96
F.S. Marzano – Microwave Radar Meteorology: foundations and applications MICROWAVE RADAR METEOROLOGY Foundations and Applications MICROWAVE RADAR METEOROLOGY Foundations and Applications Frank S. MARZANO Dept. of Information Engineering Sapienza University of Rome E-mail: [email protected] Centre of Excellence CETEMPS University of L’Aquila E-mail: [email protected]

MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

F.S. Marzano – Microwave Radar Meteorology: foundations and applications

MICROWAVE RADAR METEOROLOGY

Foundations and Applications

MICROWAVE RADAR METEOROLOGY

Foundations and Applications

Frank S. MARZANODept. of Information Engineering

Sapienza University of RomeE-mail: [email protected]

Centre of Excellence CETEMPSUniversity of L’Aquila

E-mail: [email protected]

Page 2: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

2F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RAINFALL FORECASTA conceptual diagramRAINFALL FORECASTA conceptual diagram

Satellite Sensors

Hydrogeological Forecast

341 346 351 356 361 366 371 376 381

4677.6

4682.6

4687.6

4692.6

4697.6

4702.6

4707.6

4712.6

4717.6

longitude

latitude

Orografia

AQ

PR

AS

CA

500

1000

1500

2000

2500

Atmospheric Forecast

Rain Gauges

Weather Radars

Page 3: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

3F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RAINFALL SENSINGPoints of view

RAINFALL SENSINGPoints of view

Za [dB]Radar(activeMW)

TA [K]Radiometer

(passiveVIS-IR-MW)

Rain gauge

R [mm/h]

Page 4: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

4F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR METEOROLOGYLecture’s contents

RADAR METEOROLOGYLecture’s contents

Radar sensor• Pulsed, Doppler, and polarimetric systems• Receiver sensitivity, antenna specifications and radar volume resolution

Radar equation• Atmospheric refraction and attenuation• Radar equation for single and distributed scatterers

Radar signal• Signal statistics and decorrelation• Noise reduction techniques

Radar applications• Clouds and precipitation• Rainfall backscattering and polarimetric measurables

Radar products• Radar measurements and error budget• Examples of radar measurements and estimates

Page 5: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

5F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR METEOROLOGYHistorical perspective

RADAR METEOROLOGYHistorical perspective

Radio era• 1886: H. Hertz experiments e.m. wave reflection• 1902: G. Marconi carries out radio-propagation experiments• 1922: object detection with continuous wave instruments• 1932: object detection with pulsed wave instruments

Radar era• 1938: construction of radars for aircraft detection and ranging• 1941: first use of radars for cloud observations• 1960s: use of radars for quantitative rainfall estimation• 1970s: use of Doppler radars at VHF-UHF for turbulence and wind

Computer era• 1980s: impact of computers on data acquisition and processing• 1990s: use of digital receivers and pulse forming• 1990s: use of radars for weather nowcasting• 2000s: spaceborne radars and sensors’ synergy

Page 6: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

6F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR METEOROLOGYContext and objectivesRADAR METEOROLOGYContext and objectives

Radar (RAdio Detection and Ranging)• Pulsed incoherent and coherent radars (Doppler or MTI)• Continuous-wave and frequency modulation (FM-CW)

Meteorological radars• Rain (weather) radars: rainfall monitoring from ground and space• Cloud radars: cloud monitoring from ground and space• Stratosphere-Troposphere (ST) radars: wind profiling from ground

Weather (rain) radars• Monitoring of three-dimensional (3-D) structure of rainfall and winds

• Covering large areas (100-400 km) around ground site• Measuring of e.m. backscattering due to cloud hydrometeor volumes

• Advantages with respect to: • optical sensors (e.g, higher penetration, any meteo condition)• radiometers (e.g., ranging capability, )• rain-gauges (e.g., larger effective coverage, rain structure)

• Disadvantages: high power, complexity, maintenance

Page 7: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

7F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR METEOROLOGYA system approach

RADAR METEOROLOGYA system approach

Radar Control

Processor

Radar Transm.

Unit

Radar Receiver

Unit

Radar Signal

Processor

Antenna Pedestal

Unit

ServoSystem

Unit

Backup Power Unit

Radar Antenna Unit Sensor Sub-

system

Processor Sub-system Radar

Data Processor

RadarArchive

Page 8: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

8F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR METEOROLOGYLecture’s contents

RADAR METEOROLOGYLecture’s contents

Radar sensor• Pulsed, Doppler, and polarimetric systems• Receiver sensitivity• Antenna specifications• Radar volume resolution

Radar equation• Atmospheric refraction and attenuation• Radar equation for single and distributed scatterers

Radar signal• Signal statistics and decorrelation• Noise reduction techniques

Radar applications• Operational problem overview• Clouds and precipitation• Rainfall backscattering and polarimetric measurables• Example of radar measurements and estimates

Page 9: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

9F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORPulsed microwave systems

RADAR SENSORPulsed microwave systems

Principle• Send a train of short, high-power pulse

of e.m. energy at high frequency (GHz)• E.m. energy, captured by atmospheric

objects, is partially absorbed and re-irradiated (scattered) into manydirections among which that of radar (backscattered: radar echo)

• Angular resolution: derived from the antenna pointing direction and limitedby its beam width

• Range resolution: derived from the two-way time employed by radar pulse echo(antenna-object-antenna) and dependingby medium light velocity

Legenda• PRF: Pulse Repetition Frequency• RF: Radio Frequency (f0)• PP: Peak-to-peak power• Pt: Peak power of the transmitter

