mini civil project

  • Upload
    krishna

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 8/19/2019 mini civil project

    1/64

    INTRODUCTION

    1.1 SPECIFICATIONS

    1.1.1 EARTHWORK EXCAVATION OF FOUNDATION:

      The concrete should be filled in the excavated earth beyond 1m form the

    edge of trenches. After construction of foundation, the remaining before starting

    excavation trial, pits should be dug to ascertain the depth of concrete and sides

    should be left plump. The bottom of the foundation trenches portion of trenches

    should be filled up with earth of 15cm well rammed and watered. The filling of 

    earth should be free from brickbats and clods.

    1.1.2 CEMENT CONCRETE OF DIFFERENT MIXTURES:

      The coarse aggregate should be had stone ballast, the gauge of the ballast

    depends on the thickness of concrete. The ballast should be clean and free from

    dust and dirt. Fine aggregate should be of course and having gauged not more than

    5mm angular sand will be used. ood river sand will be used. The sand fresh

    !ortland cement of standard specification water should be cleaned and free from

    alkaline and acid mater.

    1.1.3 MACHINE MIXING:

      The measured "uantity of coarse aggregate and cement of one batch shall

     be poured into the drum of the cement concrete of mixture. The "uantity of 

    material loaded in the drum shall not exceed the mixer manufactures rated

    capacity. The machine is then removed to mix the material dry and the water is

    added slowly up to the re"uired "uantity. After two minutes rotation the mixing is

    complete and it give a uniform concrete. #ater is added gradually.

    1

  • 8/19/2019 mini civil project

    2/64

    1.1.4 LAYING: 

    $aying of concrete should be started at once in layer of 15cm and

    thoroughly consolidated. After this it should not be disturbed or shaken. The

    concrete after laying all be cured by being covered with soaked gunny bags and

    sand etc., constantly for two weeks.

    1.1.5 FOUNDATION:

      Foundation is the most important part of a structure, which transmits the

    loads of the superstructure to the subsoil. The soil which is located immediately

     below the base of the foundation is called the subsoil or foundation soil, while

    lowermost portion of the foundation which is in direct contact with the subsoil is

    called the footing.

    Foundation can be built in various types of hand materials. enerally bricks,

    stones, concrete, steel etc., are used in different form for constructing the

    foundation of a building.

    1.1.6 DAMP PROOF COURSE:

      %amp proof course is a layer of strong and impervious material provided at

    the &unction of foundation with wall at floor level to prevent bitumen laid and then

    sanded immediately. 'ement should be !ortland cement of standard specification.

    The "uality of sand should be course, sharp, angular, and clean free from dust and

    dirt of proportions and then mixed thoroughly by adding water gradually and

    slowly to have a thick workable mortar.

    2

  • 8/19/2019 mini civil project

    3/64

      (efore %.!.'. is being applied the level of the plinth should be checked

    longitudinally and transversely. The surface should be cleaned and water should be

    sprinkled over the masonry wall to make it damp. )t is to be laid on full width of 

    inner superstructure walls. )n case of outer walls it should be extended up to

    outside face of wall and compacting by tamping and the surface roughened so as to

    from a key for the &oint of wall above. )t should not be laid doorways and  veranda

    openings.

      *ertical damp proof course consists of 1+mm to 1mm thick 1- cement

    sand plaster. The concrete of plaster. The concrete of plaster should be conversed

    with two layers of bitumen. The concrete of plaster will be allowed to dry for one

    day after arising and two coats of bitumen on the plinth should be cleaned off.

      The cement mortar consists 1-, 1-/, 1-0, 1-, 1-, according to the nature of 

    work 1- means one part cement and three parts of sand. 'ement and sand be

    thoroughly mixed dry and then water be added to it be selected for face walls. The

     bricks should be selected for these face walls. The brick should be laid in 2nglish

     bond and master is in the plumb. All bricks should be soaked water before use not

    less than one hour. The &oints in the face walls are to be plastered of pointed be

    racked out while the mortar is green.

      The brickwork in cement mortar should keep wet for one week at least the

     &oints should be uniform thickness net exceeding 1 cm for first and second brick 

    work. The bricks of uniform colour should preferably be used in the face walls so

    as to give better look.

    3

  • 8/19/2019 mini civil project

    4/64

    1.2. PLANNING CONSIDERATIONS

    1.2.1 MAIN O!ECTIVES OF PLANNING:

    The main ob&ective of planning is to execute the pro&ect most economically

     both in terms of money and time. 2ffective planning includes the following factors

    are

    !roper design of each element of pro&ect.

    !roper selection of e"uipment and machinery in big pro&ects the uses of 

    large capacity plants are found economical.

    !roper arrangement of repair of e"uipment and machinery near the site of 

    work to keep them ready to work.

    !rocurement of material well in advance.

    2mployment of trained and experienced staff on the pro&ects.

    To provide welfare schemes for the staff and workers such as medical and

    recreational facilities.

    To provide proper safety measures such as proper ventilation, proper 

    arrangement of light and water.

    1.2.1.1ORIENTATION:

      3rientation of a building is the relationship of the building to its environment.

    The building must be suitably oriented to the site and sun and the prevailing winds.

    3rientation not only affects planning, but also the design.

      3rientation of a building is the proper placement o building and its

    component rooms with respect to the weathering elements as the sun, wind and

    rain and environment factors like topography and enchanting views of landscape.

