51
OPTICAL PYROMETRY – RADIATIVE PROPERTIES SFERA Summer School 2010 June 12 Daniel HERNANDEZ PROMES –CNRS France [email protected] METROLOGY OF THERMAL RADIATION 1. BASIC DEFINITIONS - Thermal radiation - Thermo-radiative properties - Optical Pyrometry 2. SOLAR BLIND MEASUREMENTS - Principles - Studies Exemples 3. TEMPERATURE MEASUREMENTS - Apparatus and methods - Two colour Pyroreflectometry - Studies Exemples

METROLOGY OF THERMAL RADIATION OPTICAL ... - Accueil - …SOLAR BLIND CONDITIONS. 0 5 10 15 20 25 30 1500 1600 1700 1800 1900 2000 2100 2200 2300. 2. Extrapolation. 6 5 4 3 1 1. Eclairement

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • OPTICAL PYROMETRY –

    RADIATIVE PROPERTIES

    SFERA Summer School 2010 June

    12 Daniel HERNANDEZ PROMES –CNRS France

    [email protected]

    METROLOGY OF THERMAL RADIATION

    1.

    BASIC DEFINITIONS-

    Thermal radiation

    -

    Thermo-radiative properties-

    Optical Pyrometry

    2. SOLAR BLIND MEASUREMENTS - Principles-

    Studies Exemples

    3.

    TEMPERATURE MEASUREMENTS-

    Apparatus and methods

    -

    Two colour Pyroreflectometry-

    Studies Exemples

  • ABOUT TEMPERATURE

    Temperature is a subjectif concept based

    on cold and hot sensation

    Temperature is an intensive value

    Temperature is measured through

    a temperature scale

    : IST 90

    Temperature is a one more measured parameterand most of other are depending

  • T (K) Elem. State Inst.

    .3 à 5 He V 1 et 213.8033 e-H2 T 2 et 3

    17 e-H2 V 2 et 320.3 e-H2 V 2 et 3

    24.5561 Ne T 2 et 354.3584 O2 T 383.8058 Ar T 3234.3156 Hg T 3273.16 H2 O T 3302.9146 Ga F 3429.7485 In C 3505.078 Sn C 3692.677 Zn C 3933.473 Al C 31234.93 Ag C 3 et 41337.33 Au C 41357.77 Cu C 4

    °C = K –273.15 K

    V

    : Pt. of vapor

    pression F

    : Fusion 1

    : Ther. He vapor

    pression 2

    : Ther. He gas

    pressionT

    : Pt. triple C

    : Freezing 3: Ther. Pt resistance 4

    : Optical pyrometry

    Adiabatique

    A

    B

    CD

    P

    V

    Isotherme T2

    Isotherme T1

    CARNOT CYCLE ON A PERFECT GAS

    ))(

    ( 12

    1

    2

    TfT

    QQ f

    −=

    ITS &

    THERMODYNAMIC TEMPERATURE

    TaTf =)(

    ITS 90

    Sir W. Thomson -> Lord Kelvin 1852 FIRST DEFINITION OF MEASURABLE T

    THEORY OF GAS KINETICTemperature is linked

    to molecule or particle movements

  • Cosmics Rays

    γ

    rays X rays Radio

    wavesInfraredVisibleUV

    0.001A 1A 0.1.µm 1mm 100km0.4µm 0.75µm

    10e8 10e4 10e2 3 1.7 10e-3eV

    λ

    10e-12

    UV VISIBLE NIR MIR LIR

    0.1 0.4 0.75 1.5 20 1000λ µm

    ELECTROMAGNETIC SPECTRUM

    THERMAL RADIATION

    Quantum mechanics

    -

    Quantum hν

    Max Planck 1858-1947

    THERMAL RADIATION is ENERGY

    ( )⎥⎥⎦

    ⎢⎢⎣

    ⎟⎟

    ⎜⎜

    ⎛−⎟⎟

    ⎞⎜⎜⎝

    ⎛= 1), exp

    251 TOC

    T CI λλπλ

    cC h 21 2=khcC /2=

    = 3.7415.10-16

    W.m2

    sr-1

    = 1.4388.10-2

    mKFundamental

    Excited

    AbsorptionEmission νE=h

    c : Ligth celerity in vacuumh

    : Planck constantk : Boltzmann

    constant

    Temperature is linked to thermal radiation

  • The Blackbody is

    the

    reference

    source for Thermal Radiation

    Definition: Total absorption of thermal radiationProperty: Emission follows Planck Law and it is isotropic