Tc

Page 10: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

10F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Tx

Rx

Antenna

r

t=0t=r/ct=2r/ct=2r/c+

RADAR SENSORPrinciple of pulsed systems

RADAR SENSORPrinciple of pulsed systems

Page 11: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

11F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORPrinciple of operation

RADAR SENSORPrinciple of operation

r

2cr

Range resolution

2maxccTr

Maximum unamb. range

1c

r Tf

Repetition frequency

Typical values:f0 3-90 GHz; Pt 100-1000 kWfr 250-2500 Hz; 0.1-2.5 s Time

cdPT

PP tc

tavg

Average TX Power

Page 12: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

12F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORPulsed incoherent scheme

RADAR SENSORPulsed incoherent scheme

sRF

xRF

xIF

xBB

xmix

2|)(|)( tatxBB

Page 13: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

13F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORPulsed incoherent system

RADAR SENSORPulsed incoherent system

Radar components• Master oscillator (MO): system reference oscillator• Modulator: device which determines the form e repetition of RF pulse• Power oscillator: microwave tube (magnetron or klystron amplifier)• Duplexer: 3-port circulator which separates TX from RX signal• Local oscillator (LO): device which controls mixer frequency• Mixer: device which mixes RF signal with LO doing amplification and filtering• Amplifier: band-pass amplifier and filter for noise reduction of IF signal• Video detector: detector of IF envelope power at baseband

Signal processing

22

00

0

0

)()()(

)(2cos)( )(2cos2

)()(

2cos )(2cos)()()(2cos)()(

)()2cos()(

tatxtx

ttftattfbtatx

tffbttftatxttftatx

tfrecttfAts

IFBB

ccIF

cmix

RF

rRF

Transmitted Radio Frequency (i.e., GHz)

Received Radio Frequency

Mixer signals

Intermediate Frequency (i.e., MHz)

Base-band signal (i.e., kHz)

Page 14: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

14F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORDoppler frequency shift

RADAR SENSORDoppler frequency shift

000

cosˆ

uuf rd ru

(a)

(b)

u

u

Range vector

Velocity vector

00

0ˆ22

ru

rd

dRFuf

fff

If leaving target: </2 fd < 0

If approaching target: >/2 fd > 0(a) Stationary source

(b) Moving source

u

(wave movingin directionopposite to thatof the source)

(wave movingin the samedirection asthe source)

Doppler frequency shift

Monostatic Radar Twice a Doppler frequency shift- from radar to target- from target to radar

Page 15: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

15F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Per poter determinare la velocità Doppler del bersaglio puntiforme devo usare un

RICEVITORE COERENTE

A cos[t +] Cos[t] (COHO)

/2

I(t) = A/2 cos[] Q(t) = A/2 sen[]

RADAR SENSORPulsed coherent scheme

RADAR SENSORPulsed coherent scheme

Page 16: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

16F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORPulsed coherent scheme

RADAR SENSORPulsed coherent scheme

xBB

sRF

xIF

xmix

)()()(with

)(sin)()()(cos)()(

)(

tjQtItVttatQttatI

txBB

)(2)(

)(2 )(4)(

)(22)(

tutf

tftudt

td

trt

rd

dr

Doppler frequency

Page 17: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

17F.S. Marzano – Microwave Radar Meteorology: foundations and applications

• L’eco radar è la somma di tanti contributi elementari del tipo vistoin precedenza (impulso rettangolare a RF)

Bersaglio puntiforme

Bersaglio distribuito

t

t

VRx

• L’atmosfera è un bersaglio distribuito, ossia è costituita da un elevato numero di bersagli elementari (idrometeore)

RADAR SENSORPulsed coherent scheme

RADAR SENSORPulsed coherent scheme

Page 18: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

18F.S. Marzano – Microwave Radar Meteorology: foundations and applications

t0

t

VRx

L’eco ricevuto all’istante t0 è la somma dei contributi di tutti i bersagli elementari che si trovano ad una distanza dal radar compresa tra c (t0-)/2 e c t0/2

Il segnale ricevuto viene prima campionato (nel GPM-500C con una frequenza di 2.4 MHz, ossia ogni 417 ns) e quindi i campioni vengono processati.

Ogni campione è rappresentativo di un volume elementare (tronco di cono) con altezza pari a (c )/2

RADAR SENSORPulsed coherent system

RADAR SENSORPulsed coherent system

Page 19: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

19F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORPulsed coherent system

RADAR SENSORPulsed coherent system

Detection of received signal phase

Signal processing

)()()( with

)(sin)()()(cos)()(

)(

]e)e([Re]e[Re2sin)(-2cos)()(

2sin)(sin)(- 2cos)(cos)( )(2cos)()(2cos )()(2cos)()(

)(222cos)()(2cos)()(

)()2cos()())(2cos()(

cj2)(jcj2

00

00

00

tjQtItVttatQttatI

tx

tajQ(t)I(t)tftQtftItx

tfttatfttattftatxtfbttfftatx

trtftattftatx

tfrecttfAtfrecttffAts

BB

tftttfccIF

cccIF

cmix

RF

rrcRF

)(2)( )(2 )(4)(4)( )(22)( tutftftudt

tdrdt

tdtrt rddr

Page 20: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

20F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORDoppler velocity ambiguity

RADAR SENSORDoppler velocity ambiguity

Signal sampling (Shannon) theorem• A signal with a finite energy (a maximum

spectral frequency fM) is reconstructed from its temporal samples if the sampling frequency fs:

Unambiguous Doppler frequency• If maximum frequency is fr:

