48
Mineralization: CO 2 Conversion to Carbonates for CO 2 Utilization and Storage Greeshma Gadikota Dept. of Chemical Engineering & Dept. of Earth and Environmental Engineering Lenfest Center for Sustainable Energy Columbia University in the City of New York New York, NY RECS June 10, 2015

Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

  • Upload
    recsco2

  • View
    30

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Mineralization: CO2 Conversion to Carbonates for

CO2 Utilization and Storage

Greeshma Gadikota Dept. of Chemical Engineering & Dept. of Earth and Environmental Engineering

Lenfest Center for Sustainable Energy Columbia University in the City of New York

New York, NY

RECS June 10, 2015

Page 2: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

CO2 Capture Materials

2  

q  MEA Challenges §  Corrosion and solvent degradation

§  High capital and operating costs

§  High parasitic energy penalty

(NETL, 2011)

Song at Penn State

Giannelis at Cornell and Park at Columbia

Novel Materials

Page 3: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Solid Sorbents & Chemical Looping Technologies

Water-­‐Gas  Shi-:    CO  +  H2O  !"  H2  +  CO2  

Carbonation / Calcination cycle Oxidation / Reduction cycle

MO  +  CO2  à  MCO3      

MCO3  à  MO  +  CO2  

MO  +  CO  à  M  +  CO2  

M  +  H2O  à  MO  +  H2  

e.g., ZECA process (Los Alamos National Lab)

e.g., Chemical Looping process for H2 production (Ohio State Univ.: U.S. Patent No. 11/010,648 (2004))

KIER’s 100kW CLC system (2006-2011)

Micro- vs. Mesopores

Page 4: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

CO2 Utilization

4  (NETL, 2011)

Challenges and Opportunities •  Carbonate formation is thermodynamically

favored

•  Using CO2 as an alternative processing fluid for unconventional hydrocarbon extraction reduces the need for water

Page 5: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Carbon Storage Schemes

Capture  U8liza8on   Storage  

§  Mimics natural chemical transformation of CO2

MgO + CO2 → MgCO3

§  Thermodynamically stable product & Exothermic reaction

§  Appropriate for long-term environmentally benign and unmonitored storage

q  Ocean storage

q  Biological fixation

q  Geologic storage

q  Mineral carbonation

CO2  Injec8on  Well  

Gas  Processing  PlaBorms  1  million  tons  of  CO2  injected  every  year  since  2006  

USD  100,000  saved    daily  on  CO2  tax  

Graphic  courtesy  of  Statoil  (Geo3mes,  2003)  

Statoil’s  Sleipner  West  Gas  reservoir  in  the  North  Sea  

600,000  tons  of  CO2  injected  every  year  since  

2004  

In  Salah  Gas  Project  in  Algeria  

Graphic  courtesy  of  BP  (Geo3mes,  2003)  

Page 6: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Research Objectives

6  

Comprehensive understanding of CO2 interactions with natural and engineered materials

§  Closing the carbon cycle within energy conversion processes via engineered carbonation using both its own wastes and natural sources

§  Enable efficient extraction of unconventional energy sources (e.g., shale) with combined CO2 storage

§  Understanding of long-term fate of injected CO2 in the earth system  

Develop transformative approaches towards sustainable energy with integrated carbon capture, utilization, and storage

Page 7: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Various Materials for Carbon Fixation

7  

Source: Kurt Houz

Availability silicate minerals >> industrial wastes Crystallinity industrial wastes < minerals Reactivity industrial wastes > minerals Pre-processing requirements (e.g., mining, crushing etc.,) industrial wastes < minerals

Carbonation of industrial wastes results in reclassification of these materials as non-hazardous hence safe for landfilling and for long-term carbon storage

Page 8: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Carbon Mineralization

8  

Page 9: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

CO2 Conversion to Carbonates

9  

Source: Gadikota and Park, 2014, Carbon Dioxide Utilization, 1st Edition, Elsevier

q  Develop technologies to integrate carbonation of industrial wastes at the site of CO2 generation

q  Determine the fate of hazardous components such as Cr, Ni during carbonation

q  Use CO2 to treat hazardous Asbestos Containing Materials (ACM)