    THERMAL RADIATION and

    BLACKBODY

    Isothermal Planck curvesIsochromatic

    Planck curves

    λλλ mm 55,0

  • Réflexion

    Transmission

    Emission

    T Excité

    FondamentalAbsorptionνE=h

    ρ

    ε

    τα

    Réflexion

    Transmission

    Emission

    T Excité

    FondamentalAbsorptionνE=h

    ρ

    ε

    τα

    Réflexion

    Transmission

    Emission

    T Excité

    FondamentalAbsorptionνE=h

    Réflexion

    Transmission

    Emission

    T Excité

    FondamentalAbsorption

    Réflexion

    Transmission

    Emission

    T Excité

    FondamentalAbsorption

    Réflexion

    Transmission

    Emission

    T Excité

    FondamentalAbsorptionνE=hνE=h

    ρ

    ε

    τα

    THERMAL RADIATION AND REAL BODY

    Emission

    II Ojj εrr

    =

    Interaction Material-Thermal Radiation

    Energy

    Conservation

    α+ρ+τ = 1

  • 0 2 4 6 8 100,00E+000

    1,00E+009

    2,00E+009

    3,00E+009

    4,00E+009

    Real Body at 2000°C

    Grey Body ε = 0.75 at 2000°C

    Black Body at 2000°C

    µm

    I°(λ,T): Wm- 3Sr- 1

    EMISSION of REAL BODY

    ( )),(),(,

    λλλε T

    TTII

    O

    jj

    rr

    = PARTICULAR PROPERTIESisotropic

    grey

    body

    ),( λε T)(Tjε

    r

    EMISSION AND PROPERTIES

    DIRECTIONAL DEPENDENT

    T

    Emissivity

  • INTERTACTION MAT. THER. RADIATION

    T

    ΦiΦr

    Φa Φt

    TT

    ΦiΦr

    Φa Φt

    ΦiΦr

    Φa Φt

    AbsorptivityΦΦ=

    λ

    λλα,

    2,

    2

    ),(i

    aj

    ddT

    r

    ReflectivityΦΦ=∩

    λ

    λλρ,

    2,

    2,

    ),(i

    rj

    ddT

    r

    TransmitivityΦΦ=

    λ

    λλτ,

    2,

    2

    ),(i

    tj

    ddT

    r

    Radiative PropertiesParticularity of the reflection:

    directional hemispherical

    Ω=

    ii

    i

    jiji

    DF dT

    II

    )cos()()(),(

    ,,

    .. θρ

    λλλ r

    rrrr

    Bidirectional reflectivity or B.R.D.F.

    ∫ Ω= Irr

    Ir

    jj

    ji

    DF

    idTT )cos(),(),(

    ,

    ..

    ,

    θρρ λλ

    ),(),(,

    ..

    ,λπλ ρρ TT ji DF

    irrr

    =∩

    ∞+→),(,

    ..λρ Tji DF

    rr

    Isotropic Reflexion Specular Reflexion

    Sr-1

    dS

    )(λLir

    )(, λL jirr

    Ωid r

    ),( ϕθ iii rrr

    ),( ϕθ jjj rrr

    Ω jd r

    nr

    T

    xr

    yr

    θ iθ j

    ϕ i ϕ j

  • RADIATIVE PROPERTIES RELATIONS

    1),(),(),(,

    =++∩

    λλλ τρα TTT jjj

    rrr

    1),(),(,

    =+∩

    λλ ρα TTjjrr

    ),(),( λλ εα TTjjrr

    =

    ),(1),(,

    λλ ρα TTjj ∩−=rr

    ),(),(,

    ..

    ,

    ..λλ ρρ TT ij DF

    ji

    DF

    rrrr

    =

    ),(),(,,

    λλ ρρ TT ii isorr

    ∩=∩

    TT

    AbsoptionEmission

    Transmission

    Reflection

    1st

    Kirchoff Law 2nd

    Kirchoff or Draper law Helmholtz reciprocity

    Opaque Material Opaque Material

  • OEIL Optique

    Optique Filtre gris SOURCE

    Filtre RougeImage Source

    Filament Circuit à résistance variable

    PYROMETRE A DISPARITION DE FILAMENT

    0.65µm

    Tf < Ts Tf = Ts Tf >Ts

    PYROMETRY PRINCIPLE

    ( )λλ ,),( TIkTS O=Calibration

    Measure on a Real Body

    ),(),()(),(),( , λλλλ ελ TTTkT IkTIkIS Oj

    R

    Ojjrrr

    ===TT R λ,≥

    ( )⎥⎥⎦

    ⎢⎢⎣

    ⎟⎟

    ⎜⎜

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛= exp

    251), TOC

    T CL λλπλ)),(ln(11

    2,

    λλ ελ

    TjR CTT

    r

    +=µmKT 14400

  • PYROMETER ARCHITECTURE

    Emission

    OpticalComponents

    Δλ

    O.F.