• Velocity-range limit

Ambiguity reduction techniques• Doppler phase measured between 2 pulses• Dual-PRF: double of unanmbiguos fd• Phase and polarization pulse coding

2

2

sM

sM

TTff

4

2 maxmax

rr

rdd fufff

8/)(]2/)][4/)[maxmax ccTfru crr

Page 21: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

21F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORIssues on coherent systems

RADAR SENSORIssues on coherent systems

Microwave transmitter• MAGNETRON: self-oscillating microwave tube with cylindrical structure (cross-field device), able to

handle high power (up to 2000 kW peak). A high (up to 50 kV) DC voltage is applied to coaxial cathode (+) and anode (-) together with a static magnetic high field (up to 1 A/m). The emitted electron beam is spatially modulated (bunches) and output is coupled into one of ring resonant cavities. The latter determines the radio-frequency (RF) signal. Oscillation condition is governed by Hartree’s curve. Overall efficiency is about 50%.

• When input voltage is pulsed (as in radars), no inter-pulse coeherence is guaranteed (even though phase information may be retained by injecting a CW signal).

• KLYSTRON: microwave-tube amplifier with a linear (linear-field) structure, able to handle medium power (up to 1000 kW). An electron beam is formed by an electron gun (thermoionic emission by cathode-anode at > 1000 K), passes trhough 2 or more resonant cavities in succession and is collected on a collector. Electric field of first cavity gaps induce electron bunches whose are “focused” on (load) resonant cavities which produce output RF signal.

• Within pulsed radars, klystron is used as an amplifier excited by a local microwave oscillator. These scheme guarantees a high phase purity (low phase noise) and an inter-pulse coherence.

Base-band detection• Amplitude: logarithmic detector in order to deal with large amplitude (i.e., a’(t)) dynamics.• Phase: linear detector to extract in-phase I(t) and quadrature Q(t) components

Page 22: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

22F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORE.m. wave polarization

RADAR SENSORE.m. wave polarization

Polarization statesCurve described in 3-D space by the free end of the mono-chromatic wave vector• Horizontal H (w.r.t. ground)• Vertical V• Circular (LHC, RHC)

Linear polarizations

)(2cos)(),( 00 ttftEtrE p

xtEtEztEtE

hh

vv

ˆ)()(ˆ)()(

00

00

Page 23: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

23F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORIssues on polarimetric radars

RADAR SENSORIssues on polarimetric radars

Configuration• Alternate transmission

• Single-transmitter and single-receiver• Alternate transmission between H and V fields Single receiver Anomalous propagation removal Polarization switching H and V non-contemporary data

• Simultaneous transmission• Single transmistter and dual receiver• Simultaneous transmission of H and V fields No polarization switching (costly and loss) No delay in H and V acquisition data Fast scanning (half time w.r.t. alternate trans.) Cross-polarization effects in received data Dual receiver and limitation in polarimetric features

Receiver• Digital receiver at IF stage

• Sampling of IF signal (A/D digitizers) • Digital processing of binary I/Q sequences

E0V

E0H

Time

H V H V H V

Time

H,V H,V H,VH,V H,V H,V

E0V

E0H

E045

Page 24: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

24F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORAlternate polarim. system

RADAR SENSORAlternate polarim. system

H/V Orth. Transd.

H/V ChannelDigital Receiver

Microwave TX

Coh. Oscill.

V channel H channel

Elevation rotary joint (V)

Elevation rotary joint (H)

Azimuth rotary joint

IF Mixer

Co-processor (vm, v, ZH, ZDR, DP, HV, LDR)

Antenna reflector

Feed

H/V Polariz. Switch

Circulator

I(H,V) Q(V,H)

Page 25: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

25F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORSimultaneous polarim. system

RADAR SENSORSimultaneous polarim. system

H/V Orth. Transd.

V ChannelDigital Receiver

H ChannelDigital Receiver

Microwave TX

Coh. Oscill.

V channel H channel

Elevation rotary joint (V)

Elevation rotary joint (H)

Azimuth rotary jointV channel H channel

Circulator

IF Mixer IF Mixer

Co-processor (vm, v, ZH, ZDR, DP, HV )

Antenna reflector

Feed

CirculatorPh./Amp. Contr. Ph./Amp. Contr.3-dB Power Div.

Q(V)I(V) Q(H)I(H)

Page 26: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

26F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORReceiver sensitivity

RADAR SENSORReceiver sensitivity

Noise sources• cosmic, artificial (human) and atmospheric emission (H20, 02 at MW)• internal, due to electron thermal mobility (white Gaussian noise at MW).

Internal noise of receiver• Receiver input power with a resistance load at T0 and bandwith Bn: Ni=kT0Bn• Noise figure Fn or equivalent noise temperature Te: Te=T0(Fn-1)

Minimum detectable signal• Minimum signal detectable over the noise receiver (e.g., -110 dBm = 10-11 mW)

• Matched filters to increase S/N: for square pulses. Bn1/ and triangular shape

N0=Fn(GNi )= k(T0+ Te)BnNi=kT0Bn Radar receiverG, T0 , BnSi S0 =GSi

Minnn

MininiMin

iin N

SBkTFNSNFS

NSNSF

0

00

0

0

00)(

//

Page 27: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

27F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORAperture antenna basics

RADAR SENSORAperture antenna basics

Radar antennas• Parabolic reflector antenna• Prime-focus feeder (horn)• Optional radome protection• Optional polarization capability

Antenna radiation• Radiation pattern function

• Irradiated eletric far-field (for rL2/)

• Power flux density [W/m2]

),(),( yxEFFTf a

refErE

jkr ),(),,( 0

22

0

02

0),(

2),,(

21),,(

f

rErErP

L

Page 28: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

28F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORAntenna parameters

RADAR SENSORAntenna parameters

Directivity and Gain

Effective area

Beamwidth (reflector antennas)

Polarization capability• Ortho-Mode Transducer (H/V) at horn feeder• Low sidelobes (<30 dB) similar for H/V patterns• Isolation between H/V patterns (no cross-pol.)