      The inmates to en&oy the features of nature and avoid the undesirable ones

     besides providing convenient access to the street and backyard. )ndia being a

    4

  • 8/19/2019 mini civil project

    5/64

    tropical country, best orientation will be done if the building faces the direction of 

     prevailing wind.

    1.2.1.2ASPECT:

      Aspect is a very important consideration in the planning of a building. The

    arrangement of doors and windows on external walls of a building will allow the

    occupants to receive and en&oy nature4s gifts as sunshine, breee and scenic beauty

    of landscape. The manner of arrangement or peculiarity of arrangement of the

    doors windows in the external walls of the building is termed as aspect.

    5

  • 8/19/2019 mini civil project

    6/64

     

    6

  • 8/19/2019 mini civil project

    7/64

     

    CENTRE LINE DIAGRAM OF CITY

      UILDING

    CHAPTER "3

    7

  • 8/19/2019 mini civil project

    8/64

    STRUCTURAL DESIGN

    3.1 AIM OF DESIGN

    The aim of design is the achievement of an acceptable probability that

    structure being designed will perform satisfactory during their intended life . #ith

    an appropriate degree of safety, they should sustain all the loads and deformation

    of normal construction and use. And have ade"uate durability 6 ade"uate

    resistance to the effects of misuse and fire

    3.2INTRODUCTION

    GENERAL 

    This pro&ect reports on the analysis and design of Auditorium, $ibrary and

    )ndoor ames hall in one separate block. All structural components for the

     building such as beams, columns, slabs, staircase etc are analysed and designed.

    )solated footing is adopted for all columns. 7afe bearing capacity is taken as

    +88k9:m2 .The structure is designed by using limit state method, adopting ;+8

    concrete andFe/15

  • 8/19/2019 mini civil project

    9/64

    • $imit state method of design is based on elastic theory.

    • !artial safety factors are used in this method to determine the design loads

    and design strength of materials from their characteristics values.

    •The design aids to )7-/50, published by the bureau of )ndian standards. The

    design of limit state method is very simple and hence widely used in practice.

    • This method gives economical results when compared with the conventional

    working stress method.

      3.3 DESIGN OF SLA

      3.3.1. SLAS

      The most common type of structural element used to cover floors and roofs

    of building are reinforced concrete slabs of different types. 3ne way slabs are those

    supported on the two opposite sides so that the loads are carried along one

    direction only. Two way slabs are supported on all four sides with such dimensions

    such that the loads are carried to the supports along both directions

    )f $y:$x? +, then the slab is designed as two way slab

    )f $y:$x@+, then the slab is designed as one way slab.

    9

  • 8/19/2019 mini civil project

    10/64

    #here, $y longer span dimension of the slab.

      $x shorter span dimension of slab.

      Bestrained slabs are referred to as slabs whose corners are prevented from

    lifting. They may be supported on continuous or discontinuous edges.

    3.3.2 C,'&-#'%#/+ /- &,'0&

    7olid slab

  • 8/19/2019 mini civil project

    11/64

      /888: +0 x 1.5

      18+.50 mm say 185mm

    OVERALL DEPTH :

      % d C cc CDdia:+E

      185 C 15 C D:+E

      d 1+/mm say 1+5 mm

    EFFECFIVE SPAN:

    2ffective span $(

      /888+8 8mm

    1E 2ffective span $ C D(:+E C D(:+E

      /888C D+8:+E CD+8:+E

      /+8mm

    2ffective span 8mm

    LOAD CALUCLATION :

    'onsidering 1 m width of slab

    %ead load / G9:m

    $ive load +.5/G9:m

    #eathering coarse .5/G9:m

    %esign of dead load / x 1.5 0G9:m

    %esign of live load +.5/ x 1.55.1G9:m

    DESIGN OF ENDING MOMNET:

      (; H end span DD#$x$+:1+E C Dw$+:18E

    D5.1 x .I+:1+E CD0 x.+:18E

    11

  • 8/19/2019 mini civil project

    12/64

      1/. G9:m

    (; H mid span DD#$x$+:10E C Dw$+:1+E

      D5.1 x .I+:10E CD0 x.+:1+E

      11.+ G9:m

      (; Hend support DD#$x$+:18E C Dw$+:JE

      D5.1 x .I+:18E CD0 x.+:JE

      1.8+ G9:m

      (; interior support DD#$x$+:1+E C Dw$+:JE

      D5.1 x .I+:1+E CD0 x.+:JE

      15.0 G9:m

    REUIRED EFFECTIVE DEPTH :

    ;u Ku x b x d+

      d DD1.8+ x 18+E:+.0 x 1888E1:+

      d .5 mm

    MAIN REINFORCEMENT:

    S(%#/+ 1:

    ;u 8.xFyxAstx Dd DAst x fyE:DbxFckEE

    1/. G9.m 8. x /15x Ast x D185DAst x /15E:D1888x+8EE

      Ast /+0.1mm+

    12

  • 8/19/2019 mini civil project

    13/64

    S(%#/+ 2:

    ;u 8.xFyxAstx Dd DAst x fyE:DbxFckEE

    11.+ L 180 8. x /15x Ast x D185DAst x /15E:D1888x+8EE

      Ast .+mm+

    S(%#/+ 3:

      ;u 8.xFyxAstx Dd DAst x fyE:DbxFckEE

      1.8+ L180 8. x /15x Ast x D185DAst x /15E:D1888x+8EE

      Ast 588.+mm+

    S(%#/+ 4:

      ;u 8.xFyxAstx Dd DAst x fyE:DbxFckEE

      15.0 L 180 8. x /15x Ast x D185DAst x /15E:D1888x+8EE

      Ast /5.+mm+

    MININIMUM REINFORCEMENT:

    8.1+ M of cross sectional area

      D8.1+:188E x 1888 x 185

      Ast  1+0 mm+

    SPACING:

      ast  N:/ x d+

      N:/ x +

      58.+0mm+

    7pacing of provide reinforcement and negative reinforcement

    13

  • 8/19/2019 mini civil project

    14/64

    71 1888xDast:AstE 58.+0 x 1888:/+0.1 11. mm say 115mm

    7+ 1888xDast:AstE 58.+0 x 1888:.+ 158 mm

    7 1888xDast:AstE 58.+0 x 1888:588.+ 188 mm

    7/ 1888xDast:AstE 58.+0 x 1888:/5.+ 18J.0 mm say 185mm

    SPACING LIMIT:

    1E d x 185 15 mm

    +E 88 mm

     provide 18 mm dia bars 188mm c:c distance

    DISTRIUTION:

    Ast DminE 1+0 mm+

    SPACING LIMIT:

    1E 5d 5 x 185 5+5 mm+E /58 mm

    !rovide mm dia bars on distribution H/58 mm c:c distance

    CHECK FOR SHEAR:

      *u D8.0wdlE CD8.0wdlE

      D8.0 x 5.1 x .E C D8.80 x 0 .E

    +5.5 G9

    Ʈv Dvu:bdE

      D+5.5x 18E:D1888 x 185E

      8.+// 9:mm+

    14

  • 8/19/2019 mini civil project

    15/64

    M of steel D188 x AstE:DbdE

      D188x +15.5E : D1888 x 185E 8.1+M

    Befer Table 1J of )7 /50+888 code and read permissible shear stress as Ʈc

    8.5 9:mm+

    Ʈc 8.5 9:mm+ @ Ʈv  8.+// 9:mm

    +

  • 8/19/2019 mini civil project

    16/64

    CHAPTER"5

    DESIGN OF EAM

    5.1 EAMS

      (eams are defined as structural members sub&ected to transverse load that

    caused bending moment and shear force along the length. The plane of transverse

    loads is parallel to the plane of symmetry of the cross section of the beam and it

     passes through the shear centre so that the simple bending of beams occurs. The

     bending moments and shear forces produced by the transverse loads are called as

    internal forces.

    5.1.1T(& /- 0('$&

    %epending upon the supports and end condition, beams are classified as below.

    simply supported beams

    over hanging beams

    16

  • 8/19/2019 mini civil project

    17/64

    cantilever beam

    fixed beam

      The reinforced concrete beams, in which the steel reinforced is placed only

    on tension side, are known as singly reinforced beams, the tension developed dueto bending moment is mainly resisted by steel reinforcement and compression by

    concrete. #hen a singly reinforced beam needs considerable depth to exist

    large bending moment, then the beam is also reinforced in the compression one.

    The beams having reinforcement in compression and tension one is called as

    doubly reinforced beam

    • A beam has to be generally designed for the actions such as bending

    moments, shear forces and twisting moments developed by the lateral

    loads.

    • The sie of the beam is designed considering the maximum moment in it

    and generally kept uniform throughout its length.

    )7-/50-+888 recommends that the minimum grade of concrete should not be less than ;+8 in B' works.

    D(*+ /- 0('$&

     

    #hen there is a Beinforced concrete slab over a concrete beam, then the

     beam and the slab can be constructed in such a way that they act together 

    17

  • 8/19/2019 mini civil project

    18/64

    5.2DESIGN OF EAM

    1D'%'

    7pan of the beam 0m

    Fck +89:mm+

    Fy /159:mm+

    7ie of the beam +8 x 088mm

    3verall %epth 088mm

    2ffective %epth 505mm

    (readth 505

    d4 58mm

    2U,%#$'%( $/$(+% '+) &(' -/(&

    ;u 1.0G9m

    *u +/8.5+G9m

    3M'#+ R(#+-/($(+%

    18

  • 8/19/2019 mini civil project

    19/64

    ;ulimit  8.1fckbd+

    8.1x+8x+8x088+

    ++.5+G9m

    ;u? ;ulimit

    >nder Beinforced 7ection

    ;u 8. x fy x Ast x dD1 Ast bd  x

    fyfck  E

    1.0x 180  8. x /15 x Ast x 088 x D1 Ast 

    450 x600  x415

    20 E

    1.0 x 180  +1008Ast P 10.0Ast+

    Ast 18+.5/mm+

    !rovide 0 bars of 10mm diameter DAst 18+.5/mm+E as tension reinforcement

    and + bars of 18mmO as hanger bars on compression side.

     4C(7 -/ S(' S%(&&

    *u +J0./5G9

    Qv

    Vu

    bd   +/8.5 x 18

    :+8 x 088

      1.J9:mm+

    !t100  Ast 

    b d  100 x1032.54

    230 x 600 8./

    19

  • 8/19/2019 mini civil project

    20/64

    Qc 8.

    Qv @ Qc 7hear reinforcement are re"uired.