    Split

    Miror

    Lens

    Diaphragm

    Filter

    Detection

    ModulatorReference

    µm

    Detectivity

    0 2 4 6 8 10 12 14108

    109

    1010

    1011

    1012

    InGaAs-Ge

    PbS

    InSb-HgCdTe-PbTe 77K

    Si

    InAs InSb 200K

    PbSe HgCdTe 196K

    HgCdTe 77K

    Golley 77K

    PyroelectricBolometer

    Thermopile

    ( )λλ ,),( TIkTS O=

    ),(),()(),(),( , λλλλ ελ TTTkT IkTIkIS Oj

    R

    Ojjrrr

    ===

    Calibration TT R λ,≥

  • LAB APPARATUS-

    RADIANCE TEMP.

    Blackbodies

    Spectro-radiometer

    Pyrometer

  • Reflection Transmission

    REALITY OF THE MEASURE

    ⎥⎥

    ⎢⎢

    ⎡++= ∫∫ ∫∫

    I I

    rr

    r r

    II rrr

    r

    rrrr

    i i

    i

    ii

    ii

    iojj

    to

    j dTdCosjiDF

    TTaT IITIS ),()(, ..),(),())((),( ),(.. λλλλλ τθλρετ

    ?

    Emission

    HamperingDilemma

    Losses

  • REFLECTED RADIATION HAMPERING

    ∫Ω ΩΩ p pdTjsIpCRaG iiSp )cos(),,(

    ,)()()()( 2 θθλρθλλλλτr

    Concentration

    Sun Intensity

    Atmosphera transmission Sample

    Reflectivity

    Sun solid angleParabola geometrical parameter Reflectance

    ( )[ ]θθπ 022 sinsin1 −= MpG

    10000

    ParabolaSolid angle

    ANALYSIS AND EXPERIMENTAL RESULTS OF SOLAR-BLINDTEMPERATURE MEASUREMENTS IN SOLAR FURNACES

    JSE 2004 Vol 126/645-653

  • Blackbody condition ρ

    = 0

    Chromatic occultation

    τa

    (λ) = 0 or τw

    (λ) = 0

    Temporary occultationIs

    (λ)

    = 0

    SOLAR BLIND TECHNICS

  • 60°

    7

    43

    6

    12

    5

    SOLAR BLIND EXPERIMENTS

  • SPECTRAL SOLAR BLIND BANDS

    0 2 4 6 8 10 12 140,0

    0,2

    0,4

    0,6

    0,8

    1,0 4.3µm2.7µm

    1.9µm1.4µm

    6µm

    CO2

    H2O

    λ (µm)

    τa(λ)

    0 2 4 6 8 10 12 140,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    λ (µm)

    η(λ)

    R(λ)

    R(λ) & η(λ)

    η(λ) = τa (λ) R2(λ)

    0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,00,00E+000

    5,00E+012

    1,00E+013

    1,50E+013

    2,00E+013

    2,50E+013

    3,00E+013

    3,50E+013

    Terrestrial

    Spatial

    µm

    L(λ,T) (Wm-3sr-1)

  • SPECTRAL SOLAR BLIND ERRORS

    2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,00,00E+000

    5,00E+011

    1,00E+012

    1,50E+012

    9

    T

    E

    87

    6

    τ(λ)

    λ µm

    W/(m3sr)

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    1,30 1,35 1,40 1,45 1,50 1,55 1,60 1,65 1,70 1,75 1,80 1,85 1,90 1,95 2,000,00E+000

    1,00E+012

    2,00E+012

    3,00E+012

    4,00E+012

    5,00E+012

    6,00E+012W/(m3sr)

    λ µm

    τ(λ)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    T

    E

    5

    41

    3

    2

    7 8 9 10 11 12 13 14 150,00E+000

    2,00E+009

    4,00E+009

    6,00E+009

    8,00E+009

    1,00E+010

    1,20E+010

    10

    T

    E

    λ µm

    τ(λ)W/(m3sr)

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0 500 1000 1500 2000 2500 30000

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    3.9µm

    1.38 & 1.4µm with Δλ=10nm

    Error °C

    T °C

    1.86µm

    8-12µm

    1.4µm with Δλ=45nm1.6µm

    0 2 4 6 8 10 12 140,0

    0,2

    0,4

    0,6

    0,8

    1,0 4.3µm2.7µm

    1.9µm1.4µm

    6µm

    CO2

    H2O

    λ (µm)

    τa(λ)

