Microalgal Bioprocessing - Introduction

Embed Size (px)

Citation preview

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    1/16

    10/28/20

    MicroalgalBiotechnology:

    CultivationandProcessing

    MBT Fall2015

    October29th,2015 HectorDelaHozSiegler

    DepartmentofChemicalandPetroleumEngineering

    UniversityofCalgary

    [email protected]

    HectorDelaHozSiegler,Ph.D.,P.Eng.

    Outlineoftodaystalk

    I. Introduc tion to microalga e

    What and why

    Applications

    II. Renewable energy from microalga e

    Motivation

    Biofuel portfolio

    Biodiesel

    III. Culturing techniques

    Medium requirements

    Open ponds and photobioreactors

    Phototrophic and heterotrophic

    IV. Optimization of heterotrophic culturesV. Summary

    INTRODUCTIONTOMICROALGAL

    BIOTECHNOLOGY

    PartI

    3

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    2/16

    10/28/20

    Microalgae:whatarethey?

    Microalgaeareplantlikeunicellularorganisms:apolyphyletic group

    ofphotosyntheticeukaryotes.

    Sunlight-driven cell factories able to convert carbon dioxide to

    potential biofuels, food, and high-value products

    4

    ProductsfromMicroalgae

    Image source: Rosenberg, J.N., Oyler, G.A., Wilkinson, L., Bet enbaugh, M.J.Agreen light for engineeredalgae: redirecting metabolismto fuel abiotechnology

    revolution ,Current Opinion in Biotechnology, 19 (5), pp. 430-436 (2008)

    Applications

    6

    Microalgae

    Biofuels

    Finechemicals:

    e.g.antioxidants

    Wastewater

    treatment/

    Remediation

    Pharmaand

    nutraceuticals

    Humanand

    animalfood

    CO2Capture

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    3/16

    10/28/20

    Microalgaeascellfactories

    Benefits:

    Highlyefficient

    Simplenutritional

    requirements

    Easilyadaptabletoenvironmentalstresses

    Produceandstorehighamountsofoil

    Othervaluablebyproducts

    Eukaryotic!

    Challenges

    Lowculturedensity

    Slowgrowth:lowproductivity(comparedtobacteriaandyeast)

    Highproductioncosts

    7

    SomeCommercialApplications

    S pe ci es/ gr ou p Pro du ct A pp li ca ti on a re as Pr od uc ti on

    facilities

    References

    Haematococcus

    pluvialis /

    Chlorophyta

    Carotenoids,

    astaxanthin

    Health food, feed additives

    and pharmaceuticals

    Open ponds,

    PBR

    Del Campo et al. (2007)

    Odontella aurita

    / Bacillariophyta

    Fat ty acids Pha rm aceu ti ca ls ,

    cosmetics, baby food

    Open ponds Pulz and Gross (2004)

    Isochrysis

    galbana /

    Chlorophyta

    Fatty acids Animal nutrition Open ponds,

    PBR

    Molina Grima et al.

    (1994); Pulz and Gross(2004)

    Phaedactylum

    tricornutum /

    Bacillariophyta

    Lipids, fatty

    acids

    Nutrition, fuel production Open ponds,

    basins, PBR

    Yongmanitchaiand Ward(1991); Acien-

    Fernandez et al. (2003)

    Muriellopsis sp.

    / Chlorophyta

    Carotenoids,

    Lutein

    Health food, food

    supplement, feed

    Open ponds,

    PBR

    Blanco et al. (2007); Del

    Campo et al. (2007)

    Crypthecodinium

    cohnii

    DHA Food additive Fermenters

    (heterotrophic)

    Carvalho et al.

    (2006)

    8

    Currently,applications

    of

    microalgal

    biotechnology

    are

    limited

    to

    niche

    (small)

    markets.

    Though

    highvalue!Weexpecttomoveintolargescalemarkets.

    ALGAEASASOURCEOF

    RENEWABLEENERGY

    PartII

    9

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    4/16

    10/28/20

    Energy,economy,andGlobalwarming

    Poland

    Uzbekistan

    Chad

    Ghana

    Vanuatu

    India

    China

    Russia

    Brazil

    UK

    France

    US

    Norway

    Japan

    South

    Korea

    Canada

    China (2002)

    India(2002)

    US(2002)

    0.01

    0.1

    1

    10

    100

    100 1,000 10,000 100,000

    PrimaryEnergyConsumption(kWyear/p

    erson)

    GDP($/person/year)

    Energyreserves/Energyconsumption

    11

    Climatechangedebate

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    5/16

    10/28/20

    Thenaturalcarboncycle

    G. A. Olahand colleagues, J.Am.Chem.Soc, 133, 12881-12898, 2011

    Carbon CaptureandUtilisation(CCU)

    T. Shirvani, X. Yan, O. R. Inderwildi, P. P. Edwards and D. A. King, Energy Environ. Sci., 2011, 4, 37733778

    Biofuels

    15

    1stGeneration: derived from food-crops, i.e.ethanol from sugar cane or corn, biodieselfrom canola or soybeans.

