59
1 Mike3/papers/tropoz/aguf98 12/2/98 16:30 1 Mike5/papers/presentations non ref/2002/Harvard 5/13/200 Nsstc.uah.edu/atmchem Presented at Harvard University May 17, 2002 Mike Newchurch [email protected] Xiong Liu Da Sun Mohammed Ayoub University of Alabama in Huntsville Randall Martin Harvard University Jae Kim Pusan University, S. Korea Tropical Tropospheric Ozone from TOMS, Sondes, GOME, and Models: How well do we understand?

Mike5/papers/presentations non ref/2002/Harvard 5/13/2002

Embed Size (px)

DESCRIPTION

Nsstc.uah.edu/atmchem. Tropical Tropospheric Ozone from TOMS, Sondes, GOME, and Models: How well do we understand?. Presented at. Harvard University May 17, 2002. Mike Newchurc h [email protected] Xiong Liu Da Sun Mohammed Ayoub University of Alabama in Huntsville Randall Martin - PowerPoint PPT Presentation

Citation preview

Page 1: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

1Mike3/papers/tropoz/aguf98 12/2/98 16:30 1Mike5/papers/presentations non ref/2002/Harvard 5/13/2002

Nsstc.uah.edu/atmchem

Presented at

Harvard UniversityMay 17, 2002

Mike [email protected]

Xiong LiuDa Sun

Mohammed AyoubUniversity of Alabama in Huntsville

Randall MartinHarvard University

Jae KimPusan University, S. Korea

Tropical Tropospheric Ozone from TOMS, Sondes, GOME, and Models:

How well do we understand?

Page 2: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

2Mike3/papers/tropoz/aguf98 12/2/98 16:30

TOR Technique

Tropospheric ozone the difference of TOMS total ozone and monthly averaged SAGE integrated stratospheric ozone.

Fishman and Larsen, 1987.

Page 3: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

3Mike3/papers/tropoz/aguf98 12/2/98 16:30

CCD Technique

(3) Stratospheric column ozone (as a function of latitude and time) is derived by averaging above-cloud column ozone amounts over the Pacific.

(

(1) The high-reflectivity (R >0.9) cloud tops over the Pacific region usually lie near the tropopause.

(2) Zonal (i.e., west to east) variability of stratospheric column

ozone is negligible.

Page 4: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

4Mike3/papers/tropoz/aguf98 12/2/98 16:30

Modified-Residual Technique

Hudson and Thompson, 1998http://metosrv2.umd.edu/~tropo

Page 5: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

5Mike3/papers/tropoz/aguf98 12/2/98 16:30

CCP Technique

(1) Zonal wave structure of stratospheric ozone (2) R> 80%.(3) THIR-derived cloud- top pressure <200 mb (after adjustment).(4) if no THIR, Low-pass filter is applied to filter low-altitude cloudsNewchurch et al., 2001

Page 6: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

6Mike3/papers/tropoz/aguf98 12/2/98 16:30

SAGE+CCP Method

• The method is the same to CCP technique, except that SAGE measurements are recognized as high-altitude cloudy points defined in CCP.

• The significant influence is the area with low occurrence frequency of high-altitude cloud, such as in the Atlantic Ocean and east Pacific Ocean.

Page 7: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

7Mike3/papers/tropoz/aguf98 12/2/98 16:30

Scan-angle Technique

(1) This is the normalized difference of TORE between that at nadir and high-scan positions as a function of altitude

(2) The average kernel shows a broad response with its peak centered at 5-km altitude, suggesting that the diff of retrieved total ozone btw nadir and high scan angle can be used to derive trop ozone.

Kim et al., JAS, 2001

Page 8: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

8Mike3/papers/tropoz/aguf98 12/2/98 16:30

Other TOMS methods not studied here

• TOMS-MLS [Froidevaux, Chandra, Ziemke.• TOMS-SBUV [Fishman and Balok, 1999].• Direct Fitting [Hudson and Frolov, in prep, 2002].• Cloud Slicing [Ziemke et al, 2001].• Topographic Contrast [Jiang and Yung, 1996; Kim

and Newchurch, 1996; Kim and Newchurch 1998; Newchurch et al, 2001].