    4

    2

    3

    5

    710

  • SOLAR BLIND WINDOWS

    0 20 40 60 80 1000,00

    0,05

    0,10

    0,15

    0,20

    0,25

    No

    Window

    Window

    No insolated

    InsolatedS=f(I)

    t(s)

    0 1 2 3 4 5 6 7 8 9 100,0

    0,2

    0,4

    0,6

    0,8

    1,0τ(λ)

    µm

    Quartz transmission

    Water cooled target

    Quartzwindow

    Hole

    formeasure

  • SOLAR BLIND CONDITIONS

    0 5 10 15 20 25 30

    1500

    1600

    1700

    1800

    1900

    2000

    2100

    2200

    2300

    2

    Extrapolation

    6

    5

    43

    11

    Eclairement

    Occultation

    Tf

    s

    0 100 200 300 400 500 6001200

    1300

    1400

    1500

    1600

    1700

    1800

    1900

    2000

    2100

    2200

    2300T °C W

    t en s1300

    1400

    1500

    1600

    1700

    1800

    1900

    2000

    2100

    2 3 4 5 6 7 8 9 10 11 12 13 14 150,00,10,20,30,40,50,60,70,80,91,0

    2360 K

    2360 K

    2235 K

    2235 K1845 K

    1845 K

    Al2O3spectral emissivity

    µm

    Solar experimental methods for observing melting plateaux

    and associated temperature measurements for refractory oxides from 2000 to 3000 degrees C / JOURNAL OF THE EUROPEAN CERAMIC SOCIETY V:26 P: 1043-1049, 2006

    1.4 µm

    8-9 µm

  • Reflexion Transmission

    REALITY OF THE MEASURE

    ⎥⎥

    ⎢⎢

    ⎡++= ∫∫ ∫∫

    I I

    rr

    r r

    II rrr

    r

    rrrr

    i i

    i

    ii

    ii

    iojj

    to

    j dTdCosjiDF

    TTaT IITIS ),()(, ..),(),())((),( ),(.. λλλλλ τθλρετ

    ?

    Emission

    Dilemma

  • APPARATUS AND METHODS

    MONOCHOMATIC PYROMETER BI CHROMATIC PYROMETER

    SPECTRO RADIOMETERINFRARED CAMERA

    1

    MONOCHROMATIC PYROMETRY2 BICOLOR PYROMETRY

    3 UV PYROMETRY4 MULTI-COLOR PYROMETRY

    5 ACTIVE PYROMETRY6 CHRISTIANSEN POINT PYROMETRY

    7 PYRO LASER8 BICOLOR PYROREFLECTOMETRY

    ),(),(),(),(

    )(

    )(

    ),(

    ),(

    ,,

    ,,

    λλελλε

    λλ

    λλ

    λλ

    b

    O

    b

    jr

    O

    r

    j

    CO

    CO

    b

    jr

    j

    TTTT

    T

    T

    LL

    TLTL

    LL

    br

    br r

    r

    r

    r

    == Grey Body assumption

    Measurements at

    0,3µm : photomultiplicators

    ).exp( 10 λε λ aa += Measurements at several wavelengths

    Determination of through

    T incrementation with controled laser flux( )λα ,Tjr

    2

    3

    4

    5

    )),(ln(112,

    λλ ελ

    TjR CTT

    r

    +=

    1 ),(),()(),( , λλλ ελ TTT LTLL OjLOjrr

    == Emissivity assumption

    Industrial

    Lab

  • CHRISTIANSEN METHOD

    1000 2000 3000 4000 5000 60000.0

    0.2

    0.4

    0.6

    0.8

    Nor

    mal

    spe

    ctra

    l Ref

    lect

    ivity

    200 400 600 800 1000 1200 14000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    2 3 4 5 6 7 8 9 10 11 12 13 14 150,00,10,20,30,40,50,60,70,80,91,0

    2360 K

    2360 K

    2235 K

    2235 K1845 K

    1845 K

    Al2O3spectral emissivity

    µm

    6

    Limited

    to pure dielectrics materials

    The method need a preliminary lab. studies

    Choise of a pyrometer with adapted wavelength

    Lab method

  • 2

    3

    Traverse,Foex, Badie

    : 1976

    COMMERCIAL VERSION ‘Pyrolaser’