Source: Gadikota et al., 2014, Journal of Hazardous Materials

Page 10: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Worldwide Availability of Ca and Mg-bearing Alkaline Materials for CCUS

10  

     

Belvidere Mountain, Vermont Serpentine Tailings

Mineral Carbonation of Peridotite

Photo by Dr. Jürg Matter at LDEO (2008)

Page 11: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Chemical Composition on CCS Storage Potential

11  

Magnetite   Anorthite   B as a lt T a lc   Augite   L iza rdite   Antigorite   F aya lite   F ors terite Wollas tonite  

0

20

40

60

80

100

Extent  of  Carbonation  (%)

Experiments performed at 185oC, PCO2 of 150 atm in 1.0M NaCl+0.64M NaHCO3. 15 wt. % solid Reaction time:

Abundance of less reactive minerals vs. limited availability of highly reactive minerals

1 hr 0.5 hr 4 hr

4 hr dry attrition grinding All others – 1 hour dry attrition grinding  

Carbonation efficiency defines whether mineral is utilized for ex-situ or in-situ storage

Ex-situ CO2 Storage

In-Situ CO2 Storage

Shorter time scales (~hours)

Longer time scales (~years)

Limited spatial scale Larger spatial scale with utilization of earth as a reactor (~hundreds of miles)

Relatively homogenous mineralogy

Heterogeneous mineralogy

More flexible tuning in reaction conditions Possible production of value-added products No monitoring required

Not limited by reactor size; Use of geothermal gradient Multiple CO2 trapping mechanisms Relatively economical at this time

O’Connor et al., AAPG Annual Meeting, 2003

Silicates Alumino-silicates

Page 12: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Direct vs. Two-Step Carbonation

12  Gadikota and Park, 2014, Carbon Dioxide Utilization, 1st Edition, Elsevier

Page 13: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Synthesis of High Purity Products and By-Products

13  Gadikota and Park, 2014, Carbon Dioxide Utilization, Elsevier

(Mg,Fe)2SiO4 and (Mg,Fe)3(OH)4(Si3O5)Mg-bearing Silicates

(CaSiO3) Ca-bearing Silicates

Mg-CarbonatePhases

30 µm

Nesquehonite (MgCO3.3H2O)

30 µm

Hydromagnesite(Mg5(CO3)4(OH)2·4H2O)

30 µm

Magnesite(MgCO3)

1 µm

Geothite(a-FeO(OH))

Silica(SiO2)

500 nm

Ca-CarbonatePhases

1 µm

1 µm

1 µm

Vaterite

Aragonite

Calcite

• Products of the pH swing process where silica isobtained at pH ~2, geothite is precipitated at pH~8.6, and magnesium or calcium carbonate at pH ~10.

• Increasing temperature and PCO2 favor theformation of anhydrous magnesium carbonatephases such as magnesite (MgCO3).

• Optimal conditions for forming calcite are pH > 12,aragonite at pH 11, and vaterite at a pH between9.0 and 9.5.

Achieving high degree of control over desired chemical and morphological composition for CO2 utilization remains a challenge

Gadikota et al., 2014, Green Building Materials (Book Chapter) – Submitted

Page 14: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Fundamental Challenges in Carbon Mineralization

14  

Need for novel reactor systems and comprehensive material characterization

•  Inadequate and inaccurate kinetic data

•  Variability in rates – fast, initial kinetics vs. long-term, slow kinetics

•  Formation of mass transfer limiting passivation layers

•  Competing reactions – challenging to produce pure components

•  Formation of meta-stable carbonates

•  Considerable heterogeneity in the starting materials and product phases

•  pH control with additives needed

•  Modeling and prediction uncertainties

Page 15: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Fundamental Challenges in Carbon Mineralization

15  

•  Inadequate and inaccurate kinetic data

•  Variability in rates – fast, initial kinetics vs. long-term, slow kinetics

•  Formation of mass transfer limiting passivation layers

•  Competing reactions – challenging to produce pure components

•  Formation of meta-stable carbonates

•  Considerable heterogeneity in the starting materials and product phases

•  pH control with additives needed

•  Modeling and prediction uncertainties

Need for novel reactor systems and comprehensive material characterization

Page 16: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Better Design of Kinetic Studies for Complex Reactions