Page 9: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

9Mike3/papers/tropoz/aguf98 12/2/98 16:30

Potential Ozone Retrieval Errors Associated with Clouds

Newchurch et al., 2001

Page 10: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

10Mike3/papers/tropoz/aguf98 12/2/98 16:30

In-Cloud Ozone Absorption Enhancement

1. Original (20.8 DU) 2. Well-mixed (20.8 DU) 3. Homogeneous (20.8 DU) 4. Linearly increasing (20.8 DU) 5. Linearly decreasing (20.8 DU) 6. Upper 2 km (4.2 DU) 7. Lower 2 km (4.2 DU) ICOAEN is very dependent on ozone distribution in clouds. Ozone distributed in the upper part of cloud usually contributes more to ozone absorption in clouds.

Page 11: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

11Mike3/papers/tropoz/aguf98 12/2/98 16:30

Radiative Transfer Errors

Clouds: R% >= 80%Clear: R <= 20%

Equatorial Africa[10E, 5S, 20E, 2S][10E, 2N, 20E, 5N]

Western Pacific Ocean[160E, 5S, 170E, 2S][160E, 2N, 170E, 5N]

Nimbus-7

Total Error in the Derived Tropospheric Ozone -16 DU -6 DU

Contribution from calibration error* -7 DU -6 DU

Contribution from cloud-height related errors** 2 DU 2 DU

Contribution from retrieval efficiency *** -2 DU 2 DU

Contribution from other errors (mainly ozone absorption enhancement in clouds) ****

-9 DU -4 DU

Earth-Probe

Total Error in the Derived Tropospheric Ozone -9 DU 0 DU

Contribution from calibration error* 0 DU 0 DU

Contribution from cloud-height related errors** 2 DU 2 DU

Contribution from retrieval efficiency *** -2 DU 2 DU

Contribution from other errors **** -9 DU -4 DU

Table 1. Error Analysis in the Clear/Cloudy differences. Data used in this analysis include TOMS L2 data in 1980 and 1999, adjusted THIR in 1980, SHADOZ data in 1998-2000, Trace-A measurements at Brazzaville, Congo in 1990-1992. The “true” tropospheric ozone results after correcting all the cloud-height related errors, ozone retrieval efficiency, calibration error, and ozone enhancement in clouds and unknown errors [Newchurch et al, 2001b].

* The assignment of calibration error to N7 only is based on cloud/clear total ozone difference. However, the total error in the derived tropospheric ozone will not change with this assignment.** The errors are calculated for 1980 N7 TOMS data using the adjusted THIR data but are assumed the same in EP TOMS data.*** Error due to retrieval efficiency are calculated using TOMRAD and TOMSV7 algorithm with the SHADOZ and TRACE-A measurements as reference profiles.**** These errors are the remaining errors unexplained in the cloudy/clear total ozone difference.

Page 12: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

12Mike3/papers/tropoz/aguf98 12/2/98 16:30

Tropospheric ozone from six satellite-based methods in Sep 1997

Surface/Boundary-Layer/Free

Page 13: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

13Mike3/papers/tropoz/aguf98 12/2/98 16:30

Average Range of TTO from Six Methods

Surface/Boundary-Layer/Free

Page 14: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

14Mike3/papers/tropoz/aguf98 12/2/98 16:30

Mean Square Difference of CCD-MR Tropospheric Ozone

Both assume flat stratosphere.

Surface/Boundary-Layer/Free

Page 15: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

15Mike3/papers/tropoz/aguf98 12/2/98 16:30

Mean Square Difference of CCP-CCD Tropospheric Ozone

Page 16: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

16Mike3/papers/tropoz/aguf98 12/2/98 16:30

Adjustment to Ozonesonde data using SAGE stratospheric ozone

Surface/Boundary-Layer/Free

The difference between SHADOZ sonde total ozone and collated TOMS total ozone is ~2-10% in total ozone, varying with station. Left figure shows the scatter plot of TOMS total ozone and sonde total ozone without adjustment. Right figure show the same figure but the sonde total ozone is adjusted by the ratio of SAGE and sonde stratospheric ozone.