    LIMITATED TO LAMBERTIAN SURFACE

    PYROREFLECTOMETRY

    Reflective reference

    Visible laser SpotHot Sample

    Hot Sample + Laser Spot

    1 2 3

    1 MESURE ON Reflective Reference

    2 MESURE OF EMISSION

    3 MESURE OF EMISSION + REFLECTION

    7

    FIRST WORKS : OPTICAL DETECTION

    ( )[ ] ),(),(),(),(),( ,, 00 λλλλλ ρρ TTDDD oooRoERE jTTTjII

    rr

    −= +

    ),()),(1(),(),()(),(,

    ,000 λλλλλ ρελ TTjTTjTj LLTLL OOROI

    rrr−===

    Industrial

  • Detector

    Laser

    Sample

    IntegratingSphere

    TWO COLOR

    PYROREFLECTOMETRY

    dS

    )(λLir

    )(, λL jirr

    Ωid r

    ),( ϕθ iii rrr

    ),( ϕθ jjj rr

    r

    Ω jd r

    nr

    T

    xr

    yr

    θ iθ j

    ϕ i ϕ j

    8

    ir j

    r

    T

    FUNDAMENTAL ASSUMPTION

    Same indicatrix of reflected

    fluxesfor two near wavelengths λr and λb with

    :

    ),()(,

    ..

    ,

    .. , λρλρ bji

    DFr

    ji

    DFTT

    rrrr

    Condition no so restrictive as grey or diffuse one

    Indicatrix of reflexion

    Industrial

  • TWO COLOUR PYROREFLECTOMETRY

    ),()),(1(),(),()(),(,

    ,000 λλλλλ ρελ TTjTTjTj LLTLL OOROI

    rrr−===

    ∫ Ω∫ Ω == III

    rr

    rrrrrrr

    ii

    DF

    DFDFiiDF

    dij

    ijTjidTijTj )cos(),()cos(),(),(

    00

    0

    0000

    ,

    ..

    ,

    ..,

    ..

    ,

    ..

    ,

    θρρρθρρ λλλ

    πλλλ ρρθθρρη /),(),()cos(/)cos(),( 000

    00

    0

    00,

    ..

    ,

    ,

    ..

    ,

    ..,

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛== ∫ Ω∫ Ω TjiT

    jddij

    ijTji

    DFiiii

    DF

    DFd

    rrr

    rr

    rrrr

    I

    II

    ),()),(),(1()( 0000,

    ..

    ,

    , λλλπ ρηλ TTjiTji LTL ODFdRO

    rrrr−=

    ),()),()(1()( 0000,

    ..

    ,

    , λλρηπλ rO

    rDFdRO TTjiTji LTL

    r

    rrrr−=

    ),()),()(1()( 0000,

    ..

    ,

    , λλρηπλ bO

    bDFdRO TTjiTji LTL

    b

    rrrr−=

    INTRODUCTION of THE DIFFUSION FACTOR

    Solvable System measuring:

    Tr

    R λ, T bR λ,),(00

    ,

    .. λρ rDF Tjirr

    ),(00,

    .. λρ bDF Tjirr

  • ρr = ρb TC=ΤBicolor

    Pyrometry

    ρr > ρb TC>ΤBicolor

    -

    Pyroreflectometry

    ρr < ρb TC

  • 202.0)800( =°Cdη201.0)800( =°Cdη

    0,0 0,1 0,2 0,3600

    700

    800

    900

    1000

    η*d = 0.201

    ε0r(T) = 0.380 ε0b(T) = 0.447

    T*=801

    ρ0,0r(T) = 0.982 ρ0,0

    b(T) = 0.876

    690

    718

    955

    TRb

    TRr

    Tc

    W

    T°C

    ηd0 10 20 30 40 50 60 70 80 90

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0 W 800°C 20°C

    ηd(800) =0.202ηd( 20) =0.207

    ρ'Ω(800)=0.424ρ'Ω( 20)=0.425

    Angle(°)

    ρ0'θ(0.83µm,T)sr-1

    700 800 900 1000 1100 1200700

    800

    900

    1000

    1100

    1200

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    T (°C)

    T (°C)

    Tth

    ε0,01.55µm

    ε0,01.55µm

    TRr (1.55µm)

    TRb (1.3µm)

    T*

    TC(1.3 et 1.55µm)

    ελ(Τ)

    0,0 0,5 1,0 1,5 2,0 2,5 3,0550

    600

    650

    700

    750

    800

    850

    900

    950

    1000

    η = 0.65

    Tc(1,3 & 1,55µm)

    ρr=0.265 ρb=0.239 ρv=0.220

    Tc=770 Tr=737 Tb=742 Tv=753

    TRv(0,84µm)

    TRr(1,55µm)

    TRb(1,3µm)

    Inconel

    η

    T°C

    1

    2

    3

    EXPERIMENTAL VALIDATION

    3 3

  • Diodes Characteristicsλr:=1.55µm - λb:=1.30µm

    Frequency

    :10kHz (1µs & 99µs) Outpout

    power

    :60mWFr

    FbC L

    BM2

    ZPF

    9

    S

    1AE

    L 64 8e

    L8f

    3a 8a5

    3b 7

    8d8c

    8b

    A: Emission B: Detection

    F: Optical

    fibres1: O.F. coupler 3: Laser diodes 4: Detectors

    7: Delay generator

    Measured parametersTr(λr ), , Tr(λb ), Tc(λr, λb )