    2ndGeneration

    : produced from lignocellulosicmaterials, i.e. ethanol from wood chips,switch grass.

    3rdGeneration: fuels from microalgae

    4thGeneration: from crops designed for fuelsin combination with highly efficient microbes.

    Timetorealworldapplication

    Landrequiredforsatisfydemand

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    6/16

    10/28/20

    Themicroalgalbiofuelsportfolio

    Algal Biomass:

    - Oil/Lipids

    - Sugars/Starch

    - Lignocellulose

    Excreted products:

    - Hydrogen

    - Alcohols

    Sugars

    Bio-oil

    SynGas

    Biodiesel

    Green Diesel

    Gasoline

    Hydrogen

    Alcohols

    CO2

    Water

    Sunlight

    Trace elements

    Feedstocks Photosynthe sis Inte rme diates Fu els

    Pyrolysis

    Hydrolysis

    Hydrodeoxygenation

    Hydrotreating

    16

    BiodieselfromMicroalgae

    Crop Oil yield

    (L/Ha)

    Land area needed

    (M Ha)

    % of existing US

    cropping area

    Corn 172 1540 846

    Soybean 446 594 326

    Canola 1190 223 122

    Oil Palm 5950 45 24

    Microalgae(70% oil w/w)

    136900 2 1.1

    Microalgae(30% oil w/w)

    58700 4.5 2.5

    Biodieselderivedfromoilcropsisapotentialrenewableand

    carbonneutralalternativetopetroleumfuels.

    Biodieselfromoilcrops,wastecookingoilandanimalfatcannot

    realisticallysatisfythedemandfortransportfuels.

    Croplandrequirement

    bydifferentoilcropsto

    replace50%ofall

    transportfuelneedsof

    theUS.Chisti(2007).

    Toooptimistic

    to

    be

    true!

    17

    Algaeasasourceofoil

    Species Oil content

    (% dw)

    Reference

    Ankistrodesmus TR-87 28 40 Ben-Amotz and Tornabene (1985)

    Botryococcus braunii 25 75 Sheehan et al. (1998); Banerjee et al. (2002); Metzger and Largeau (2005)

    Chlorella sp. 28 32 Sheehan et al. (1998), Chisti (2007)

    Chlorella protothecoides 15 55 Xu et al. (2006)

    Cyclotella DI-35 42 Sheehan et al. (1998)

    Dunaliella tertiolecta 36 42 Kishimoto et al. (1994); Tsukahara and Sawayama (2005)

    Hantzschia DI-160 66 Sheehan et al. (1998)

    Isochrysis sp. 7 33 Sheehan et al. (1998); Valenzuela-Espinoza et al. (2002)

    Nannochloris 20 -35 (6 -63) Ben-Amotz and Tornabene (1985); Negoro et al. (1991); Sheehan et al. (1998)

    Nannochloropsis 46 (31 -68) Sheehan et al. (1998); Hu et al. (2006)

    Nitzschia TR-114 28 50 Kyle DJ, Gladue RM. WO 91/14427 (Patent)

    Phaeodactylum tricornutum 20 31 Sheehan et al. (1998), Chisti (2007)

    Scenedesmus TR-84 45 Sheehan et al. (1998)

    Stichococcus 33 (9 -59) Sheehan et al. (1998)

    Tetraselmis suecica 15 32 Sheehan et al. (1998); Zittelli et al. (2006); Chisti (2007)

    Thalassiosira pseudonana (21 -31) Brown et al. (1996)18

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    7/16

    10/28/20

    OilandBiodiesel

    19

    Triglycerides:

    BiodieselProduction:

    Glycerol

    FattyAcids

    PolyunsaturatedFattyAcids(PUFA)

    20

    Fattyacidswithmultipledoublebonds

    C18:3andlongerareessential:mammalscannotsynthesize

    C18:3.Needtotakethemfromtheirdiet

    Multiplebiologicalfunctionsassignallingmoleculesorbuilding

    blocks

    DHA: C22:6

    EPA: C20:5

    MicroalgaeasaSourceof3PUFA

    FishoilhasbeenusedforthecommercialproductionofEPAandDHA.

    Factorsthatlimitfishoilasasourceof3fattyacidsinclude:taste,odourandstabilityproblems.Highpurificationcost.

    Fishobtain3fattyacidsfromtheirdiet.

    SeveralspeciesofmicroalgaeareprimaryproducersoflongchainPUFA.

    US$1.5billion/yeargeneratedfromtheproductionofDHA(Pulz andGross,2004).