Page 17: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

17Mike3/papers/tropoz/aguf98 12/2/98 16:30

Time series of 6 Methods and sondes

Surface/Boundary-Layer/Free

Time series of the six indicated TOMS derivation methods compared to the ozonesonde observations at four SHADOZ sites.

Page 18: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

18Mike3/papers/tropoz/aguf98 12/2/98 16:30

Envelope of the 6 Methods and Sondes

Surface/Boundary-Layer/Free

Max and Min curves of the six indicated TOMS derivation methods compared to the ozonesonde observations at four SHADOZ sites

Page 19: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

19Mike3/papers/tropoz/aguf98 12/2/98 16:30

The Average Differences (SONDE - METHOD) 1 Standard Deviation

and Standard Error of the Mean

D i f f e r e n c e ± 1 S . D . S t d . E r r o r o f M e a n

S H A D O ZS t a t i o n C C P C C D T O R

S A G EC C P

M R S C A N C C P C C D T O RS A G E

C C PM R S C A N

A s c e n s i o n 6 5 - 2 5 1 5 3 6 5 7 11 7 1 . 0 1 . 2 1 . 1 1 . 4 1 . 7 1 . 8

C r i s t o b a l - 1 2 - 3 3 - 4 4 - 2 5 0 4 9 7 0 . 5 0 . 7 1 . 1 1 . 4 1 . 0 2 . 0

N a t a l 1 6 - 5 6 - 6 3 - 4 4 3 8 9 8 1 . 6 1 . 6 1 . 2 1 . 6 2 . 4 2 . 6

N a i r o b i 1 3 - 4 3 - 4 4 - 2 4 - 1 8 5 5 0 . 6 0 . 6 0 . 9 1 . 2 1 . 8 1 . 4

J a v a - 3 6 - 5 6 - 3 6 - 5 6 2 1 0 3 9 1 . 1 1 . 3 1 . 4 1 . 6 2 . 2 2 . 4

F i j i - 2 6 - 3 5 0 8 - 3 8 5 9 9 7 1 . 1 1 . 1 1 . 8 1 . 9 1 . 9 2 . 0

S a m o a - 5 4 - 6 4 - 3 6 - 7 7 1 9 1 5 1 . 1 1 . 1 1 . 8 2 . 2 2 . 2 2 . 0

T a h i t i - 4 6 - 6 6 - 4 7 - 6 7 2 7 9 7 1 . 3 1 . 2 1 . 7 1 . 8 1 . 7 1 . 9

A v e r a g e - 1 5 - 4 5 - 3 5 - 3 6 2 8 7 7 1 . 0 1 . 1 1 . 4 1 . 6 1 . 9 2 . 0

Page 20: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

20Mike3/papers/tropoz/aguf98 12/2/98 16:30

Scatter plots of 6 Methods and Ascension Island Sondes (1998-2000)

Blue #: slope

Yellow #: offset

Green #: correlation Coeff

Page 21: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

21Mike3/papers/tropoz/aguf98 12/2/98 16:30

Scatter plots of 6 Methods and San Cristobal Sondes (1998-2000)

Blue #: slope

Yellow #: offset

Green #: correlation Coeff

Page 22: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

22Mike3/papers/tropoz/aguf98 12/2/98 16:30

MOZAIC ozone column at December 1987 and January 1991 are showed.The maximum flight height is at least 8Km.

MOZAIC displays significantly more spatial sturcture than the monthly averaged TOMS CCP results.