    ρi,j(λr ) , ρi,j(λb )

    T min

    : 600°CΔT: +/- 5°Δρ/ρ: 2%

    1

    2

    3

    ρ Reference

    Sample

    Diode Laser

    Detector

    Measurement

    PrincipleM1 f (ρi,j(λ))

    M2 f (L(λ,TR)) (M3-M2) / M1 f (ρi,j(λ,ΤR))

    99ms

    1msS(t) E+RE

    t

    THE PYROREFLECTOMETER

    Optical Fiber Characteristics

    Silica, Step

    index, N.A. = 0.22,

    Core diam. 100,200,400,500µm

  • dtg ouvsr )(θ=

    LensOptical Fibre

    Optical Fibre

    Lens

    Target

    TWINS LENSES PROBE

    Optical Fibre TargetBeam Splitter

    Optical Fibre

    Lens

    POLKA DOT PROBE

    PROBE WITHOUT LENSES

    THE PROBES

    PROXIMITY

    REMOTE Typical size : 3-5mm diameter ppG r

    rf

    i '==fpp1

    '11 =+

  • d

  • LambertianSpecular

    Diffuse & specular

    B.R.D.F. ηd

    θ

    0→η d

    1→η d

    10 ≤≤η d

    Oriented1>η d

    THE

    DIFFUSION FACTOR

    1),(),(,

    ..

    ,≤××

    ⊥⊥⊥⊥πλλ ρη TT DFd

  • 0

    10

    20

    30

    40

    5060

    708090100110

    120130

    140

    150

    160

    170

    180

    Reflected Flux Distribution

    ρh = 0.68843ηd/ηO = 0.85

    Al2O3 Plasma coating

    0

    10

    20

    30

    40

    5060

    708090100110

    120130

    140

    150

    160

    170

    180

    Reflected Flux Distribution

    ρh = 0.034ηd/ηO = 0.58

    SolGate

    0

    10

    20

    30

    40

    5060

    708090100110

    120130

    140

    150

    160

    170

    180

    Reflected Flux Distribution

    ρh = 0.13ηd/ηO = 0.17

    Schott

    UTILITY OF DIFFUSION FACTOR

    Surface Classification with ε and

    η

    'Schott'

    Solair

    Solgate

    Inconel

    Zynolyte

    CFC

    Pyromark

    Colloidal graphite 1

    Colloidal graphite 2

    W no blasted

    W blasted

    Ref. 50

    Kerlane

    Al2O3

    MgO

    2 1

    0.2

    0.2 0.4

    0.4

    0.6

    0.6

    0.8

    0.8

    1

    10

    ε (λ,Τ)

    ηd(T)/π

    Pyroreflectometry

    to determine the true temperature and optical properties of surfaces J.S.E.Volume: 130 Issue: 3 Published: 2008

  • 2

    PYROREFLECTOMETRY AT PROMES

    1 MW INSTALLATION‘GRAND FOUR’

    MEDIASE

    2 kW INSTALLATION‘BASTION’

    DISCO

  • 0,0 0,1 0,2 0,3800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1600ρr=1.085,ρb=1

    T*=1149

    ηd = 0.123

    Mesures: Tth =1162Tc:=1162,Tr=1032,Tb=1059

    TRb (1.3µm)

    Tc (1.3 & 1.55 µm)

    TRr (1.55µm)

    ηd

    Tth

    T(°C)

    700 800 900 1000 1100 1200700

    800

    900

    1000

    1100

    1200

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    T (°C)

    T (°C)

    Tth

    ε0,01.55µm

    ε0,01.55µm

    TRr (1.55µm)

    TRb (1.3µm)

    T*

    TC(1.3 et 1.55µm)

    ελ(Τ)

    2

    3

    4

    1

    800 1000 1200 1400 1600

    0,7

    0,8

    0,9

    1,0

    1,1

    1,2

    T (°C)

    εra εba ηa ρra/ρba

    W clean (Sample n°2)ε , η , ρr/ρb

    0 10 20 30 40 50 60 70 80 900,00

    0,05

    0,10

    0,15

    0,20

    0,25

    0,30

    0,35

    0,40

    0,45

    Angle (°)

    ε(θ)

    T719 T823 T903 T1010 T1119 T1186 T1243 T1320 T1429

    Validation

    Caracterisation

    1

    2

    2 2

    3 4

    MEASUREMENTS ON TUNGSTEN

  • 100 125 150 175 200

    0

    200

    400

    600

    800

    1000

    1200

    t (s)