    *us *u Qc b d

      +/8.5 x 18 x8. x+8 x 088 1.8JG9

    !rovide nominal shear reinforcement using 0mm diameter two legged stirrups at a

    spacing of 

    7v @8.5d 8. x 088 /58mm

    !rovide 0mm diameter stirrups at /88mm shear  supports.

    5C(7 -/ D(-,(%#/+ C/+%/,

    !t 8./

    Gt 1.1

    D$:dEmax $:d basic x Gt x Gc x Gf 

      @+8 x + x 1.1 x 1 //

    D$:dEactual +8:058 5./0 ?//

  • 8/19/2019 mini civil project

    21/64

    EAMS ASSUMED

    DIMENSION

      $$

    FACTORED

    LOAD

    KN

    MOMENT

      KN8$

    REINFORCEMEN

      DETAIL

      (1 +88 x 0888 +8 1 10mm dia bars H

    08mm spacing

    21

  • 8/19/2019 mini civil project

    22/64

      CHAPTER"6

    DESIGN OF COLUMN

    6.1 COLUMNS

      A column is defined as a structural member sub&ected to compressive force

    in a direction parallel to its longitudinal axis. The columns are used primarily to

    support compressive load. #hen the compression members are over loaded then

    their failure may take place in direct compressionDcrushingE, excessive bending

    combined with twisting. Failure of column depends upon slenderness ratio

    6.1.1T(& /- /,9$+&

    7hort column $ong column

      #hen slenderness ratio Dlex:bE is less than 1+, the compression

    member Dlex:bE is said to be short column and if the slenderness ratio is greater 

    than1+, it is called as long column.

    22

  • 8/19/2019 mini civil project

    23/64

    *ertical members in compression are called as columns and struts.

    The term column is reserved for member which transfer load to the ground.

    'lassification of column, depending upon slenderness ratio is

    • 7hort columns

    • 7lender columns

    6.1.1.1S/% /,9$+

      )7-/50-+888 classifies rectangular column as short when the ratio of

    effective lengthD$eE to the least dimension is less than 1+.This ratio is called

    slenderness ratio of the column.

    6.1.1.2S,(+)( /,9$+&

      The ratio of $e to the least dimension is less than 1+ are called as slender

    column.

    C,'&-#'%#/+ /- /,9$+

    Axially loaded column

    2ccentrically loaded column

    'olumn sub&ected to axial load and moment

    23

  • 8/19/2019 mini civil project

    24/64

    6.2DESIGN OF COLUMN

    1GIVEN

      7ie +8L+8 mm

      !u  115G9

      ;u 1.0 G9;

    SOLUTION

    F#+) A* :

    Ag a+

    +8 +

    5+.J x 18+ mm+

    F#+) A&:

    Asc + M of Ag

    8.8+ x Ag x 5+.J x 18

    8.8+ x Ag 8.8+ x 5+.J x '

    Asc 185 mm+

    24

  • 8/19/2019 mini civil project

    25/64

    F#+) A:

    Ac Ag Asc

    5+.J x 18+ 185

    51/+ mm+

    !u 8./ x Fck x Ac C D8.0 x /15 x 185E

    8./ x +8 x 51/+ C D8.0 x /15 x 185E

    !u   8.J1x 18 9

     

    Assume +5 mm dia of bar-

    Asc N:/ x d+

      N:/ x +5+

      /J8mm+

    NO OF ARS-

    DAst:astE

    D185:/J8.E

    +.1/ nos

    A&% /:

     9o of bars x ast

      x /J8.

      1/+./ mm+

    M ast Ast x Ag x 188

      D1/+./ : 5+.J x 18x 188E

      .JJ x 180

    25

  • 8/19/2019 mini civil project

    26/64

    M ast +. M

    CONDITION:

    8. ? +. ? 0M

    SPACING:

      7 D+8D/8 C /8 C D++:+ C ++:+EEE:+

      1J mm say 18mm

    DESIGN OF LATERAL TIES:

    %iameter-

    1E R dia R x +5 0.+5mm

    +E 0 mm

    PITCH:

    1E $ld  88 mm

    +E 10 dia 10 x +5 /88 mmE 88 mm

    !rovide 0mm dia bar lateral ties H 88 mm.

    26

  • 8/19/2019 mini civil project

    27/64

    COLUMN ASSUMED

    DIMENSION

      $$

    FACTORED

    LOAD

    KN

    MOMENT

      KN8$

    REINFORCEMEN

      DETAIL

      '1 +88 x +88 115 1.0 0mm dia bars H

    88mm spacing

    27

  • 8/19/2019 mini civil project

    28/64

     

    CHAPTER";

    DESIGN OF FOOTING

    ;.1 F//%#+*

    • Foundation is the most important component of a structure.

    • )t should be well planned and carefully designed to ensure thesafety and

    stability of the structure.

    • Foundation provided for B'' columns are called as column base.