Comparison with MOZAIC Ozone Measurements

Page 23: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

23Mike3/papers/tropoz/aguf98 12/2/98 16:30

Comparison to GOME Tropospheric ozone

Page 24: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

24Mike3/papers/tropoz/aguf98 12/2/98 16:30

GOME Tropospheric ozone in 1997 from RAL

Page 25: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

25Mike3/papers/tropoz/aguf98 12/2/98 16:30

Model Output of Tropospheric Ozone

Monthly tropical tropospheric ozone from GEOS-CHEM over Dec 1996-Nov 1997. (Lighting NOx = 3 TgN/y)

Page 26: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

26Mike3/papers/tropoz/aguf98 12/2/98 16:30

Model Output of Tropospheric Ozone

Monthly tropical tropospheric ozone from GEOS-CHEM over Dec 1996-Nov 1997. (Lighting NOx = 0 TgN/y)

Page 27: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

27Mike3/papers/tropoz/aguf98 12/2/98 16:30

Model Output of Tropospheric Ozone

Monthly tropical tropospheric ozone from GEOS-CHEM over Dec 1996-Nov 1997.(Lighting NOx = 6TgN/y)

Page 28: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

28Mike3/papers/tropoz/aguf98 12/2/98 16:30

The difference between monthly CCP and GEOS-CHEM (CCP - GEOS-CHEM: NOx=3Tg) tropospheric ozone in

December 1996 – November 1997.

Comparison of TOMS-based Methods and Model Output

Page 29: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

29Mike3/papers/tropoz/aguf98 12/2/98 16:30

Comparison of TOMS-based Methods and Model Output

The difference between monthly CCP and GEOS-CHEM (CCP - GEOS-CHEM: NOx=6Tg) tropospheric ozone in

December 1996 – November 1997.

Page 30: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

30Mike3/papers/tropoz/aguf98 12/2/98 16:30

Seasonal Tropospheric Ozone Model Calculation

Marufu, L., F. Dentener, J. Lelieveld, M.O. Andreae, and G. Helas, Photochemistry of the African troposphere: Influence of biomass-burning emissions, J. Geophys. Res., 105, 14,513-14,530, 2000.

Page 31: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

31Mike3/papers/tropoz/aguf98 12/2/98 16:30

Monthly mean of ozonesonde observations at eight SHADOZ sites and model output from GEOS-CHEM (3 (blue) and 6(black) Tg NOx) and sonde (red)

Comparison with Ozonesonde Measurements

Page 32: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

32Mike3/papers/tropoz/aguf98 12/2/98 16:30

Fire counts peak in 2000:

North Africa: DJFSouth Africa and South America: JJA

TTO Climatology from CCP (1979-2000)Peak is at Sep-Oct

“Tropical Atlantic Paradox” [Thomson 2000]

Page 33: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

33Mike3/papers/tropoz/aguf98 12/2/98 16:30

Average Tropospheric Ozone at DJF for Six Methods

Page 34: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

34Mike3/papers/tropoz/aguf98 12/2/98 16:30

Controlling Processes for “Tropical Atlantic Paradox”

- Biomass Burning ozone precursors- Lightning NOx production - Dynamics:

-Wind fields- Stratospheric Ozone intrusion into tropospheric ozone- Cross-equatorial transport of extra-tropical ozone

Page 35: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

35Mike3/papers/tropoz/aguf98 12/2/98 16:30

Theoretical Basis for Taylor Diagrams

Geometric relationship between the correlation coefficient R, the centered pattern RMS error E', and the standard deviations f and r of the test and reference fields, respectively [Taylor, 2001].

Page 36: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

36Mike3/papers/tropoz/aguf98 12/2/98 16:30

6 Methods compared to Ascension Sondes

1: CCP 2: CCD 3: TOR 4: SAGECCP 5: MR 6: SCAN

Green circle is Ascension Sonde reference point.Concentric Blue arcs measure distance from TOMS method to sonde reference.

Page 37: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

37Mike3/papers/tropoz/aguf98 12/2/98 16:30

6 Methods compared to GEOS-CHEM in Central Pacific

Page 38: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

38Mike3/papers/tropoz/aguf98 12/2/98 16:30

SAGE+CCP Method

6 Methods compared to GEOS-CHEM in North Africa

Page 39: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

39Mike3/papers/tropoz/aguf98 12/2/98 16:30

6 Methods compared to GEOS-CHEM in South Atlantic

Page 40: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

40Mike3/papers/tropoz/aguf98 12/2/98 16:30

Conclusions

•The range of TOMS-derived tropical tropospheric ozone (TTO) values exceeds 50% of the climatology in a significant fraction of seasons and locations. Significant spatial and temporal structure appears in the resulting ozone differences of techniques. This range, however, brackets the ozonesonde TTO values.