16  Gadikota et al., I&ECR 2014

Page 17: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Dissolution Kinetics & Rate Laws for Magnesium Silicate

17  

Ea = 52.9 kJ/mol

Ea = 31 kJ/mol

Our rate law:

Hanchen’s rate law:

Magnesite Precipitation Rate: (Saldi et al., 2012)

)(76.6362

46.022, )(0854.0)./( KT

disMg eHscmmolr−

+ ××=

)1()()./(33

23

32,

MMg

M

OHCOOHCOCOOH

OHCOMgprecipMg aKKKaK

KKkscmmolr Ω−

++=

−−

))(

20425.2(5.0

))(

20421.0(2

1, 10003.0)(10)./( KTKTdisMg Hscmmolr

−−+

×+×=

Page 18: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Fundamental Challenges in Carbon Mineralization

18  

•  Inadequate and inaccurate kinetic data

•  Variability in rates – fast, initial kinetics vs. long-term, slow kinetics

•  Formation of mass transfer limiting passivation layers

•  Competing reactions – challenging to produce pure components

•  Formation of meta-stable carbonates

•  Considerable heterogeneity in the starting materials and product phases

•  pH control with additives needed

•  Modeling and prediction uncertainties

Need for novel reactor systems and comprehensive material characterization

Page 19: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Metastability in MgO-CO2-H2O System

§  Magnesite is the most stable and least soluble carbonate under most conditions (including PCO2)

§  Despite this, magnesite is seldom the main product reported in literature: -  Brucite: Mg(OH)2

-  Lansfordite: MgCO3·5H2O

-  Nesquehonite: MgCO3·3H2O

-  Hydromagnesite: Mg5(CO3)4(OH)2·4H2O

-  Magnesite: MgCO3

§  Driven by reaction kinetics, given enough time, magnesite should form

Swanson et al., PCCP 2014 19  

Page 20: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Significant Complexity in Mg-CO2-H2O Systems

-  Maximum saturation index (Ω) achievable under the experimental conditions reported in 23+ publications

-  Significant variety in carbonate formation over similar reaction conditions !

Ω = log IAPKSP

"

#$

%

&'

20  Swanson et al., PCCP 2014

Page 21: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Temperature on Mg(OH)2 Slurry Carbonation

à  Biggest factor influencing phase is Temperature

à  Easily distinguishable by TGA and XRD analyses

Magnesite: MgCO3 Hydromagnesite: Mg5(CO3)4(OH)2·4H2O Nesquehonite: MgCO3·3H2O

Fricker et al., I&ECR 2014 21  

Page 22: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Temperature on Mg(OH)2 Slurry Carbonation

At 150 ºC Make Hydromagnesite

At 30 ºC Make Nesquehonite

At 200 ºC Make Magnesite

22  Fricker et al., I&ECR 2014

Page 23: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Seeds on Mg(OH)2 Slurry Carbonation

Starting materials

Mg(OH)2

Al2O3

MgCO3

Carbonation at 150 ⁰C for 120 min

23  Swanson et al., PCCP 2014

Page 24: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Fundamental Challenges in Carbon Mineralization

24  

•  Inadequate and inaccurate kinetic data

•  Variability in rates – fast, initial kinetics vs. long-term, slow kinetics

•  Formation of mass transfer limiting passivation layers

•  Competing reactions – challenging to produce pure components

•  Formation of meta-stable carbonates

•  Considerable heterogeneity in the starting materials and product phases

•  pH control with additives needed

•  Modeling and prediction uncertainties

Need for novel reactor systems and comprehensive material characterization

Page 25: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Better Design of Kinetic Studies for Complex Systems

25  Gadikota et al., I&ECR 2014

Page 26: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Temperature on Magnesium Silicate Carbonation

26  

1 10 100 10000

2

4

6

8

10

Volum

e  (%

)

P a rtic le  D iameter  (µm)

 

 

1 10 100

10-­‐4

10 -­‐3

10 -­‐2

Cum

ulative  Pore  Volum

e  (m

l/g)

P ore  D iameter  (nm)

 Unreac ted  O liv ine  90  oC  125  oC  150  oC  185  oC

 

 

80 100 120 140 160 180 2000

20

40

60

80

100

Exten

t  of  C

arbo

natio

n  (%

)