• Azimuthally symmetric radiation pattern at H/V• Effects of supporting struts and radome paneling

),(),( ,4/

),(4/

),,(),(2

2

DG

Wf

rWrPD r

TT

22

),(),(4),,(

),(

nM

i

Re fDD

rPWA

23

32

3 )(4 ,70 5.0),2/(

dBMdBdBn D

Lf

Page 29: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

29F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Example: Radar GPM-500C

Cassegrain dual-offset

- fascio di 0.9° (a -3 dB)- velocità max 30 deg/s- lobi secondari molto bassi- ottima simmetria tra H e V

RADAR SENSORAntenna parameters

RADAR SENSORAntenna parameters

Page 30: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

30F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORAntenna diagramRADAR SENSORAntenna diagram

Example: Radar GPM-500C

Cassegrain dual-offset

- fascio di 0.9° (a -3 dB)- velocità max 30 deg/s- lobi secondari molto bassi- ottima simmetria tra H e V

Page 31: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

31F.S. Marzano – Microwave Radar Meteorology: foundations and applications

(c )/2

RADAR SENSORVolume resolutionRADAR SENSOR

Volume resolution

Page 32: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

32F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SENSORVolume resolutionRADAR SENSOR

Volume resolution

Spatial resolution• Capability of discriminating 2 objects in space (range,

zenith and azimuth in spherical coordinates)

Radial resolution• Resolution in range:

• Matched receivers have a lower radial resolution• Use of pulse compression to increase spatial res.

Transverse resolution• Resolution in zenith-azimuth:

• Affected by side lobes contribution.

2cr

3dB22

2 rrSrS

rr

3dB

S

Pulse volume resolution

• Volume varies with range (for 1° and 1 s, at 100 km r=150 m and S=17452 m2 )• Energy volume distribution can be not uniform in range (e.g., matched filters) and in

transverse direction (e.g., directivity angular variation)

dBdBbin rcrcSrV 332

3dB2 )2/(

4)2/(

3dB

Page 33: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

33F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR METEOROLOGYLecture’s contents

RADAR METEOROLOGYLecture’s contents

Radar sensor• Pulsed, Doppler, and polarimetric systems• Receiver sensitivity• Antenna specifications• Radar volume resolution

Radar equation• Atmospheric refraction and attenuation• Radar equation for single and distributed scatterers

Radar signal• Signal statistics and decorrelation• Noise reduction techniques

Radar applications• Operational problem overview• Clouds and precipitation• Rainfall backscattering and polarimetric measurables• Example of radar measurements and estimates

Page 34: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

34F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR EQUATIONAtmospheric refraction

RADAR EQUATIONAtmospheric refraction

Atmospheric refractivity• Refractive index:

• Refractivity:

Optical rays• Geometrical optics equation:

with ray curvature.• If standard atmosphere, dN/dz=-40 [N/km]

• Earth effect. radius Re=4/3RT=4/3(6370)=8500 • Rays are rectilinear and Earth flatter

Specific attenuation• For two-way path, the attenuation factor L:

Atmosphere with N0=313 and H=7 km

HzeNN(z)dzdN

n/

0

6 ,cos101

z

x

njnvcn r

)/,/(10)1( 26 TeTpfnN

)() 2 20

020 rLWeWW(rWdrdW drr

Page 35: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

35F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR EQUATIONSingle scatterer form

RADAR EQUATIONSingle scatterer form

Power flux density upon scatterer

Backscattering radar cross section

Received power

Radar equation for a single scatterer

• For a point target, fn=1 and WR1/r4. Constant C1 depends on radar specs.

)(),(4

),,( 22 rLfG

rWrP nM

Ti

),,(),,(4),,,( 2

rPrPr

i

rb

Pi

b

WT,GM

Pr

WR, fn

L

rreRnMTb

ib

r GPPAWLfGr

WLr

Pr

rP

4444

22

222 ),(),,(

r

r4r)4(),(

42

14

2

2

22

4

2

3

242b

RberT

bnMT

R LCWLr

AWLfGWW

Page 36: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

36F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR EQUATIONEffect of distributed scatterer

RADAR EQUATIONEffect of distributed scatterer

Distributed scatterers• Set of a large number Npart of equal-size scatterers, simultaneously

present in the same resolution volume Vbin with randomlydistrubuted phase and totally filling the volume ( e.g. raindrops).

• Volumetric reflectivity [m-1]

Particle and total received power

Pi

Pr

WR, fn

LWT,GM dV

dVdV

dV

partpartpart Ni bi

N

ibi

Ni bi

1

1

1 Vbin

RVn

VRRtot

nN

ibi

nN

ibi

nN

iRiR

bin

binMT

Ri

WdVLf

CdWW

dVLf

CdVdVL

fCL

fCdWdW

Lf

CfGWdW

bin

partpartpart

24

24

1

24

1

24

1

244

3

22

4

4444i

4i4i

r ),( r ),(r ),(r ),( r ),(r ),()(

Page 37: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

37F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR EQUATIONDistributed scatterer form

RADAR EQUATIONDistributed scatterer form

Distributed scatterers• Set of a large number of scatterers, simultaneously present in the

same resolution volume Vbin with randomly distrubuted phase and totally filling the volume ( e.g. raindrops).