•Although the average bias TOMS/Sonde bias is < 5%, the slopes and correlations vary considerably from method to method and station to station. Taylor diagrams quantify the agreement between methods, sondes, and model.

•Radiative transfer simplifications induce potential errors in TOMS ozone columns over clouds on the order of 10 DU, which represents ~30% of the TTO.

•Model/TOMS differences exceed 20 DU (~<1/2 the TTO).

•All methods, except the scan-angle, differ with the model (and GOME) in wintertime N. Africa burning season (The N. Atlantic Paradox).

Page 41: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

41Mike3/papers/tropoz/aguf98 12/2/98 16:30

References

Fishman, J., and A.E. Balok, Calculation of daily tropospheric ozone residuals using TOMS and empirically improved SBUV measurements: Application to an ozone pollution episode over the eastern United States, J. Geophys. Res., 104, 30,319-30,340, 1999.

Fishman, J., and V.G. Brackett, The climatological distribution of tropospheric ozone derived from satellite measurements using version 7 Total Ozone Mapping Spectrometer and Stratospheric Aerosol and Gas Experiment data sets, J. Geophys. Res., 102, 19,275-19,278, 1997.

Fishman, J., V.G. Brackett, E.V. Browell, and W.B. Grant, Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A, J. Geophys. Res., 101, 24,069-24,069, 1996.

Fishman, J., and J.C. Larsen, Distribution of total ozone and stratospheric ozone in the tropics: Implications for the distribution of tropospheric ozone, J. Geophys. Res., 92, 6627-6634, 1987.

Hauglustaine, D., L. Emmons, M. Newchurch, G. Brasseur, T. Takao, K. Matsubara, J. Johnson, B. Ridley, J. Stith, and J. Dye, On the Role of Lightning NOx in the Formation of Tropospheric Ozone Plumes: A Global Model Perspective, J. Atmos. Chem., 38, 277-294, 2001.

Page 42: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

42Mike3/papers/tropoz/aguf98 12/2/98 16:30

References

Hudson, R.D., and A.M. Thompson, Tropical tropospheric ozone from Total Ozone Mapping Spectrometer by a modified residual method, J. Geophys. Res., 103, 22,129-22,145, 1998.

Jiang, Y., and Y.L. Yung, Concentrations of tropospheric ozone from 1979 to1992 over tropical Pacific South America from TOMS data, Science, 272, 714-716, 1996.

Kim, J.H., and M.J. Newchurch, Climatology and trends of tropospheric ozone over the eastern Pacific Ocean: The influences of biomass burning and tropospheric dynamics, Geophys. Res. Lett., 23, 3723-3726, 1996.

Kim, J.H., and M.J. Newchurch, Biomass-burning influence on tropospheric ozone over New Guinea and South America, J. Geophys. Res., 103, 1455-1461, 1998.

Kim, J.H., M.J. Newchurch, and K. Han, Distribution of Tropical Tropospheric Ozone determined by the scan-angle method applied to TOMS measurements, J. Atmos. Sci., 58, 2699-2708, 2001.

Newchurch, M.J., X. Liu, and J.H. Kim, Lower Tropospheric Ozone (LTO) derived from TOMS near mountainous regions, J. Geophys. Res., 106, 20,403-20,412, 2001a.

Page 43: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

43Mike3/papers/tropoz/aguf98 12/2/98 16:30

References

Newchurch, M.J., X. Liu, J.H. Kim, and P.K. Bhartia, On the accuracy of TOMS retrievals over cloudy regions, J. Geophys. Res., 106, 32,315-32,326, 2001b.

Newchurch, M.J., D. Sun, and J.H. Kim, Zonal wave-1 structure in TOMS tropical stratospheric ozone, Geophys. Res. Lett., 28, 3151-3154, 2001c.