    21

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    8/16

    10/28/20

    PUFAproportionsinMicroalgae(%TFA)

    Organ is ms ARA ( 20 :4 ) EPA ( 20 :5 ) DHA ( 22 :6 )

    Gymnodinium splendens 8 30

    Cricosphaera elongata 2 28

    Isochrysis galbana 15 7.5

    Monodus subterraneus 4.7 33

    Nannochloropsis sp. 35

    Schizochytrium sp. 1.0 2.3 40.9

    Chlorella minutissima 5.7 45

    Hetermastrix rotundra 1 28 7

    Chromonas sp. 12.0 6.6

    Cryptomonas sp. 16 10

    Rhodomonas sp. 8.7 4.6

    Asterionella japonica 11 20

    Biddulphia sinensis 24 1

    Crypthecodinium cohnii 30

    Nitzschia laevis 6.2 19.1

    Phaeodactylum Tricornutum 34.5

    Skeletonema costatum 29.2 22

    GeneralProcessDiagram

    Harvesting

    Dryer

    CultureExtraction

    Crude

    Product

    debris

    S/L Separator

    Solvent

    recovery

    Cell disrupter

    23

    MICROALGALCULTURING

    TECHNIQUES

    PartIII

    24

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    9/16

    10/28/20

    Nutritionalrequirements

    Dependsonapplication

    Foodorhealthoils:foodgradechemicals

    Otherwiseindustrial

    chemicals

    or

    seawater

    /wastewater

    Carbonsource:CO2,sugars,acetate,ethanol

    Macronutrients:Nitrogenandphosphorus

    Micronutrients:Fe,Mg,Si,S,K

    Traces:Ca,Mn,Zn,Co,Se,Cu,Mo

    Vitamins:B1,B12,B6,B2

    Seawater:Na,K,Mg,Ca,Cl,SO4,HCO3,BO3

    Br,F,IO3,Li,Rb,Sr,Ba,Mo,V,Cr,As,Se

    NO3,PO4,Fe,Zn,Mn,Cu,Co,Si,Ni25

    Multiplewaysofgrowing

    26

    Mixotrophic

    FixCO2

    Fast growth

    Productivealldaylong

    Complexand

    unknowncellregulation

    CO2 capture

    Waste

    water

    treatment Highvalueproducts

    Proteins

    EnergySource

    Applications

    Phototrophic

    FixCO2

    Slowgrowth

    Noactivityduringnight

    CO2capture

    Heterotrophic

    Fast growth

    Productivealldaylong

    Dontfixgreenhousegases

    ProduceCO2

    Wastewatertreatment

    Highvalue

    products

    Proteins

    SolarradiationinCanada

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    10/16

    10/28/20

    SolarradiationinAlberta

    FortMcMurray: 4 181MJ/m2y

    Edmonton: 4510MJ/m2y

    MedicineHat: 5221MJ/m2y

    Munich(GE): 4044MJ/m2y

    Naples(IT): 5293MJ/m2y

    KualaLumpur: 5622MJ/m2y

    Orlando(FL): 5922MJ/m2y

    Acapulco(MX): 7261MJ/m2y

    Phoenix(AZ): 7621MJ/m2y

    Solarradiation datatakenfrom:U.S.Department ofEnergyEnergyPlusWeather Data.

    http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data.cfm

    Culturingtechniques:OpenPonds

    Byfar,themostcommonproductionsystem.

    Lowinstallationcost

    Lagoonsorartificialponds

    Highriskofcontamination: Unwantedalgae

    Grazers

    Applicationlimitedtofewspecies(extremophiles).

    Unmixedponds:arearangefrom1200Ha,depth2030cm

    Racewaypondsareupto1Ha.

    29

    Culturing:ClosePondsandTanks

    Simplerdesignssimilartoopen

    ponds,withacover

    (greenhouses).

    Aimtoreducecontamination

    risks. ControlCO2looses.

    Tanksareusuallymixedby

    aeration.

    Deeptanksareinefficient.Bad

    lighttransmission.

    Easytooperate,lowcost.

    30

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    11/16

    10/28/20

    Culturing:Photobioreactors

    TubularPhotobioreactor AlgaeandBiofuelsFacility, SouthAustralianResearchandDevelopmentInstitute

    FlatPanelphotobioreactor

    ArizonaCenterforAlgalTechnology andInnovation

    FlexibleplasticfilmPhotobioreactorAlgenol,Florida 31

    Culturing:Photobioreactors

    Betterculturecontrol

    Higherproductivity,andculture

    density

    Minimalcontaminationrisk

    Wellmixed

    Excellenttemperaturecontrol

    Oxygencontrolisanissue

    Highcapitalinvestment

    Frequentcleaningrequired

    Coolingrequired

    32

    HeterotrophicProductionofAlgae

    Somealgaespeciescangrow

    usinganorganiccarbonsource.