    T°C

    Tc Tlr Tlb Tth Tconv

    0 200 400 600 800 1000

    0,36

    0,38

    0,40

    0,42

    0,44

    0,46

    0,48

    0,50ρ

    Tth (°C)

    Mesures déportées

    Rr Rb

    Cu

    CuOCu2 O

    MEASUREMENTS ON COPPER

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400Measures: Tc=1185-Tr=759-Tb=803-ρr=0.49-ρb=0.445

    T*=945°Cηd

    *=0.431

    Tth=955°C

    TR,b(1.3µm)

    TR,r(1.55µm)

    TC(1.3µm-1.55µm)

    ηd

    T°C

  • 350 400 450 500 550 600 650400

    500

    600

    700

    800

    Thermocouple

    T*

    Tl (1.3µm)Tl (1.55µm)

    Tc (1.3,1.55µm)

    t(s)

    Aluminium Specular Temperatures - Phase 1 T(°C)

    350 400 450 500 550 600 6500

    50

    100

    150

    200

    250

    300

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    ηd

    ε(1.3µm)

    ε(1.55µm)

    ρ(1.55µm)

    ρ(1.3µm)

    Aluminium Specular Optical Properties - Phase 1

    t(s)

    ε(λ), ηdρ(λ)0,0

    MEASUREMENTS ON ALUMINIUM

  • THERMOREFLECTOMETRY

    CAMERA F1

    PLAQUE

    FILTRE 1

    FILTRE 2F2

    LASER 2

    EXPANDER1,3µm

    LASER 1

    EXPANDER1,55µm

    Sample with 4 areas

    Color temperature

    Pixel levels

  • ADVANTAGES OF PYROREFLECTOMETRY

    -The less restrictive assumption

    - In situ and

    on line measurements

    - Permanent control of all the parameters

    - Large experimental

    validation

    - Large industrial application in rough conditions

    -

    Surface control for non contact diagnostic

    -

    Mature technique

    - Possibility

    to be extended forward solar blind wavelengths

    - Possibility

    to be extended for spatial measurements

    ‘IR Camera’

    A concept to determine the true temperature of opaque materials using a tricolor pyroreflectometer REVIEW OF SCIENTIFIC INSTRUMENTS Volume: 76 Issue: 2 Published: 2005

    Development of two-colour pyroreflectometry

    technique for temperature monitoring of tungsten plasma facing components FUSION ENGINEERING AND DESIGN Volume: 83 Pages: 672-679 Published: 2008

    True temperature measurement on metallic surfaces using a two-color pyroreflectometer

    method REVIEW OF SCIENTIFIC INSTRUMENTS Volume: 80 Issue: 9 Published: 2009

    Experimental validation of a pyroreflectometric

    method to determine the true temperature on opaque surface without hampering reflections MEASUREMENT Volume: 42 Issue: 6 Pages: 836-843 Published: 2009

  • 0 100 200600700800900

    10001100120013001400150016001700

    Temperature determined withtwo colour pyrorelectometric method

    Thermocouple

    T (°C)

    t (s)

    0 100 200600700800900

    10001100120013001400150016001700

    Pyroreflectometer

    Thermocouple

    Infrared Camera

    T (°C)

    t (s)

    32

    1

    6

    4

    5

    7

    8

    APPLICATION ON FUSION SIMULATOR (ITER)

    FE200 (CEA-AREVA)

  • APPLICATION ON FUSION REACTOR (ITER)

    80 m of optical fiber linking

    Calibration

    Control Room

    ASDEX-UPGRADE Max Planck Institute (Garching)

  • APPLICATION ON FUSION REACTOR (ITER)

  • 2,0 2,5 3,0 3,5 4,0

    600

    800

    1000

    t(s)

    T°C

    TRr TRb

    b - 24992

    3,10 3,15 3,20 3,25 3,30 3,35 3,40

    500

    750

    1000

    1250

    1500

    t(s)

    T°C

    TC TRr TRb T*

    APPLICATION ON FUSION REACTOR (ITER)

  • APPLCATION ON SOLAR INSTALLATIONS

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14400

    500

    600

    700

    800

    900

    1000

    1100

    mn

    T en °C

    Thermocouple

    Pyromètre F.O.