Newchurch, M. J., D. Sun, and J. H. Kim, Tropical tropospheric ozone derived using Clear-Cloudy Pairs (CCP) of TOMS measurements, submitted to J. Atmos. Sci., 2001d.

Taylor, K.E., Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183-7192, 2001.

Ziemke, J.R., and S. Chandra, Seasonal and interannual variabilities in tropical tropospheric ozone, J. Geophys. Res., 104, 21,425-21,442, 1999.

Ziemke, J.R., S. Chandra, and P.K. Bhartia, Two new methods for deriving tropospheric column ozone from TOMS measurements: Assimilated UARS MLS/HALOE and convective-cloud differential techniques, J. Geophys. Res., 103, 22,115-22,127, 1998.

Page 44: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

44Mike3/papers/tropoz/aguf98 12/2/98 16:30

References

Ziemke, J.R., S. Chandra, and P.K. Bhartia, A new NASA data product: Tropospheric and stratospheric column ozone in the tropics derived from TOMS measurements, Bull. Am. Meteorol. Soc., 81, 580-583, 2000.

Ziemke, J.R., S. Chandra, and P.K. Bhartia, "Cloud slicing": A new technique to derive upper tropospheric ozone from satellite measurements, J. Geophys. Res., 106, 9853-9867, 2001.

Ziemke, J.R., S. Chandra, A.M. Thompson, and D.P. McNamara, Zonal asymmetries in southern hemisphere column ozone: Implications of biomass burning, J. Geophys. Res., 101, 14,421-14,427, 1996.

Page 45: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

45Mike3/papers/tropoz/aguf98 12/2/98 16:30

Table. The Average Differences in (CCP - SHADOZ) 1 Standard Deviation (sd). The Adjusted Differences Resulted from Accounting for the TOMS Tropospheric Retrieval Efficiency by Using the Sonde Tropospheric Ozone Measurements.

SHADOZ Sondes Scaled to

SAGE/SondeNo Scale

SHADOZStation

CCP-SHADOZ

±1sd

Adj CCP- SHADOZ

±1sd

CCP-SHADOZ

±1sd

Adj CCP- SHADOZ

±1sd

Ascension -6 5 -3 3 -3 4 -1 2

San Cristobal 1 2 -2 1 3 2 -1 2

Natal -1 6 0 4 2 5 2 3

Nairobi -1 3 -2 2 0 3 -1 2

Java 3 6 -1 4 4 6 0 4

Fiji 2 6 -1 3 3 5 0 3

Samoa 5 5 1 3 7 4 2 2

Tahiti 4 6 1 4 6 5 2 3

Average 1 5 -1 3 3 4 0 3

Page 46: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

46Mike3/papers/tropoz/aguf98 12/2/98 16:30 1Mike3/papers/tropoz/aguf98 12/2/98 16:30

Nsstc.uah.edu/atmchemRegional Atmospheric Profiling Center for

DiscoveryRAPCDPresented at

Harvard UnversityMay 17, 2000

Mike Newchurch [email protected]

Mohammed Ayoub, Arastoo Biazar, DavidBowdle, Sundar Christopher, Kirk Fuller, Noor