    Conventionalbioreactorscanbe

    used.

    33

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    12/16

    10/28/20

    Phototrophicvs.Heterotrophic?

    34

    SpecieOil content

    (%)

    Cell conc.

    (g/L)

    Oil Prod.

    (mg/L d)References

    Ettlia oleoabundans 36 42 2.9 164 Griffiths et al (2009);

    Li et al. (2008)

    Nannochloropsis sp. 31 68 2.1 204 Rodolfi et al. (2009)

    Amphora 40 51 - 593 Sheehan et al. (1998)

    Chlorella sp. 28 32 1.1 139 Hsieh and Wu (2009)

    Chlorella vulgaris 25 42 1.7 54 Liang et al. (2009)

    Chlorella zofingiensis 25.8 1.9 35 Liu et al. (2010)

    Chlorella zofingiensis 51.1 9.6 354 Liu et al. (2010)

    Nitzschia laevis 16.5 22.1 914 Wen and Chen (2003)

    S. Limacinum (DHA) 17.3 37.9 656 Chi et al. (2009)

    A. protothecoides 38.3 53.0 8.4 820 Cheng et al. (2009)

    A. protothecoides 50.3 57.8 51.1 3320 Xiong et al. (2008)

    Phototrophic

    Heterotrophic

    MODELBASEDOPTIMIZATIONOF

    HETEROTROPHICALGALCULTURES

    PartIV

    35

    BioprocessOptimization

    36

    Strainselection

    Mediaformulation

    Processconditions

    Continuous/

    Realtime

    Geneticmodification

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    13/16

    10/28/20

    TheObjectiveforOptimization

    37

    StressOil sto ring is a metabol ic response to stress,

    particularly nitrogen def iciency. At nitrogen

    deficient conditions, algal cells over-accumulatelipids.

    The challenge is to maximize biomass production

    while keeping a high oil content. It is necessary to

    determine the nitrogen supplementation strategy

    to achieve this.

    Nitrogen

    As nitrogen is required for protein synthesis, its

    deficiency negatively affects growth and cel l

    functioning. Therefore, conditions that favored oil

    accumulation constraint productivity.

    Understandingalgalgrowth

    38

    Nitrogen uptake

    Lipid production

    Cellular growth

    Analgalgrowthmodel

    39

    Cellular growth

    Nitrogen uptake

    Oil production

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    14/16

    10/28/20

    Macroscopicbalances

    40

    Optimization:Problemformulation

    41

    Subject to:

    Simulationresults

    42

    Biomassproductivityin

    continuouscultures

    Lipidproductivityin

    continuouscultures

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    15/16

    10/28/20

    Experimentalresults

    43

    Biomassproductivityandgrowthrate

    44

    Lipidproductivityandproductionrate

    45

  • 7/26/2019 Microalgal Bioprocessing - Introduction

    16/16

    10/28/20

    Comparativestudy:growthonglucose

    46

    Specie Lipid content

    (%, w/w)

    Oil Productivity

    (g/L h)

    References

    E. coli (gen. modified) 25.4 0.246 Elbahoul et al (2010)

    R. opacus PD630 38.4 0.171 Kurosawa et al (2010)

    M. ramanniana 67.7 0.17 Hiruta et al (1997)

    C. echinulata 26.9 0.07 Kosa et al (2011)

    R. toruloides 67.5 0.54 Li et al. (2007)

    L. starkeyi 56.0 0.04 Kosa et al. (2011)

    C. curvatus 82.7 0.47 Zhang et al. (2011)

    Schizochytrium sp. 30 0.096 Ganuza et al (2007)

    C. vulgaris 9.7 0.12 Doucha et al. (2011)

    A. protothecoides 50.3 0.14 Xiong et al. (2008)

    A. protothecoides 49.4 0.43 0.84 De la Hoz et al (2012)

    Bacteria

    Molds

    Yeasts

    Microalgae

    Optimization:closingremarks

    47

    Modelbased optimization of heterotrophic microalgal cultures

    allowed to reach very high densities, with biomass productivity

    greater than 30 g/L d, and as high as 70 g/L d.

    High oil content (4060% w/w) can be sustained with a lipid

    productivity around 20 g/L d.

    High quality monitoring and control is essential to achieve high

    productivities.

    Better control / sensors = higher productivity.

    Summary

    Algaearepromisingorganisms:highlyefficient

    Goodsourceofoil:PUFA,biodieselprecursor

    Algaecan

    growth

    on

    simple

    inexpensive

    media

    Severalreactortypesandgeometry.Applicationwilllimit

    reactorchoice

    Severalsuccessfulcommercialapplicationscurrentlyworking.

    Alotofresearchisstillneeded!

    48