    ;.1.2T(& /- -//%#+*

    )solated footing

    'ombined footing

    7trap footing

    7olid raft foundation

    Annular raft foundation

    28

  • 8/19/2019 mini civil project

    29/64

    ;.2DESIGN OF FOOTING DATAS:

      'olumn load 115 G9

    Fy  /15 9:mm+

    Fck    +8 9:mm+

    7(' +8 9:mm+

    'olumn sie +8 x +8 mm

     DESIGN:

    Total load D18:188E x 115 C 115

      185.5 G9

    Area of footing 18.5 x 18:+8 x18

      /.05 m+

    7ie of footing 05 +.15 m

    7ie of footing +.15 x +.15 m

    Area of footing /.05 m+

     DESIGN:

      Fy Dcolumn load x 1.5E: area of footing

    D115 x 18 x 1.5E:/.055

      1./ G9: mm+

    29

  • 8/19/2019 mini civil project

    30/64

    DESIGN OF ENDING MOMENT:

    !ro&ection +.15 P D8.5:+E

    8.J m

    MOMENT :

      ; 1./ x 18  x +.15 x 8.J x 8.J

    ;u +/. G9.m

    DEPTH OF FOOTING:

      ;u +.0 bd+

      % D0. x 18:+.0 x +158E1:+

      +/J.1mm  % +58 mm

    'onsidering the effect of the shear provided an effecting depth of /58 mm for the

    top of layer bar ,assuming +5 mm dia of bars with a nominal cover of 5+.5 mm

    Thick 

      Total thick /8 C 1+.5 C +5 C 5+.5

      58 mm

    Tension reinforcement -

      (; max 0. G9.m

      0. x 18I0 8. x/15 x Ast x /8 xD1D/15 x AstE:+8 x+158 x

    /8E

    30

  • 8/19/2019 mini civil project

    31/64

      Ast +++/.0 mmI+

    ;inimum area of reinforcement -

      D8.15:188E x +158 x 58

      18.5 mmI+

      9o of bars -

      DAst:astE

      D+++/.0:18.5E

      /.5 say 5 nos

    %evlopement length of tension bars-

    $d +5 x 8. x +58: / x 1.+

      11+.1 mmI+

    !ro&ection of footing from face column J1+.5 mmI+

    !roviding an end cover of 58 mm$ength of bars beyond the face of column 11+.1 mmI+ @J1+.5 mmI+

  • 8/19/2019 mini civil project

    32/64

    *y 0. x +.15 x8.05+5

    *y 510.0J G9

    NOMINAL SHEAR STRESS ACROSS YY:

    Ʈ vy 0. x 18I:+158 x /58

      8.50 9:mmI+

      M of steel D188 x AstE:DbdE

      D188x +++/.0E : D+158 x /8E

      8.+1 9:mm+

    Befer Table 1J of )7 /50+888 code and read permissible shear stress as  = Ʈc

    8.0 9:mm+

    Ʈ vy?Ʈc

  • 8/19/2019 mini civil project

    33/64

     FOOTING ASSUMED

    DIMENSION

      $$

    FACTORED

    LOAD

    KN

    MOMENT

      KN8$

    REINFORCEMEN

      DETAIL

      F +158 x +158 115 1.0 1+mm dia bars H

    88mm spacing

    33

  • 8/19/2019 mini civil project

    34/64

     

    STAAD.P/ R(/%

    To- From

    -

    'op

    y to-

    %ate- 10/24/2012 Bef 

    -

    ca: 185J050

    !/0 I+-/$'%#/+

    E+*#+(( C(7() A/

  • 8/19/2019 mini civil project

    35/64

     Included in this printout are data for:

    A,, The #hole 7tructure

     Included in this printout are results for load cases:

    T( L8C N'$(

    !rimary 1 $3A% 'A72 1 %2A%

    !rimary + $3A% 'A72 + $)*2

    'ombination enerated 9('' 1JJ5 g16$,T,#

    only 1

    'ombination /enerated 9('' 1JJ5 g16$,T,#

    only +

    N/)(&

    N/)

    (

    X

    DmE

    Y

    DmE

    =

    DmE

    1 8.888 8.888 8.888

    + 5.15 8.888 8.888 18.58 8.888 8.888

    / 15.5+5 8.888 8.888

    5 +8.88 8.888 8.888

    0 8.888 5.888 8.888

    5.15 5.888 8.888

    18.58 5.888 8.888

    J 15.5+5 5.888 8.888

    18 +8.88 5.888 8.888

    11 8.888 8.888 .8881+ 5.15 8.888 .888

    1 18.58 8.888 .888

    1/ 15.5+5 8.888 .888

    15 +8.88 8.888 .888

    10 8.888 5.888 .888

    1 5.15 5.888 .888

    35

  • 8/19/2019 mini civil project

    36/64

    1 18.58 5.888 .888

    1J 15.5+5 5.888 .888

    +8 +8.88 5.888 .888

    +1 8.888 8.888 0.888

    ++ 5.15 8.888 0.888+ 18.58 8.888 0.888

    +/ 15.5+5 8.888 0.888

    ('$&

    ('