Gillani, Quingyuah Han, Kevin Knupp, Xiong Liu,Dick McNider, Da Sun

Atmospheric Science Department

Earth System Science Center

Jack FixCollage of Science

University of Alabama in Huntsville

Maurice Jarzembski, Bill Lapenta

NASA/MSFC/SD

P K Bhartia, Tom McGee John Burris

GSFC/Laboratory for Atmospheres

Mike Hardesty/NOAA/ETL

Vandana Srivastava/USRA

Page 47: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

47Mike3/papers/tropoz/aguf98 12/2/98 16:30

The RAPCD Vertical DistributionScience Questions

Surface/Boundary-Layer/Free Troposphere/UT/LS Exchange

1. Can we accurately predict surface ozone and aerosol concentrations?

2. What are the vertical and long-range transport processes affecting local air quality?

3. Can we accurately calculate the power plant plume effect on air quality?

4. How are cloud processes, including lightning, different from clear-air processes for chemical effects?

5. What are the mechanisms responsible for nocturnal jet transport of Gulf-H2O-initiatiated convection?

6. What is the diurnal behavior of the boundary layer in the Tennessee valley?

Page 48: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

48Mike3/papers/tropoz/aguf98 12/2/98 16:30

The RAPCD AerosolScience Questions

Aerosol Optics and microphysics

1. What role does heterogeneous chemistry play in air quality?

2. What are the composition and optical properties of aerosols?

3. What is the effect of water uptake?

4. What is information content of RS measurements of aerosols?

5. What is the character of complex aerosols (organics, dust, soil, mixes)?

6. What are the roles of Biogenic Volatile Organic Compounds (BVOC) in ozone and aerosol production?

7. Cross-disciplinary studies: Biohazards, protemics, protonics.

Page 49: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

49Mike3/papers/tropoz/aguf98 12/2/98 16:30

The RAPCD Satellite Calibration/Validation

Science Questions

EOS Satellite calibration and validation

1. Provide ozone and aerosol profiles for cal/val of AIRS, TES, OMI, QuikTOMS, SAGE III, MLS, PICASSO-CENA, GOME, MISR.

2. What is the climatology and variability of the 3-D aerosol and ozone (and water vapor?) fields?

3. Validation of new Remote Sensing technology

Page 50: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

50Mike3/papers/tropoz/aguf98 12/2/98 16:30

Boundary-layer Ozone and Aerosols

Vertical cross sections of O3 concentration and aerosol backscatter for the NW-SE flight legs passing over Nashville for the afternoon flights on July 12.

Banta, R.M. et al., Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode, Journal of Geophysical Research, 17, 22,519-22,544, 1998.

Page 51: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

51Mike3/papers/tropoz/aguf98 12/2/98 16:30

generator

915 MHzradar antenna

(without clutter panels)

sodar

5 m mast

wind

pyranometer GPS receiver

T, RH

electronics inside

ceilometer

(Without clutter panels -- 15 min setup time)

Mobile Integrated Profiler Configuration

Page 52: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

52Mike3/papers/tropoz/aguf98 12/2/98 16:30

MIPS RESEARCH GOALS

• Study evolution and structure of the stable NBL with particular focus on evolution and the processes associated with transient breakdowns in the inversion.

• Use a case study approach to address spatial variability in both the stable and unstable ABL.

• Corresponding mesoscale and LES modeling will further enhance our understanding of the NBL behavior.

Page 53: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

GHCC/USWRP Satellite Assimilation ProjectGHCC/USWRP Satellite Assimilation Project

FSL

*Indicates regions of differential heating

*Distinguishes clear/cloudy regions

*Have high spatial and temporal resolution

AVHRR Land Use GOES SkinTemperature

GHCC Activities:

Applications of Research:

•Develop and test GOES retrieval and assimilation algorithm for NWP models

•Assess quality of NESDIS products

•Provide model and satellite products to NWS and public via internet

•Insure transfer of research to operational community

•Operational Forecasting

•Regional-Scale Air Quality Studies

•Improved Understanding Of Land/Atmosphere Interactions

The GOES Land Surface Data:

Page 54: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

54Mike3/papers/tropoz/aguf98 12/2/98 16:30

How well can we model the ozone variation?

(July 4) (July 19) (July 24)(June29)

TN

LON: -86.57, LAT: 36.25

Page 55: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

55Mike3/papers/tropoz/aguf98 12/2/98 16:30

Example of MSFC Ground-based Doppler Lidar

Page 56: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

56Mike3/papers/tropoz/aguf98 12/2/98 16:30

NPS: Annual average extinction coefficients (Mm-1 )

Huntsville, AL. A Researcher’s Paradisefor Science of the Atmospheric Aerosol

‘Hot Topics’ in Aerosols and Forcing

Chemical composition• Speciation• Hygroscopicity

Physical properties• Size distribution• Morphology

Radiometric Properties• Extinction• Scattering• Absorption• Polarimetric

Forcing / Remote Sensing• Optical depth• Albedo• Polarization• Distribution of scattered light• Vertical structure