T emp era ture  ( oC )

 T G A  T C A  AR C   [1  hr]

Experimental Conditions: PCO2 = 139 atm, 3 hrs, 1.0 M NaCl + 0.64 M NaHCO3, 15 wt% solid, 800 rpm

Coupled effects of (i) CO2 hydration (ii) mineral dissolution, and (iii) formation of carbonates are evident. Increasing temperature aids mineral dissolution kinetics and reduces the solubility of magnesite

1 10 100

10-­‐4

10 -­‐3

10 -­‐2

Cum

ulative  Pore  Volum

e  (m

l/g)

P ore  D iameter  (nm)

 Unreac ted  O liv ine  90  oC  125  oC  150  oC  185  oC

 

 

Gadikota et al., PCCP (2014)

Page 27: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Formation of anhydrous MgCO3 at lower temperature

27  

(a)

20 30 40 50 60 70 80

Unrea cte d

90oC

125oC

185oC

150 oC

Relative Intensity

MagnesiteOlivine

0.1 1 10

Relativ

e  Intensity

ke V

 

 

(a)

(II)

(I)

C

O

Mg

OMg

Si

(b)

Magnesite

Si-rich Phase

0.1 1 10

Relativ

e  Intensity

ke V

 

 

(a)

(II)

(I)

C

O

Mg

OMg

Si

(b)

Magnesite

Si-rich Phase10 µm

0.1 1 10

Relative  Intens

ityke V

 

 

(a)

(II)

(I)

C

O

Mg

OMg

Si

(b)

Magnesite

Si-rich Phase

0.1 1 10

Relative  Intens

ity

ke V

 

 

(a)

(II)

(I)

C

O

Mg

OMg

Si

(b)

Magnesite

Si-rich Phase10 µm

•  Dominant formation of magnesite (MgCO3)

•  Hydrous phases such as nesquehonite (MgCO3.3H2O) and hydromagnesite (Mg5(CO3)4(OH)2·4H2O) were not formed in the range of 90-185 oC

Gadikota et al., PCCP (2014)

Page 28: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of NaHCO3 on Magnesium Silicate Carbonation

28  

0.0 0.5 1.0 1.5 2.0 2.50

20

40

60

80

100

Exten

t  of  C

arbo

natio

n  (%

)

[N aHC O3]  (M)

 T G A  T C A  A S U  [1  hr]

1 10 100 10000

2

4

6

8

10

Volum

e  (%

)

P a rtic le  D iameter  (µm)

 Unreac ted  D .I.W ater  0.32  M  0.48  M  0.64  M  1.00  M  2.00  M

 

 

1 10 100

10-­‐4

10 -­‐3

10 -­‐2

 Unreac ted  D .I.W ater  0.32  M  0.48  M  0.64  M  1.00  M  2.00  MC

umulativ

e  P

ore  V

olume  (ml/g

)

P ore  D iameter  (nm)  

 

0 .0 0.5 1 .0 1.5 2 .0 2.50

20

40

60

80

1 00

Exten

t  of  C

arbona

tion  (%

)

[N a H C O3]  (M)

 TG A  T C A  A S U  [1  hr]

0 .0 0 .5 1.0 1 .5 2.01 0 -­‐6

1 0-­‐5

1 0-­‐4

1 0 -­‐3

1 0-­‐2

1 0-­‐1

Con

centratio

n  (mol/kg)

[N a H C O 3]   (M)

 Mg -­‐equ ilibrium  C arbona te   -­‐   equ ilib rium

 

 1 1 0 1 0 0

1 0 -­‐4

1 0-­‐3

1 0 -­‐2

 Unreac ted  D .I .Wa ter  0.32  M  0.48  M  0.64  M  1.00  M  2.00  MC

umulativ

e  P

ore  V

olume  (m

l/g)

P ore  D iam e te r  (nm)

 

 

(c)

1 10 10 0 1 0 000

2

4

6

8

10

Volume  (%)

P a rtic le  D ia me ter   (µm)

 Unreac ted  D .I .Wa ter  0.32  M  0.48  M  0.64  M  1.00  M  2.00  M

 

 

(a)

(d)

(b)

Speciation calculations show that NaHCO3 buffers pH (6.4-7.0) and serves as a carbon carrier Buffering the pH in the range of 6-7 facilitates dissolution and carbonation

Experimental Conditions: 185 oC, PCO2 = 139 atm, 3 hours, 15 wt% solid, 800 rpm

Gadikota et al., PCCP (2014)

Page 29: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Can we predict the long-term fate of CO2 based on our laboratory data?