    $

     9ode

    A

    N/)(

    L(+*%

    DmE

    P/(%

    Ddegree

    sE

    1 0 5.15 + 8

    + 5.15 + 8

    J 5.15 + 8

    / J 18 5.15 + 8

    36

  • 8/19/2019 mini civil project

    37/64

    5 1 0 5.888 8

    0 + 5.888 8

    5.888 8

    / J 5.888 8

    J 5 18 5.888 8

    18 10 1 5.15 + 8

    11 1 1 5.15 + 8

    1+ 1 1J 5.15 + 8

    1 1J +8 5.15 + 8

    1/ 11 10 5.888 8

    15 1+ 1 5.888 8

    10 1 1 5.888 8

    1 1/ 1J 5.888 81 15 +8 5.888 8

    1J +0 + 5.15 + 8

    +8 + + 5.15 + 8

    +1 + +J 5.15 + 8

    ++ +J 8 5.15 + 8

    + +1 +0 5.888 8

    +/ ++ + 5.888 8

    +5 + + 5.888 8

    P,'%(&

    P,'%(N/)(

    A

    N/)(

    N/)(

    C

    N/)(

    D

    P/(%

    J/ 0 1 10 1

    J5 1 1 1

    J0 J 1J 1 1

    J J 18 +8 1J 1

    J 10 1 + +0 1

    JJ 1 1 + + 1

    188 1 1J +J + 1

    37

  • 8/19/2019 mini civil project

    38/64

    181 1J +8 8 +J 1

    18+ +0 + 0 1

    18 + + 1

    18/ + +J J 1

    185 +J 8 /8 J 1

    180 0 / /0 1

    18 / / 1

    18 J /J / 1

    18J J /8 58 /J 1

    118 /0 / 5 50 1

    111 / / 5 5 1

    11+ / /J 5J 5 111 /J 58 08 5J 1

    11/ 50 5 0 00 1

    115 5 5 0 0 1

    110 5 5J 0J 0 1

    11 5J 08 8 0J 1

    S(%#/+ P/(%#(&

    P/ S(%#/+A('

    Dcm+E

    I

    Dcm/E

    I>>

    Dcm/E

    !

    Dcm/EM'%(#',

    + Bect 8./5x8.8 1.52

     1812 ++2 +2 '39'B2T2

    Bect 8.8x8./5 1.52

     ++2 1812 +2 '39'B2T2

    P,'%( T#7+(&&

    38

  • 8/19/2019 mini civil project

    39/64

    P/

    N/)( A

    DcmE

    N/)(

    DcmE

    N/)( C

    DcmE

    N/)( D

    DcmEM'%(#',

    1 1+.888 1+.888 1+.888 1+.888 '39'B2T2

    M'%(#',&

    M'

    % N'$(

    E

    Dk9:mm+

    E

    D(+%

    Dkg:mE

    D1:SGE

    7T22$ +85.888 8.88 .2 1+2 0

    /7TA)9$2777T22

    $ 1J.J8 8.88 .2 12 0

    5 A$>;)9>; 0.J/ 8.8 +.12 +2 0

    0 '39'B2T2 +1.1 8.18 +./2 182 0

    S9/%&

    N/)

    (

    X

    Dk9:m

    mE

    Y

    Dk9:m

    mE

    =

    Dk9:m

    mE

    X

    Dk9

    m:deg

    E

    Y

    Dk9

    m:deg

    E

    =

    Dk9

    m:deg

    E

    1 Fixed Fixed Fixed Fixed Fixed Fixed

    + Fixed Fixed Fixed Fixed Fixed Fixed

    Fixed Fixed Fixed Fixed Fixed Fixed

    / Fixed Fixed Fixed Fixed Fixed Fixed

    39

  • 8/19/2019 mini civil project

    40/64

    5 Fixed Fixed Fixed Fixed Fixed Fixed

    11 Fixed Fixed Fixed Fixed Fixed Fixed

    1+ Fixed Fixed Fixed Fixed Fixed Fixed

    1 Fixed Fixed Fixed Fixed Fixed Fixed

    1/ Fixed Fixed Fixed Fixed Fixed Fixed15 Fixed Fixed Fixed Fixed Fixed Fixed

    +1 Fixed Fixed Fixed Fixed Fixed Fixed

    ++ Fixed Fixed Fixed Fixed Fixed Fixed

    + Fixed Fixed Fixed Fixed Fixed Fixed

    +/ Fixed Fixed Fixed Fixed Fixed Fixed

    +5 Fixed Fixed Fixed Fixed Fixed Fixed

    1 Fixed Fixed Fixed Fixed Fixed Fixed

    + Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

    / Fixed Fixed Fixed Fixed Fixed Fixed

    5 Fixed Fixed Fixed Fixed Fixed Fixed

    /1 Fixed Fixed Fixed Fixed Fixed Fixed

    /+ Fixed Fixed Fixed Fixed Fixed Fixed

    / Fixed Fixed Fixed Fixed Fixed Fixed

    // Fixed Fixed Fixed Fixed Fixed Fixed

    /5 Fixed Fixed Fixed Fixed Fixed Fixed

    51 Fixed Fixed Fixed Fixed Fixed Fixed

    ' L/') C'&(&

    N9$0( N'$(

    1 $3A% 'A72 1 %2A%

    + $3A% 'A72 + $)*2

    C/$0#+'%#/+ L/') C'&(&

    C/$0. C/$0#+'%#/+ L8C N'$( P#$' P#$' L8C N'$( F'%/

    enerated 9('' 1JJ5

    g16$,T,# only 11

    $3A% 'A72 1

    %2A% 1.+5

    + $3A% 'A72 + 8.J8

    40

  • 8/19/2019 mini civil project

    41/64

    $)*2

    /enerated 9('' 1JJ5

    g16$,T,# only +1

    $3A% 'A72 1

    %2A% 8.5

    +

    $3A% 'A72 +

    $)*2  8.J8

    L/') G(+('%/&

    There is no data of this type.

    S(,-"?(#*% : 1 LOAD CASE 1 DEAD

    D#(%#/

    +F'%/

    = 1.588

    ('$ L/')& : 2 LOAD CASE 2 LIVE

    ('$ T( D#(%#/+ F'D'

    DmEF0 D0

    E.