Page 57: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

57Mike3/papers/tropoz/aguf98 12/2/98 16:30

NSSTC Regional Atmospheric Profiling Center

for DiscoveryRAPCD

Doppler lidar bench

FTIR benchtrop aerosol lidar bench

strat /trop lidar bench

~NORTH

horizontalsky-view

Janu ary 10, 2001each f loorspace square i s 2 f t x 2 f t; each laboratory fl oorspace is 20 ft E to W x 22.5 f t N to S

white circles wi th soli d borders show posi tions of l ight chi mneys, accurate to 1/2 i nch, and interior diametersfaded blue blocks around light chimneys show opt ical benches in laboratories below

cherry pi cker boom circle indicates minim um boom length

scanner

FTIR LAB ROOF PLANLIDAR LAB ROOF PLAN

ped estal

on roo f for5 ft cherry

picker

48”30”

30” 30”

semi-t ransparent green bl ock shows elevatedscanner platform on roof,

15 ft E to W and 26 ft N to Sapprox 2 f t clearance on outer walkway

9’

13’

17’

13’ 9”

13’

11’

8’ 3”

13’ 9”

26’

21’ 8”

support pi llar

8 footDoppler

lidarscancircle

ped estalon roo f for 7 ft cherry

picker

ped estalon roo f for 7 ft cherry

picker

30” 30”

30” 30”

7 footrooflidar

domeon

8 footbase

8’ 3”

Acrobat DocumentOzone Lidar

Doppler Lidar Scanner

Lockedat zenith

Grating TopDome Floor

Roof Top

DomeSidewall

RailingHorizontal FTIR

Solar FTIR

Lid Closed

Lid Closed

Lid

Op

en

Lid

Op

en

Dome Floor

Chimney 2

Chimney 4

Chimney 5

Chimney 1

Dome Legs

Dome Shutters

Dome

Chimney 3

opaque curtai ns

Experiment Bus Bar

Experiment Bus Bar

Experiment Bus Bar

W

W

W

PC

tab

le

Upper and Lower Casework

Upper and Lower Casework

Upper and Lower Casework

Up

per

& L

ow

er

Ca

sew

ork

Schematic Floor PlanRemote Atmospheric Profiling Center

for Discovery (NSSTC RAPCD)

LIDAR LAB FLOOR PLAN

FTIR LAB FLOOR PLAN

Fili

ngC

abi

nets

Op

tics

Cab

ine

ts

SafetyShower

Op

tics

Ca

bine

ts

PC

tab

le

trop aerosol lidar bench

Experiment Bus Bar

W

scanner

Doppler lidar bench

FTIR bench

visitor lidar bench

Up

per

and

Lo

we

r C

asew

ork

Experiment Bus Bar

sky-view horizonta l

W

FTIR bench

2 ftgrid W

strat /trop lidar bench

Experiment Bus Bar

36” 36”

36” 36”

27”

27”27”

27”

54”

Page 58: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

58Mike3/papers/tropoz/aguf98 12/2/98 16:30

Summary

• The Regional Atmospheric Profiling Center for Discovery, RAPCD, is designed to address atmospheric chemistry and air quality issues on the National agenda: – Processes controlling tropospheric trace gases and aerosols.– Aerosol characterization and effects.– Satellite calibration and validation.

• The constituency is broad: NASA, NSF, NOAA, EPA, DOE, State of Alabama.

• Co-Investigators comprise many NSSTC PIs in addition to several government laboratories and many instruments are already committed.

• This world-class laboratory facility will be ready July 2002.• We are receiving interest from additional PIs to host their

instruments.• We invite interested investigators to join us.

Page 59: Mike5/papers/presentations non ref/2002/Harvard     5/13/2002

59Mike3/papers/tropoz/aguf98 12/2/98 16:30

nsstc.uah.edu/atmchem

FUTUREFUTURE

• UsingUsing