :;:

    :;:?% % %>

    @AB

    -)./=+(.()*

    :7 4/CC9*#

    4D=E

    :7 0/)#

    FB 0/)#

    4D=E 0/)#

    !!" !"#$"

    !"##$%& '( )'*+,%$-*,+ !+'.-/ 0/10" $*/ %0$)20+ !/$+20/ 0/10"

  • Back-up slides

  • 3. Indirect Detection

    Uncertainties in DM profile:

    MW center area, search for -ray lines:

    ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    �������

    ��� �������

    ���

    ���

    ����

    ���

    ���������

    ����

    ����

    ����

    ����

    ����

    ���

    ����

    �����

    !"#$%#&

    '() *$+,

    '() -./$+,

    '()

    '() γ!0./

    � �� �����!�

    ��!�

    ��

    ���

    � !���"

    ρ!���

    "��� #

    Simulations and observations do not resolve ≲ 2 kpc

  • 3. Indirect Detection

    Uncertainties in DM profile:

    MW center area, search for -ray lines:

    ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    �������

    ��� �������

    ���

    ���

    ����

    ���

    ���������

    ����

    ����

    ����

    ����

    ����

    ���

    ����

    �����

    !"#$%#&

    '() *$+,

    '() -./$+,

    '()

    '() γ!0./

    � �� �����!�

    ��!�

    ��

    ���

    � !���"

    ρ!���

    "��� #

    Simulations and observations do not resolve ≲ 2 kpc

  • ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ������� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    ����

    ���

    ���

    ���

    ����

    3. Indirect Detection

    Uncertainties in DM profile:

    MW center area, search for -ray lines:�

    � ����!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� "�#

    ����������� ���� ����� ���� γ#��� ����

    �������

    ��� �������

    ���

    ���������

    ����

    !"#$%#&

    '() *$+,

    '() -./$+,

    '()

    '() γ!0./

    � �� �����!�

    ��!�

    ��

    ���

    � !���"

    ρ!���

    "��� #

    standard Burkert

    Simulations and observations do not resolve ≲ 2 kpc

  • ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ������� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    ����

    ���

    ���

    ���

    ����

    3. Indirect Detection

    Uncertainties in DM profile:

    MW center area, search for -ray lines:�

    � ����!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� "�#

    ����������� ���� ����� ���� γ#��� ����

    ��� ��� ����

    ��� ����

    ���

    ���������

    ����

    !"#$%#&

    '() *$+,

    '() -./$+,

    '()

    '() γ!0./

    � �� �����!�

    ��!�

    ��

    ���

    � !���"

    ρ!���

    "��� #

    NFW 3kpc

    Simulations and observations do not resolve ≲ 2 kpc

  • ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ������� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    ����

    ���

    ���

    ���

    ����

    3. Indirect Detection

    Uncertainties in DM profile:

    MW center area, search for -ray lines:�

    � ����!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� "�#

    ����������� ���� ����� ���� γ#��� ����

    ��� ��� ������

    ��� ������

    ���

    ���������

    ����

    !"#$%#&

    '() *$+,

    '() -./$+,

    '()

    '() γ!0./

    � �� �����!�

    ��!�

    ��

    ���

    � !���"

    ρ!���

    "��� #

    NFW 1.5kpc

    Simulations and observations do not resolve ≲ 2 kpc

  • ��!� � ����!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ��!��

    ������� !���"

    〈σ�〉

    γγ!γ�"�!��� #�"

    ����������� ���� ����� ���� γ$��� ����

    ����

    ���

    ���

    ���

    ����

    3. Indirect Detection

    Uncertainties in DM profile:

    MW center area, search for -ray lines:�

    � ����!��

    ��!��

    ��!��

    ��!��

    ��� !���"

    〈σ�〉

    γγ!γ�"�!��� "�#

    ����������� ���� ����� ���� γ#��� ����

    ��� ��� γ!���

    ��� γ!���

    ���

    ���������

    ����

    !"#$%#&

    '() *$+,

    '() -./$+,

    '()

    '() γ!0./

    � �� �����!�

    ��!�

    ��

    ���

    � !���"

    ρ!���

    "��� #

    NFW "=0.5

    Simulations and observations do not resolve ≲ 2 kpc

  • The cosmic inventoryMost of the Universe is Dark

    Ωlum ∼ 0.01

    Ωb ≃ 0.040 ± 0.005

    -mass to light ratio in typical systems

    -BBN -CMB

    Ωde ∼ 0.7 - CMB + SNIa - CMB - DM - acoustic peak in baryons

    (

    Ωx =ρx

    ρc; CMB first peak ⇒ Ωtot = 1 (flat);