    DmE

    1 >9) k9:m = 18.888 + >9) k9:m = 18.888

    >9) k9:m = 18.888

    / >9) k9:m = 18.888

    5 >9) k9:m = 18.888

    0 >9) k9:m = 18.888

    >9) k9:m = 18.888

    >9) k9:m = 18.888

    J >9) k9:m = 18.888

    18 >9) k9:m = 18.888 11 >9) k9:m = 18.888

    1+ >9) k9:m = 18.888

    1 >9) k9:m = 18.888

    1/ >9) k9:m = 18.888

    15 >9) k9:m = 18.888

    41

  • 8/19/2019 mini civil project

    42/64

    P,'%( L/')& : 2 LOAD CASE 2 LIVE

    P,'%( T( D#(%#/+ F' F0X1

    DmE

    Y1

    DmE

    X2

    DmE

    Y2

    DmE

    J/!B2

     9:mm+ 8.88/

    J5!B2

     9:mm+ 8.88/

    J0!B2

     9:mm+ 8.88/

    J!B2

     9:mm+ 8.88/

    J!B2

     9:mm+ 8.88/

    JJ!B2

     9:mm+ 8.88/

    188!B2

     9:mm+

    8.88/

    181!B2

     9:mm+ 8.88/

    18+!B2

     9:mm+ 8.88/

    18!B2

     9:mm+ 8.88/

    18/!B2

     9:mm+ 8.88/

    185!B2

     9:mm+ 8.88/

    180!B2

     9:mm+ 8.88/

    42

  • 8/19/2019 mini civil project

    43/64

    18!B2

     9:mm+ 8.88/

    18!B2

     9:mm+ 8.88/

    18J!B2

     9:mm+ 8.88/

    118!B2

     9:mm+ 8.88/

    111!B2

     9:mm+ 8.88/

    11+!B2

     9:mm+

    8.88/

    11!B2

     9:mm+ 8.88/

    11/!B2

     9:mm+ 8.88/

    115!B2

     9:mm+ 8.88/

    110

    !B2

     9:mm+ 8.88/

    11!B2

     9:mm+ 8.88/

    C/+(%( )(*+

     

      ( 2 A ; 9 3. 1 % 2 7 ) 9 B 2 7 > $ T 7

      ;+5 Fe/15 D;ainE Fe/15 D7ec.E

    43

  • 8/19/2019 mini civil project

    44/64

      $29TB2 D;axm. 7agging:

  • 8/19/2019 mini civil project

    45/64

      Din mmE U Be"d.:!rovided reinf. U Be"d.:!rovided reinf. U D+ leggedE

     

      8.8 U +0.51: 1/.10D /18V EU 8.88: 15.8D +18V EU 0V H 1/8 mm

      /1.+ U +0.51: 1/.10D /18V EU 8.88: 15.8D +18V EU 0V H 1/8 mm

      0+.5 U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 1/8 mm

      1+J. U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 1/8 mm

      1+5.8 U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 1/8 mm

      +150.+ U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 1/8 mm

      +5.5 U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 1/8 mm

      81. U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 1/8 mm

     

     

      ( 2 A ; 9 3. 0 % 2 7 ) 9 B 2 7 > $ T 7

      ;+5 Fe/15 D;ainE Fe/15 D7ec.E

      $29TB2 D;axm. 7agging:

  • 8/19/2019 mini civil project

    46/64

     

      8.8 U 8.88 8.88 8.88 1 U ++./ 8.88

      U 8.88 11.+J 8.88 U

      +58.8 U 8.88 8.88 8.88 1 U 1. 8.88

      U 8.88 0.1 8.88 U

      588.8 U 8.88 8.88 8.88 1 U 1/.JJ 8.88

      U 8.88 1.J+ 8.88 U

      58.8 U 8.88 1.0 8.88 U 11.+5 8.88

      U 8.88 8.88 8.88 1 U

      1888.8 U 8.88 .1 8.88 U .51 8.88

      U 8.88 8.88 8.88 1 U

      1+58.8 U 8.88 5.1+ 8.88 U . 8.88

      U 8.88 8.88 8.88 1 U

      1588.8 U 8.88 5.5J 8.88 U 8.8 8.88

      U 8.88 8.88 8.88 1 U

     

      7>;;AB= 3F B2)9F. AB2A D7".mmE

     

      72'T)39 U T3! U (3TT3; U 7T)BB>!7

      Din mmE U Be"d.:!rovided reinf. U Be"d.:!rovided reinf. U D+ leggedE

    46

  • 8/19/2019 mini civil project

    47/64

     

      8.8 U +/.0: 1/.10D /18V EU 8.88: 15.8D +18V EU 0V H 18 mm

      +58.8 U +/.0: 1/.10D /18V EU 8.88: 15.8D +18V EU 0V H 18 mm

      588.8 U +/.0: 1/.10D /18V EU 8.88: 15.8D +18V EU 0V H 18 mm

      58.8 U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 18 mm

      1888.8 U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 18 mm

      1+58.8 U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 18 mm

      1588.8 U 8.88: 15.8D +18V EU +/.0: 1/.10D /18V EU 0V H 18 mm

     

      7$T7 AT %)7TA9'2 d D2FF2'T)*2 %2!T ; 9 9 3. 0 % 2 7 ) 9 B 2 7 > $ T 7

      ;+5 Fe/15 D;ainE Fe/15 D7ec.E

    47

  • 8/19/2019 mini civil project

    48/64

      $29T'T)39 FA'T3B7 - 1.88 1.88

      A%%)T)39 ;3;29T7 D;a and ;ayE - 0.J 8.88

      T3TA$ %27)9 ;3;29T7 - 11.8 /./

      B2K%. 7T22$ AB2A - 110. 7".mm.