29  

Need dissolution and carbonation rate data in addition to choice of reaction conditions

Page 30: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Selected Magnesium Silicate-CO2-Fluid System

30  

0.1 1 10

 Relative  Intens

ity

keV

 

 

(a)

(2)

(1)

(b)

C

OMg

Magnesite

Si-rich Phase

O

Mg

Si

10 µm

2

1

0.1 1 10

 Relative  Intens

ity

keV

 

 

(a)

(2)

(1)

(b)

C

OMg

Magnesite

Si-rich Phase

O

Mg

Si

0.1 1 10keV

Rela

tive I

nten

sity

Temperature conditions chosen based on the single step carbonation rate data (Gadikota, PCCP 2014) Assume changing volume of rock due to surface passivation: n <0, increasing surfaces available (e.g., through fractures): n> 0 no changes: n = 0 Simulations set up in PhreeqC (geochemistry software)

(a)

(b)

90 oC (Low)

125 oC (Medium)

150 oC (High)

n

time

time

time

time

VV

RateRate

⎥⎦

⎤⎢⎣

⎡=

== 00

Gadikota et al., to be submitted (2014)

Page 31: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Sensitivity Analyses (temperature, degree of fracture formations, rate constant)

31  

(a) (b)

(d)(c)

T (oC) rMg,dis1, t = 0 (mol/m2.s)

90 2.1 x 10-12

125 6.5 x 10-12

150 1.3 x 10-11

T (oC) rMg,dis2, t = 0 (mol/m2.s)

90 1.4 x 10-11

125 6.7 x 10-11

150 1.7 x 10-10

Our work

Hanchen et al.,

Hanchen et al., Geochim. Cosmochim. Ac. (2006)

Gadikota et al., to be submitted (2014)

Page 32: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Temperature

Pressure

Salinity of fluid pH of fluid

Mineral reactivity

Reactive surface area

Mineral dissolution

Mineral carbonation

Porosity

Permeability

Formation of micro-fractures

+   +  

+   +  

+   +  +  

+  

+  +  

+  

+   +  +   -­‐  

-­‐  

+  

+  

+  pH>7

pH<5

+  

Coupling Kinetic and Transport Phenomena in Complex Systems

32  

Page 33: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Research Objectives

33  

Comprehensive understanding of CO2 interactions with natural and engineered materials

§  Closing the carbon cycle within energy conversion processes via engineered carbonation using both its own wastes and natural sources

§  Enable efficient extraction of unconventional energy sources (e.g., shale) with combined CO2 storage

§  Understanding of long-term fate of injected CO2 in the earth system  

Develop transformative approaches towards sustainable energy with integrated carbon capture, utilization, and storage

Page 34: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Global shale gas reserves

34  

Deeper formations Lack of water

Page 35: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Unconventional Energy Sources (e.g., shale)

35  

Technological advancements q  Horizontal drilling q  Hydraulic fracturing But significant water consumption and contamination

q  Chemically functionalized proppants to immobilize heavy metals

q  “waterless fracking” with gases such as CO2 Potential carbon storage

But what are the coupled reactive-transport phenomena that would impact CO2-shale interactions?

Possible solutions

Page 36: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Proposed Interaction of CO2 and Clays (for shale)

Berrezueta et al., 2013, International Journal of Greenhouse Gas Control 36  

q  Initial arrangement of clay matrix

q  Before CO2 injection

q  Gas drag force breaks inter-clay particle physical bonds q  Clay particles pulled through pore spaces

q  CO2 diffuses into clay-layered structures q  Changes in interlayer electrical forces => inter-clay break-up

q  CO2 occupies space created from clay matrix disruption

Page 37: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Characterization of Various Types of Shales Shale