Total (average) received power

Radar equation for volume scattering

Pi

Pr

WR, fn

LWT,GMVbin

volumeresolutionradardrdrdV

df

rLGWdVf

LGWWbinbin V

nMTV

nMTR :V ),( where r ),()(r ),()(

bin24

2

42

3

2242

3

22

44

)( lnr ),( correction Jones-Probert2 281 33

2

4

dBdBV

n

rd

f

281

433

22

3

22 ln)( dBdBMTR r

rLGWW

22

2 rLCWR

Page 38: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

38F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Q

I

RADAR SIGNALSignal fluctuations

RADAR SIGNALSignal fluctuations

Power fluctuations of radar echo• Complex envelope due to i-th scatterer:

• Total complex envelope due to distributed scatterers:

• In-phase and quadrature components

Radar echo power

• From one pulse to next, power fluctuation Wac are related to scatterer random displacement (velocity or Doppler frequency).

• It results <Wac>=0 and Wac decreases doing averages on independent samples (such that displacement > ). For estimating , samples must be correlated to avoid ambiguity.

iiitij

ii trteAtV /)(4)( ,)( )(

)()( )()()()()( tji

tijii i etAeAtVtjQtItV

IQartgQIA

ttAtVtQttAtVtI

, with )(sin)()](Im[)()(cos)()](Re[)( 22

RR

RacRdcji

rrjjii iR WW

WWeAAkAktAtVtkV(t)W ji ~)()()( ))(/(* 422

Page 39: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

39F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SIGNALStatistics of power fluctuations

RADAR SIGNALStatistics of power fluctuations

Distribution of I, Q• For the central limit, V(t) is Gaussian so that I and Q• A and are independent random variables with uniformly distributed in 0-2

Marginal distribution of A,

Square-law detector statistics of received power

AdAddIdQdAdApp(I,Q)dIdQeQIp QI ,),( ,2

1),(22/)22(

2

pdf Uniform 2/1)(

pdfRayleigh 2

)(

2),(

22/2

22/2

p

eAApeAAp

AA

pdf tial Exponen2

1)p(W p(A)dA)dWp(W ,2 ,22/

2RRR2

RW

RR eAdAdWAW

Page 40: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

40F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SIGNALDecorrelation time

RADAR SIGNALDecorrelation time

Dopppler spectrum• Duration td needed to ensure sample

independence depends on volume and wavelength

• Doppler spectrum is of Gaussian type for uniform regions:

• Time autocorrelation function:

Decorrelation time tinc

u fepf rdfdf )/2( ;)p(22/2

0d

uft

tdtd eRR(t

)/2(21

21,)

22/20

vincinc tRR(t /2 02.0/) 0

Snow: u=0.5 m/sRain: u=1 m/s

Page 41: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

41F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR SIGNALTime-space data integration

RADAR SIGNALTime-space data integration

Signal variance reduction• For meteorological appliatio, Wdc is of

interest so that Wac must be reduced• How many independent samples of received

power must be averaged to accurately estimate Wdc=<W> using a square-law detector?

• The final pdf is almost Gaussian for k>10• For k=30, <W> error estimate is about 1 dB

Spatial integration• For fast scannig, spatial averaging is

performed together with time integration• Reduction of measurement spatial

resolution (e.g., range similar to transverse)

)()()( with 22

1

1nnkk

k

nRnk AdApdJJpW

kJ

Page 42: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

42F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR METEOROLOGYLecture’s contents

RADAR METEOROLOGYLecture’s contents

Radar sensor• Pulsed, Doppler, and polarimetric systems• Receiver sensitivity• Antenna specifications• Radar volume resolution

Radar equation• Atmospheric refraction and attenuation• Radar equation for single and distributed scatterers

Radar signal• Signal statistics and decorrelation• Noise reduction techniques

Radar applications• Operational problem overview• Clouds and precipitation• Rainfall backscattering and polarimetric measurables• Example of radar measurements and estimates

Page 43: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

43F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSClouds and precipitationRADAR APPLICATIONS

Clouds and precipitation

Genus Sym. Region Species RR (mm/h)

Cumulus Cu Vert. develop.(0-6 Km)

MediocrisCongestusIncus

0< 30< 60

Cumulonimbus Cb Vert. develop.(0-12 km)

10÷100

Stratus St low(0-2 km)

< 2

Stratocumulus Sc low(0-2 km)

< 5

Nimbostratus Ns middle(2-6 km)

< 15

Altostratus As middle(2-6 Km)

< 2

Altocumulus Ac middle(2-6 km)

0

Cirrostratus Cs high(6-12 km)

0

Cirrocumulus Cc high(6-12 km)

0

Page 44: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

DYNAMIC METEOROLOGYAir mass flows and windsDYNAMIC METEOROLOGYAir mass flows and winds

44F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Page 45: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

DYNAMIC METEOROLOGYCirculating cells

DYNAMIC METEOROLOGYCirculating cells

45F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Page 46: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

DYNAMIC METEOROLOGYCyclones and anticyclonesDYNAMIC METEOROLOGYCyclones and anticyclones

46F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Page 47: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

CLOUD GENERAWarm fronts

CLOUD GENERAWarm fronts

47F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Page 48: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

CLOUD GENERACold fronts

CLOUD GENERACold fronts

48F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Page 49: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