      B2K%. '39'B2T2 AB2A - 1/018.0 7".mm.

    48

  • 8/19/2019 mini civil project

    49/64

    49

  • 8/19/2019 mini civil project

    50/64

    50

  • 8/19/2019 mini civil project

    51/64

    51

  • 8/19/2019 mini civil project

    52/64

    52

  • 8/19/2019 mini civil project

    53/64

    53

  • 8/19/2019 mini civil project

    54/64

    54

  • 8/19/2019 mini civil project

    55/64

    55

  • 8/19/2019 mini civil project

    56/64

    56

  • 8/19/2019 mini civil project

    57/64

    57

  • 8/19/2019 mini civil project

    58/64

    58

  • 8/19/2019 mini civil project

    59/64

    59

  • 8/19/2019 mini civil project

    60/64

    60

  • 8/19/2019 mini civil project

    61/64

    STAAD.Pro Report

    To: From:

    Copy to: Date: 10/24/20

    12

    Ref: ca/ 310596576

    Beam End Force SummaryThe signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry gives the largest tension value for an beam.

    Axial Shear Torsion

    Beam Node L!Fx

    (kN)Fy

    (kN)F"

    (kN)#x

    (kN-m)

    Max Fx 10 3 2:LOAD CA! 2  $$%&.'(% -3.""3 0.3#" -0.000

    M$% Fx 1& " 2:LOAD CA! 2 )*%.*((  3'.000 -0.000 -0.000

    Max Fy 1 1 2:LOAD CA! 2 0.000  +&.'''  0.000 0.000

    M$% Fy 1 2 2:LOAD CA! 2 -0.000 )+&.''' -0.000 -0.000

    Max F 22 2:LOAD CA! 2 '2.""1 *."31  $$'.+', -0.00"M$% F 2# 12 2:LOAD CA! 2 '#."& -*.&2& )--.(&- -0.00#

    Max Mx 30 1& 2:LOAD CA! 2 -0.*1* 20.&0& -0.002  +.'*&

    M$% Mx 2 13 2:LOAD CA! 2 -0.*1* 20.&0& 0.002 ).'*&

    Max My 2# 12 2:LOAD CA! 2 '#."& -*.&2& -2.#'* -0.00#

    M$% My 2# 1 2:LOAD CA! 2 '#."& -*.&2& -2.#'* -0.00#

    Max M 1 1 2:LOAD CA! 2 0.000 3'.000 0.000 0.000

    61

  • 8/19/2019 mini civil project

    62/64

    STAAD.Pro Report

    To: From:

    Copy to: Date: 10/24/20

    12

    Ref: ca/ 310596576

    Beam End Force Summary

    The signs of the forces at end B of each beam have been reversed. For example: this means that the Min Fx entry gives the largest tension value for an beam.

    Axial Shear Torsion

    Beam Node L!Fx

    (kN)Fy

    (kN)F"

    (kN)#x

    (kN-m)

    Max Fx 10 3 2:LOAD CA! 2  $$%&.'(% -3.""3 0.3#" -0.000

    M$% Fx 1& " 2:LOAD CA! 2 )*%.*((  3'.000 -0.000 -0.000

    Max Fy 1 1 2:LOAD CA! 2 0.000  +&.'''  0.000 0.000

    M$% Fy 1 2 2:LOAD CA! 2 -0.000 )+&.''' -0.000 -0.000

    Max F 22 2:LOAD CA! 2 '2.""1 *."31  $$'.+', -0.00"

    M$% F 2# 12 2:LOAD CA! 2 '#."& -*.&2& )--.(&- -0.00#

    Max Mx 30 1& 2:LOAD CA! 2 -0.*1* 20.&0& -0.002  +.'*&

    M$% Mx 2 13 2:LOAD CA! 2 -0.*1* 20.&0& 0.002 ).'*&

    Max My 2# 12 2:LOAD CA! 2 '#."& -*.&2& -2.#'* -0.00#

    M$% My 2# 1 2:LOAD CA! 2 '#."& -*.&2& -2.#'* -0.00#

    Max M 1 1 2:LOAD CA! 2 0.000 3'.000 0.000 0.000

    CONCLUSION

    62

  • 8/19/2019 mini civil project

    63/64

      The proposed pro&ect of (A9G (>)$%)9 is ideally suited for 

    ;A$)%)9

    is unable to fulfil the needs of (A9G users. For a real pro&ect in future this need

    further study, analysis and data collection. This pro&ect has been completed based

    on civil 2ngineering knowledge gained by us during the four years of study.

    63

  • 8/19/2019 mini civil project

    64/64

    REFERENCES

    1.XAdvanced Beinforced 'oncrete %esignY, by 9.Grishna Ba&u.

    +.XBeinforced 'oncrete %esignY, by !.!.*argheese.

    .)7-5 part 1 , X'ode of !ractice for design loads for buildings and structures P

    %ead $oadsY.

    /.)7-/50- +888, X!lain and Beinforced 'oncrete 'ode of !racticeY.

    5.X%esign of 'oncrete 7tructuresY, by 7hah.

    0.XAdvance B.'.'. %esignY DB.'.'. *olume))E7.7. (havikatti