    Oxidization of ZrO(2-x

    )Hermes winging edge true temperature

    (Plata forma solar Almeria)

  • 100600

    650

    700

    750

    800

    850

    900Températures en °C

    t en s

    Tc TvC TlR TvLR TlB TvLB

    0 25 50 75 100 125 1500,00

    0,05

    0,10

    0,15

    0,20

    0,25

    0,30

    0,35Réflectivités normales normales

    t en s

    Réflectivité à 1,55µm Réflectivité à 1,3µm

    APPLICATION ON ROCKET MOTOR

    0,0 0,5 1,0 1,5 2,0 2,5 3,0550

    600

    650

    700

    750

    800

    850

    900

    950

    1000

    η = 0.65

    Tc(1,3 & 1,55µm)

    ρr=0.265 ρb=0.239 ρv=0.220

    Tc=770 Tr=737 Tb=742 Tv=753

    TRv(0,84µm)

    TRr(1,55µm)

    TRb(1,3µm)

    Inconel

    η

    T°C

    Measurement inside 3mm cooling canal

  • MEASUREMENTS on TURBINES

    0 20 40 60 80 100 120 140600

    605

    610

    615

    620

    t en s

    T en °C

    Measurements

    of T et

    ρat

    30 kHz

    APPLICATION ON ROCKET MOTOR

  • Ageing

    diagnosticon motor divergent

    120

    150

    180

    210

    240

    270

    300

    330

    360

    390

    420

    450

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

    (mm)

    ρ0,0(1.55µm) ρ0,0(1.3 µm) ρ0,0(λ) diffuseur lambertien ρ(λ)=1

    ρ0,0(λ)

    H

    0 30 60 90 120 150 180 210 240 270 300 330 3600,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    θ°

    ρ0,0(1.55µm) ρ0,0(1.3 µm) ρ0,0(λ) diffuseur lambertien ρ(λ)=1

    ρ0,0(λ)

    Axial profile

    Radial profile

    APPLICATION ON ROCKET MOTOR

  • Ageing control of ball

    bearing

    surface in cryogenic conditions

    bâti et appareillage de mesures mécaniquescuve à azote liquidedisque d'acierfrotteur

    protection sonde fibres optiques d'illumination

    couvercle

    sonde à f ibres optiques fibres optiques d'observation

    0 5 10 15 20 25 30 35 40 45 50 55 600,0

    0,5

    1,0

    1,5

    2,0 Réflectivité normale sur la trace Réflectivité à 10° sur la trace Réflectivité normale hors trace

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5ρ

    // à 0.83µm

    mn

    Coefficient de frottement

    APPLICATION ON ROCKET MOTOR

  • T measurements

    ρ measurements : surface state

    CONTROL for COMPOSITE BRAKE TESTS

  • 0 20 40 60 80 100 120 140 160 1800,0

    0,2

    0,4

    0,6

    0,8

    1,0ρ//

    Cos(θ) IFTiB Ech Seat SeatLit Toyota E97175 E68383 E65968 E48447

    Angle °

    ON LINE MEASUREMENT OF SHEET IRON GALVANISATION

    APPLICATION for CAR INDUSTRIE

  • 0 100 200 300 400 500 600 700 800 900 10000

    250

    500

    750

    1000

    1250

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    s

    T °KTc

    ρ'' 1.3µm ρ'' 1.55µm

    ρ''(λ,T)

    Growing semi-transparent layer studiesT and

    ρ

    measurements

    APPLICATION on H.T-X.R.D. CHAMBER

    In situ characterization of surface at high temperature by using simultaneously a pryroreflectometer and an diffractometer. Applied Surface Science, V135, p 91-96, 1998

    Diapositive numéro 1Diapositive numéro 2Diapositive numéro 3Diapositive numéro 4Diapositive numéro 5Diapositive numéro 6Diapositive numéro 7Diapositive numéro 8Diapositive numéro 9Diapositive numéro 10Diapositive numéro 11Diapositive numéro 12Diapositive numéro 13Diapositive numéro 14Diapositive numéro 15Diapositive numéro 16Diapositive numéro 17Diapositive numéro 18Diapositive numéro 19Diapositive numéro 20Diapositive numéro 21Diapositive numéro 22Diapositive numéro 23Diapositive numéro 24Diapositive numéro 25Diapositive numéro 26Diapositive numéro 27Diapositive numéro 28Diapositive numéro 29Diapositive numéro 30Diapositive numéro 31Diapositive numéro 32Diapositive numéro 33Diapositive numéro 34Diapositive numéro 35Diapositive numéro 36Diapositive numéro 37Diapositive numéro 38Diapositive numéro 39Diapositive numéro 40Diapositive numéro 41Diapositive numéro 42Diapositive numéro 43Diapositive numéro 44Diapositive numéro 45Diapositive numéro 46Diapositive numéro 47Diapositive numéro 48Diapositive numéro 49Diapositive numéro 50Diapositive numéro 51