CLOUD FRONTSCold, warm and occluded

CLOUD FRONTSCold, warm and occluded

49F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Page 50: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

50F.S. Marzano – Microwave Radar Meteorology: foundations and applications

PRECIPITATING CLOUDSTime and space scales

PRECIPITATING CLOUDSTime and space scales

CHARACTERISTIC TIME1 day- 1 month 1 hour – 1 day 1 hour – 1 minute

200 - 2000 km - Fronts- Hurricanes(tens of days)

Meso- scale

20 - 200 km - Squall lines- Cloud clusters- Mountain andlake disturbances(2 hours to 1 day)

Meso- scale

2 - 20 km - Thunderstorms(tens of minutes tohours)

Meso- scale

0.2 - 2 km - Tornadoes- Deep convection(few minutes to 1hour)

Micro- scale

0.02 - 0.2 km - Thermals(few minutes)

Micro- scale

HORIZONTAL

SCALE 0.001 - 0.02 km - Plumes

- Turbulence(less than afew minutes)

Micro- scale

Page 51: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

51F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Melting

Ice formation

PRECIPITATING CLOUDSStratiform process

PRECIPITATING CLOUDSStratiform process

Aggregation0° C

1 km

0.5-1 kmHei

ght

Cloud Top~ 4-7 km

Surface

Rainfall

Page 52: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

52F.S. Marzano – Microwave Radar Meteorology: foundations and applications

As for droplets (condensation/evaporation), ice crystals can initially grow by vapor deposition and evaporate by sublimation. The probability of presence of ice particles in a cloud increases with decreasing temperature below zero. At -10ºC the probability to find ice is around 50%, while at -20 ºC it raises to 95%.

Main ice crystal shapes are: (a) columnar or prismatic, (b) disc, (c) dendrite

PRECIPITATING CLOUDSIce crystals

PRECIPITATING CLOUDSIce crystals

Page 53: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

53F.S. Marzano – Microwave Radar Meteorology: foundations and applications

PRECIPITATING CLOUDSConvective process

PRECIPITATING CLOUDSConvective process

Evolutiontime

O° C

t0 t1 t2 t3 t4 t5

Updrafts Downdrafts

~5 kmscale

Particletrajectory

Dissipation~10-15 kmheight

SurfacetN

Evaporation

tN-1

Anvil

Page 54: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

54F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Natural graupels (boxes are 2 mm on a side)

GRAUPEL FORMATION BY RIMING •Ice crystals fall through supercooled cloud droplets•Supercooled droplets, that hit ice crystals, freeze to it•Eventually the frozen droplet can hide the original shape•Due to strong updrafts, hailstones can form

PRECIPITATING CLOUDSGraupel particles

PRECIPITATING CLOUDSGraupel particles

Page 55: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

55F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSDrop size distributionsRADAR APPLICATIONSDrop size distributions

Modified Gamma distribution

Moments of order n:

• Drop concentration [#/m3]:

• Equivalent water content [g/m3]:

• Median volumetric diameter [m]:

• Precipitation intensity [mm/h]:

parameters:,,N diameter; drop: with )( 00 DeDNDN D

10

0

)1()(

n

nn

nNdDDNDm

0mNT

3)6/( mM

2/0 MD

mm/h][m/s )6/(/ )(

][kg/m ])()[()6/(

3

2

0

3

b

bt

t

amRRaDDu

sdDwDuDNDR

Page 56: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

56F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSExamples of size distributions

RADAR APPLICATIONSExamples of size distributions

Page 57: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

57F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSAtmospheric attenuationRADAR APPLICATIONS

Atmospheric attenuation

[dB/km] )()(4343.00

dDDNDk aa

g: atmospheric gasesc: cloud and icep: rain and graupel (precipitating)t = g + c + p

H20

O2

Page 58: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

58F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSRadar reflectivity

RADAR APPLICATIONSRadar reflectivity

Volumetric reflectivity of particles with different size

Rayleigh reflectivity and reflectivity factor

Mie reflectivity and equivalent reflectivity factor

• Dielectric factor K Water |K|2=0.930Ice |K|2=0.176Melt |K|2=0.208

m1 )()()()()()(

01

11 dDDNDDNDdV

DNDdV b

Ni iib

Ni ipib

Ni bi D

Dpart

0

6

0

64

25

)( Z )( :D dDDNDdDDNDK

Se

0

25

4

ee4

25)()( Z :D dDDND

KZ

KSe b

Page 59: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

59F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSExamples of radar reflectivity

RADAR APPLICATIONSExamples of radar reflectivity

Power-law relation: Z=aRb

=

Page 60: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

60F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSHydrologic relationshipsRADAR APPLICATIONS

Hydrologic relationships

Page 61: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

61F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSPolarized measurementsRADAR APPLICATIONS

Polarized measurements

Backscattering matrix• The scattering field is related to the incident one by:

• The S matrix is the complex backscattering matrix, whose terms are:

Interpretation and Symmetry• Diagonal terms SHH and SVV represent linear co-polarized components

• SHH : H transmission, H reception• Off-diagonal terms are cross-polarized components

• SVH : H transmission, V reception• For a spherical particles, the cross-polarized terms are zero.• The cross-pol. terms are equal for reciprocity (unless medium is anysotropic).

iv

ih

VVVH

HVHHrj

sv

sh

E

ESSSS

re

E

E

ppjpppp eSS

H-pol.

V-pol.