    HST h = 0.71 ± 0.07)

    ΩDM ∼ 0.24

    - CMB + SNIa

    particle physics cosmology

  • 1) galaxy rotation curves

    Beg

    eman

    et a

    l., M

    NR

    AS

    249

    (199

    1)

    ΩM ! 0.1

    vc(r) ∼ const ⇒ ρM (r) ∼1

    r2

    vc(r) =

    √2GNM(r)

    r

    The Evidence for DM

    [bac

    k to

    mai

    n sl

    ide]

  • 1) galaxy rotation curves

    2) clusters of galaxies- “rotation curves” - gravitation lensing - X-ray gas temperature

    “bullet cluster” - NASA astro-ph/0608247

    ΩM ! 0.1

    ΩM ∼ 0.2 ÷ 0.4

    [further developments]

    The Evidence for DM

    [bac

    k to

    mai

    n sl

    ide]

  • 3) CMB+LSS(+SNIa:)

    ΩM ≈ 0.26 ± 0.05

    TT TE

    EE LSS

    M.Cirelli and A.Strumia, astro-ph/0607086

    WMAP-3yr ACbarCBI

    Text

    BoomerangDASIVSA

    SDSS, 2dFRGSLyA Forest Croft LyA Forest SDSS

    ΩM ! 0.1

    ΩM ∼ 0.2 ÷ 0.4

    1) galaxy rotation curves

    2) clusters of galaxies

    The Evidence for DM

    [bac

    k to

    mai

    n sl

    ide]

  • Comparison with SplitSuSy-like modelsA-H, Dimopoulos and/or Giudice, Romanino 2004

    Pierce 2004; Arkani-Hamed, Dimopoulos, Kachru 2005 Mahbubani, Senatore 2005

    MDMSplitSuSy-like- Higgsino (a fermion doublet)

    - + something else (a singlet)

    - stabilization by R-parity

    - want unification also

    - unification scale is low, need to embed in 5D to avoid proton decay

    - arbitrary multiplet, scalar or fermion

    - nothing else (with Y=0)

    - automatically stable

    - forget unification, it’s SM

    - nothing

    Common feature: the focus is on DM, not on SM hierarchy problem.

    Mahbubani, Senatore 2005

  • Non-Minimal terms in the scalar caseλH(X

    ∗T

    a

    XX ) (H∗T

    a

    HH) + λ′

    H |X |2|H|2 +

    λX

    2(X ∗T aXX )

    2 +λ′X

    2|X |4

    Quadratic and quartic terms in and :X H

    - do not induce decays (even number of , and )⟨X ⟩ = 0X- [3] and [4] do not give mass terms

    [1] [2] [3] [4]

    - after EWSB, [2] gives a common mass to all components; negligible for

    λ′H

    v ≈ O(! 100 GeV)

    Xi

    M = O(TeV)

    - after EWSB, [1] gives mass splitting between components; assume so that

    Xi

    ∆Mtree =λHv

    2|∆T 3X|

    4M= λH · 7.6 GeV

    TeV

    M

    λH ! 0.01 ∆Mtree ≪ ∆M

    (Anyway, scalar MDM is less interesting.) [back to Lagrangian]

    - [1] (and [2]) gives annihilations assume so that these are subdominant |λ′H | ≪ g2Y , g22

    X̄X → H̄H

    [back to table]

  • ( basis)

    Neutralino “properties’’

    Mχ =

    M1 0 −mZcβsW mZsβsW0 M2 mZcβcW −mZsβcW

    −mZcβsW mZcβcW 0 −µmZsβsW −mZsβcW −µ 0

    neutralino mass matrix in MSSM B̃ − W̃ 3 − H̃01 − H̃02

    superpotentialW = −µH1H2 + H1h

    ij

    eLLiERj + H1h

    ij

    dQLiDRj −H2h

    ij

    uQLiURj

    soft SUSYB terms

    Lsoft = −1

    2

    (

    M1¯̃BB̃ + M2

    ¯̃W

    a

    W̃a + M3

    ¯̃G

    a

    G̃a

    )

    + . . .

    tanβ =⟨v1⟩

    ⟨v2⟩

  • 3. Indirect DetectionPropagation for positrons:

    [back]