Non-calcite Calcite-bearing Oil-rich Components Carbonaceous

(wt%) Argillaceous

(wt%) Bituminous

(wt%) SiO2 58.6 55.7 40.3 Al2O3 21.4 17.5 9.5 Fe2O3 5.1 6.6 4.1 MgO 1.6 2.3 1.7 CaO 0.2 3.6 19.4 Na2O 0.3 0.2 0.8 K2O 4.1 4.2 2.1 TiO2 1.1 0.8 0.5 P2O5 0.1 0.1 0.2 MnO 0.03 0.04 0.05 Cr2O3 0.05 0.04 0.03 V2O5 0.03 0.04 0.02 LOI 7.2 8.0 19.4 Total Carbon (%) 1.26 1.62 6.49 Organic Carbon (%) 0.74 0.67 2.48 Inorganic Carbon (%) 0.52 0.95 4.01

37  

Page 38: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Supercritical CO2 Interaction with Shale

Loring et al., Langmuir, 2012

CO2 intercalation with clays => expansion CO2 is rotationally constrained and does not appear to react with trapped water

38  

Research Questions

•  What is the effect of dry vs. wet scCO2?

•  What are the effects of variable chemical compositions of shale?

•  Can CO2 be used as an alternative for acid-induced fracking?

Page 39: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of CO2 and Water on Pore Volume Changes

Combination of water and CO2 => significant morphological changes

Are these changes chemically induced ?

Experimental conditions: PCO2 = 150 atm, 80 oC, 3 hr

39  

Page 40: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of CO2 and Water on Chemical Changes

40  

Insufficient acidity to induce significant chemical changes in Al and oil-rich shales Phase changes evident in C & Al-rich shales

Page 41: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of CO2 and Water on Clay CO2 interactions with montmorillonite

Espinoza et al., 2012, International Journal of Greenhouse Gas Control

41  

Page 42: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Temperature on Pore Volume Changes

Higher temperatures result in greater pore volume changes Utilize the geothermal gradient for greater energy extraction – but deeper drilling is more expensive

42  

Page 43: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Temperature on Chemical Changes

43  

Some changes in carbonaceous shales No significant changes in argillaceous and bituminous shales

How can we accelerate increase in pore spaces?

Page 44: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Acid fracking                

44  

Courtesy: The Chronicle

Typical shale deposit Monterey Shale, California

•  Uneven geological formations make horizontal drilling harder •  Injecting strong acids (e.g., HCl) rapidly disorders or dissolves clays, carbonates etc., •  Environmentally hazardous

Are there are any alternative benign chemicals that can be used to induce chemical changes?

Page 45: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Effect of Na-citrate and CO2

45  

0.1 M Na-citrate, pH = 3.0

Unreacted Reacted Calcite-rich

Oil-rich

Unreacted Reacted

Non-calcite

Calcite-rich

Non-calcite

Oil-rich

Experiments performed at 80 oC for 3 hours  

0.1 M Na-citrate, PCO2 = 150 atm

Page 46: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Research Objectives

46  

Comprehensive understanding of CO2 interactions with natural and engineered materials

§  Closing the carbon cycle within energy conversion processes via engineered carbonation using both its own wastes and natural sources

§  Enable efficient extraction of unconventional energy sources (e.g., shale) with combined CO2 storage

§  Understanding of long-term fate of injected CO2 in the earth system  

Develop transformative approaches towards sustainable energy with integrated carbon capture, utilization, and storage

Page 47: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Summary

47  

•  Combination of multi-scale experimental and modeling studies are needed to develop CCUS technologies

•  Investigation of coupled physical and chemical phenomena is essential for predicting the fate of CO2 above and below the ground

•  Accurate kinetic and mechanistic data are needed to predict multi-scale and multi-temporal interactions of CO2 with different materials

•  Identification of all processes that emit CO2 and determination of methods to limit these emissions are needed to close the carbon balance

Page 48: Mineralization: CO2 Conversion to Carbonates for CO2 Utilization and Storage

Acknowledgements

48  

Advisors and Collaborators Prof. Alissa Park (Columbia)

Prof. Peter Kelemen (Columbia)

Prof. Juerg Matter (Southampton)

Dr. Pat Brady (Sandia)

Prof. Venkat Venkatasubramanian (Columbia)

Dr. Babji Srinivasan (IIT)

Dr. Claudio Natali (IGR, Italy)

Dr. Chiara Boschi (IGR, Italy) Park Group Members