Page 62: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

62F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSPolarimetric definitionsRADAR APPLICATIONSPolarimetric definitions

Polarimetric form of radar equation• Radar equation can be generalized to polarimetric form• Complex envelope V will be polarization dependent, i.e. Vpp

Co-polar radar reflectivity (mm6m-3)

Differential reflectivity

Linear Depolarization Ratio (LDR)

)||/( ,)||/( 22542254 VVVVHHHH SKZSKZ

2

210

VV

HHDR

SSLogZ

2

210

HH

VH

SSLogLDR

Page 63: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

63F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Oblate ZDR > 0Sphere ZDR = 0Prolate ZDR < 0

RADAR APPLICATIONSPolarimetric examplesRADAR APPLICATIONSPolarimetric examples

2

210

VV

HHDR

SSLogZ

Page 64: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

64F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSPolarimetric definitionsRADAR APPLICATIONSPolarimetric definitions

Correlation coefficient

Differential propagation-phase shift (°/km)

hvjhv

VVHH

HHVVHV e

SS

SS ||22

*

*

0

0

arg

')'(2

)()]()([Re180

HHVVhv

hv

r

DPDP

D

VVHHDP

SS

drrK

dDDNDfDfK

• Oblate particles tend to slow down H-pol. waves with respect to V-pol. ones• This effect is larger for liquid than ice particles• is due to particle-induced phase shift

Page 65: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

65F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSPolarimetric definitionsRADAR APPLICATIONSPolarimetric definitions

Specific attenuation (1/km)

One-way path attenuation

• Application

),(Im

efHHHH DS4180102 3

r

HHHH drrrA0

')'()( Attenuation of

backscattered power (due to a range bin)

along the path

Range bin

22

2

22

2

rrZeC

rrZrLCW

HHrA

HHHHRh

HH)(

)()()(

Page 66: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

66F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSPolarimetric theory

RADAR APPLICATIONSPolarimetric theory

Differential reflecivity vs. ellipsoid axial ratio

Particle density

Page 67: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

67F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSPolarimetric features

RADAR APPLICATIONSPolarimetric features

Page 68: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

68F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONS Polarimetric advantagesRADAR APPLICATIONS

Polarimetric advantages

Page 69: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

69F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONS Rainfall polarimetric estimators

RADAR APPLICATIONS Rainfall polarimetric estimators

)(

),(),(

dp

drdp

drh

KRR

ZKRRZZRR

),( drh ZZRR From single-pol.

To dual-pol. retrieval

Page 70: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

70F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONMeasurement issues

RADAR APPLICATIONMeasurement issues

h

Zxx(r,,)

Radarbeam

Volumebin

Zsurf(h)?

),,(,,,,

,),,(),,( ),,(),,(φθ22

2

1

φθφθ

φθ1φθ

rAvRhVVHH

R

M

iviRh

pulsevRh

VVHH

pulse

erWrCrZ

NrWM

rW

Dual-pol. radar equation

where PR: received power at h or v pol.C: radar constant, r: rangeA: path attenuation at h or v pol.Z: reflectivity at h-h or v-v pol. NR: noise levelM: number of pulses

Groundclutter

Path attenuation

V pol

H pol

Page 71: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

71F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR APPLICATIONSOperational issues

RADAR APPLICATIONSOperational issues

Calibration objective• Determine with precision and accuracy the instrumental constant C in

radar equation equation• Transmistter power, loss of radiofrequency chain (e.g., guides, mixers, couplers)• Noise level in the receiver chain, receiver gain and linear dynamics (no distortions)

Calibration techniques• Internal calibration: measurement of each radar component and module

• Suitable instrumentation (e.g., synthetic pulse generator, network analyzer)• Periodic controls (antenna, TX) vs. frequent controls (oscillators, noise)

• External calibration: measurement of reference radar targets• Large metallic spheres such that b is equal to the geometric section• Rain-gauge time-series data• Difficult measurement set up and ambiguities

• Overall calibration obtainable: 1 dB Ground-clutter contamination

• Spurious echoes backscattered by ground and obstacles• Spectral, statistical and static removal techniques• Coupling with beam occulation, anomalous propagation, reflectivity gradients

Page 72: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

72F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSAn overview

RADAR PRODUCTSAn overview

Page 73: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

73F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSComparison among instruments

RADAR PRODUCTSComparison among instruments

Rete della Regione Piemonte

Rain gauges Meteosat IR

Page 74: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

74F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSComparison among instruments

RADAR PRODUCTSComparison among instruments

Meteosat IR C-band Radar (ARPA-FVG)

Page 75: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

75F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Rain field spatially interpolated from rain gauges

Rain field derived from ARPAP C-band radar Range = 125 km

Range = 30 km

RADAR PRODUCTSComparison among instruments

RADAR PRODUCTSComparison among instruments

Page 76: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

76F.S. Marzano – Microwave Radar Meteorology: foundations and applicationsx

y

z

elevation12

RADAR PRODUCTSPolar volume scanning

RADAR PRODUCTSPolar volume scanning

Height

E

N

W

Slant Range

S

SCANNING STRATEGYElevation angle : 0-20 with variable stepAzimuth angle : 0-360° with 1° step

Page 77: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

77F.S. Marzano – Microwave Radar Meteorology: foundations and applications

x

y

z

1

RADAR PRODUCTSPlan Position Indicator (PPI)

RADAR PRODUCTSPlan Position Indicator (PPI)

Projection on the ground plane of radar 3-D polar data acquired upon a conical surface (constant elevation, azimuth betwen 0° and 360°)

Page 78: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

78F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSExample of PPI

RADAR PRODUCTSExample of PPI

H-pol. Reflectivity at 2° elevation Radial velocity at 2° elevation

Page 79: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

79F.S. Marzano – Microwave Radar Meteorology: foundations and applications

x

y

z

N.B. A vertical Section can be obtained by re-processing a 3-D polar volume as well. In this case it is called “Vertical Cut”.