    �f

    �t�K(E) ·⇤2f � �

    �E(b(E)f) = Q

    K(E) = K0(E/GeV)� b(E) = (E/GeV)2/�E�E = 1016 s

    Model � K0 in kpc2/Myr L in kpcmin (M2) 0.55 0.00595 1med 0.70 0.0112 4max (M1) 0.46 0.0765 15

    diffusion energy loss

    Q =12

    ��

    MDM

    ⇥2finj, finj =

    k

    �⇥v⇥kdNke+dE

    �e+(E,�r�) = Bve+

    4⇥⇤EE2

    � MDM

    EdE⇥ Q(E⇥) · I (�D(E,E⇥))

    Solution:

    ⇥2D = 4K0⇤E�(E/GeV)��1 � (E⇥/GeV)��1

    � � 1

  • 3. Indirect DetectionPropagation for antiprotons:

    diffusion convective wind

    Solution:

    ⇥f

    ⇥t�K(T ) ·⇤2f + ⇥

    ⇥z(sign(z) f Vconv) = Q� 2h �(z) �annf

    K(T ) = K0� (p/GeV)�spallations

    Model � K0 in kpc2/Myr L in kpc Vconv in km/smin 0.85 0.0016 1 13.5med 0.70 0.0112 4 12max 0.46 0.0765 15 5

    �p̄(T,�r�) = Bvp̄4�

    �⇥�

    MDM

    ⇥2R(T )

    k

    12�⇤v⇥k

    dNkp̄dT

    T kinetic energy

    [back]

  • Indirect Detection

    AMS-01 Caprice

    BESSBESSCaprice

    Solar wind Modulation of cosmic rays:

    spectrum at Earth

    d�p̄�dT�

    =p2�p2

    d�p̄dT

    , T = T� + |Ze|�Fspectrum

    far from Earth

    Fisk potential �F � 500 MV

  • Indirect DetectionBoost Factor: local clumps in the DM halo enhance the density, boost the flux from annihilations. Typically:

    Lava

    lle e

    t al.

    2006

    Lava

    lle e

    t al.

    2007

    positrons antiprotons

    In principle, B is different for e+, anti-p and gammas, energy dependent, dependent on many astro assumptions, with an energy dependent variance, at high energy for e+, at low energy for anti-p.

    B ⇥ 1� 20 (104)

    [back]

  • Indirect DetectionBoost Factor: local clumps in the DM halo enhance the density, boost the flux from annihilations. Typically: B ⇥ 1� 20 (104)

    Ber

    tone

    , Bra

    nchi

    ni, P

    ieri

    200

    7

    Kuh

    len,

    Die

    man

    d, M

    adau

    200

    7

    Milky Way

    Milky Way

    For illustration:

  • Results for anti-protons:3. Indirect Detection

    Astro uncertainties:- propagation model - DM halo profile - boost factor B

    Û Û ÛÛÛÛÛÛÛÛÛÛÛ

    ÛÛÛ ÛÛÛÛÛÛÛÛÛÛÛ

    ÚÚÚÚÚÚ Ú Ú Ú

    ÙÙ Ù

    Ù Ù Ù Ù Ù Ù ÌÌ

    Ì

    ÁÁ

    Á

    Á

    Á Á

    ˜

    ˜ ˜ ˜ ˜‡ ‡ ‡

    ‡‡‡‡‡‡‡‡‡‡‡‡

    ‡‡‡‡‡‡‡

    1 10 102 103 10410-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    T HGeVL

    Ant

    i-pr

    oton

    flux

    in1êHG

    eVm

    2se

    csrL

    NFW halo

    5

    Boost = 15

    Background?MEDMAX

    MIN

  • Û Û ÛÛÛÛÛÛÛÛÛÛÛ

    ÛÛÛ ÛÛÛÛÛÛÛÛÛÛÛ

    ÚÚÚÚÚÚ Ú Ú Ú

    ÙÙ Ù

    Ù Ù Ù Ù Ù Ù ÌÌ

    Ì

    ÁÁ

    Á

    Á

    Á Á

    ˜

    ˜ ˜ ˜ ˜‡ ‡ ‡

    ‡‡‡‡‡‡‡‡‡‡‡‡

    ‡‡‡‡‡‡‡

    1 10 102 103 10410-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    T HGeVL

    Ant

    i-pr

    oton

    flux

    in1êHG

    eVm

    2se

    csrL

    MED propagation

    5

    Boost = 15

    Background?NFWMoore

    IsoT

    Results for anti-protons:3. Indirect Detection

    Astro uncertainties:- propagation model - DM halo profile - boost factor B