RADAR PRODUCTSRange Height Indicator (RHI)

RADAR PRODUCTSRange Height Indicator (RHI)

RHI: Vertical scan for constant azimuth angle

Page 80: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

80F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSExample of RHI and VCut

RADAR PRODUCTSExample of RHI and VCut

taglio dall’originetaglio dall’origine

taglio qualsiasi

Page 81: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

81F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSConstant Altitude PPI

RADAR PRODUCTSConstant Altitude PPI

0

2000

4000

6000

8000

10000

12000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

range (km)

heig

ht (m

)

-0.1

0.4

1.2

2.03.04.45.87.410.015.028.5

CAPPI: Horizontal cut of polar volume at a constant altitude

Page 82: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

82F.S. Marzano – Microwave Radar Meteorology: foundations and applications

H eight

E

N

W

Slant Range

S

N

E

S

W

H eight

Y

X

H

Volume polare

Volumecartesiano

RADAR PRODUCTSCAPPI processingRADAR PRODUCTSCAPPI processing

Page 83: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

83F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSExample of CAPPIRADAR PRODUCTSExample of CAPPI

Page 84: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

84F.S. Marzano – Microwave Radar Meteorology: foundations and applications

0

2000

4000

6000

8000

10000

12000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

range (km)

heig

ht (m

)

-0.1

0.4

1.2

2.03.04.45.87.410.015.028.5

RADAR PRODUCTSHor.-Vertical Maximu Intensity

RADAR PRODUCTSHor.-Vertical Maximu Intensity

HVMI: Horizontal-vertical projection (3 axes) of maximum reflectivity

Page 85: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

85F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSExample of VMI

RADAR PRODUCTSExample of VMI

Page 86: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

86F.S. Marzano – Microwave Radar Meteorology: foundations and applications

78

1. Inhomogenheity of rain cloud withinthe radar beam

2. Evaporation of rainfall below theradar beam

3. Understimation due to orographiceffects on rainfall process

4. Bright-band effects due to meltinglayer

5. Path attenuation due clear-air gases(water vapor and oxygen) and rain

6. Anamolous propagation due to airrefractivity – second-trip echoes

7. Beam screening due to presence ofobastacles (hills, mountains)

8. Calibration erros within the radarsystem

RADAR PRODUCTS Errors in rainfall retrieval

RADAR PRODUCTS Errors in rainfall retrieval

Page 87: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

87F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Bright band

Secondary lobes effect

Anomalous propag. Multiple reflections

Ground clutter

RADAR PRODUCTSExamples of radar artifacts (1)

RADAR PRODUCTSExamples of radar artifacts (1)

Page 88: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

88F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTS Examples of radar artifacts (2)

RADAR PRODUCTS Examples of radar artifacts (2)

stratiform

convective

stratiform

convective

Profilo verticale di riflettività

Bright Band

Estimate of surface rainfall from stratiform or convective Z-R relation ?

Page 89: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

89F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTS Examples of radar artifacts (3)

RADAR PRODUCTS Examples of radar artifacts (3)

Max. unamb. velocoty: umax= ±16m/sMode: single PRF=1180 Hz

Max. unamb. velocoty: umax= ±32m/sMode: dual PRF=1180 Hz, 787 Hz

Page 90: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

90F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTS Examples of radar artifacts (4)

RADAR PRODUCTS Examples of radar artifacts (4)

C-band radar: affected by rain path attenuation S-band radar: immune to rain path attenuation

Page 91: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

91F.S. Marzano – Microwave Radar Meteorology: foundations and applications

radar volume rain rate estimation

Clutter, ana-prop., vel.correction

VPR, atten. correction

raingauge data spatial interpolation

ErrorEstimation

RADAR PRODUCTSRadar data processing

RADAR PRODUCTSRadar data processing

Page 92: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

92F.S. Marzano – Microwave Radar Meteorology: foundations and applications

Radial velocity

Z uncorrected Z corrected

Spectral filter

RADAR PRODUCTSExample of data processing

RADAR PRODUCTSExample of data processing

Page 93: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

93F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSSurface rainfall C-band retrieval

Page 94: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

94F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSRetrieval expected accuracy

RADAR PRODUCTSRetrieval expected accuracy

S-band radar

sim

simest

R

RRFSE

2/12ˆ

Algorithms:R1=M-PR2=WSR-88DRdp= G. et al. (rob)R1(Kdp)=S-ZR2(Kdp)=G-S (lin)Rdp1=G-S (rob)Rdp2=R-Z (log)

Fractional Standard Error

Page 95: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

95F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTS Path attenuation mitigation

RADAR PRODUCTS Path attenuation mitigation

S-band radar: immune to rain path attenuation C-band radar: corrected for rain path attenuationusing fully polarimetric data (Zh, Zdr, Kdp)

Page 96: MICROWAVE RADAR METEOROLOGY Foundations and Applications · 2019-02-26 · F.S. Marzano – Microwave Radar Meteorology: foundations and applications 8 RADAR METEOROLOGY Lecture’s

96F.S. Marzano – Microwave Radar Meteorology: foundations and applications

RADAR PRODUCTSHydrometeor classification

Hailstorm in Florida observed by S-band polarimetric radar

... and derived hydrometeor classification