109
DASAR-DASAR METODE KUANTITATIF Oleh : EDY SUHARTONO

METODE KUANTITATIF

Embed Size (px)

Citation preview

Page 1: METODE KUANTITATIF

DASAR-DASAR METODE KUANTITATIF

Oleh : EDY SUHARTONO

Page 2: METODE KUANTITATIF

Subject

• Differentiation• Integral• Differential Equation

Page 3: METODE KUANTITATIF

WHAT IS A FUNCTION?

Page 4: METODE KUANTITATIF

LINEAR FUNCTIONS

Page 5: METODE KUANTITATIF

Slope and Rate of Change

Page 6: METODE KUANTITATIF

Linear Functions in General

Page 7: METODE KUANTITATIF

Which of the following tables of values could represent a linear function?

Page 8: METODE KUANTITATIF

RATES OF CHANGE

Page 9: METODE KUANTITATIF

The Derivative at a Point

Page 10: METODE KUANTITATIF

THE DERIVATIVE FUNCTION

Page 11: METODE KUANTITATIF

Alternative Notations for the Derivative

Page 12: METODE KUANTITATIF

Basic Differentiation Rules

1.

Ex.

2.

0 a constantdc c

dx

( ) 5

( ) 0

f x

f x

Ex.

1 a real numbern ndx nx n

dx

7

6

( )

( ) 7

f x x

f x x

Page 13: METODE KUANTITATIF

Basic Differentiation Rules

3.

Ex.

4.

( ) ( ) a constantd dcf x c f x c

dx dx

8( ) 3f x x

Ex.

( ) ( ) d d d

f x g x f x g xdx dx dx

12( ) 7f x x

7 7( ) 3 8 24f x x x

11 11( ) 0 12 12f x x x

Page 14: METODE KUANTITATIF

More Differentiation Rules5.

Ex.

3 7 2( ) 2 5 3 8 1f x x x x x

( ) ( ) ( ) ( ) d d d

f x g x f x g x g x f xdx dx dx

Product Rule

2 7 2 3 6( ) 3 2 3 8 1 2 5 21 16f x x x x x x x x

9 7 6 4 230 48 105 40 45 80 2x x x x x x

Derivative of first

Derivative of Second

Page 15: METODE KUANTITATIF

More Differentiation Rules6.

2( ) ( ) ( ) ( )

( ) ( )

d dg x f x f x g xf xd dx dx

dx g x g x

Quotient Rule

lo hi hi lohi

lo lo lo

d dd

dx

Sometimes remembered as:

Page 16: METODE KUANTITATIF

More Differentiation Rules6.

Ex.

2

3 5( )

2

xf x

x

Quotient Rule (cont.)

2

22

3 2 2 3 5( )

2

x x xf x

x

2

22

3 10 6

2

x x

x

Derivative of numerator

Derivative of denominator

Page 17: METODE KUANTITATIF

More Differentiation Rules

7. The Chain Rule

If ( ) ( ) thenh x g f x

( ) ( ) ( )h x g f x f x

Note: h(x) is a composite function.

If ( ) with ( ) theny h x g u u f x

dy dy du

dx du dx

Another Version:

Page 18: METODE KUANTITATIF

          Copyright (c) 2003 

Brooks/Cole, a division of Thomson Learning, Inc.

More Differentiation Rules

The General Power Rule:

If ( ) ( ) , real thenn

h x f x n

1( ) ( ) ( )

nh x n f x f x

Ex.

1 22 2( ) 3 4 3 4f x x x x x

1 221

( ) 3 4 6 42

f x x x x

2

3 2

3 4

x

x x

The Chain Rule leads to

Page 19: METODE KUANTITATIF

          Copyright (c) 2003 

Brooks/Cole, a division of Thomson Learning, Inc.

Chain Rule Example

72 1

( )3 5

xG x

x

6

2

3 5 2 2 1 32 1( ) 7

3 5 3 5

x xxG x

x x

66

2 8

91 2 12 1 13( ) 7

3 5 3 5 3 5

xxG x

x x x

Ex.

Page 20: METODE KUANTITATIF

          Copyright (c) 2003 

Brooks/Cole, a division of Thomson Learning, Inc.

Chain Rule Example

5 2 8 2, 7 3y u u x x Ex. dy dy du

dx du dx

3 2 7556 6

2u x x

3 28 2 757 3 56 6

2x x x x

3 27 8 2140 15 7 3x x x x

Sub in for u

Page 21: METODE KUANTITATIF

Higher DerivativesThe second derivative of a function f is the derivative of the derivative of f at a point x in the domain of the first derivative.

Derivative Notations

nf

f

f

(4)f

Second

Third

Fourth

nth

2

2

d y

dx3

3

d y

dx4

4

d y

dxn

n

d y

dx

Page 22: METODE KUANTITATIF

Example of Higher Derivatives5 3( ) 3 2 14f x x x Given find ( ).f x

4 2( ) 15 6f x x x

3( ) 60 12f x x x

2( ) 180 12f x x

Page 23: METODE KUANTITATIF

Example of Higher Derivatives

Given2 1

( )3 2

xf x

x

find (2).f

2

2 2

2 3 2 3 2 1 7( ) 7 3 2

3 2 3 2

x xf x x

x x

3

3

42( ) 14 3 2 3

3 2f x x

x

3 3

42 42 21(2)

3243(2) 2f

Page 24: METODE KUANTITATIF

Implicit Differentiation33 4 17y x x

y is explicitly a function of x.

3 3 1y xy x

y is implicitly a function of x.

To differentiate the implicit case we write f (x) in place of y to get:

3( ) ( ) 3 1f x x f x x

Page 25: METODE KUANTITATIF

Implicit Differentiation (cont.)Now differentiate

using the chain rule:

3( ) ( ) 3 1f x x f x x

23 ( ) ( ) ( ) ( ) 3f x f x f x xf x

23 3y y y xy Which is

subbing in y

23 3y y x y

2

3

3

yy

y x

Solve for y’

Page 26: METODE KUANTITATIF

Practice 1

• A cylinder tank is being filled with water. The tank has height 40 m and radius 3 m. If water is being pumped in at a constant rate of 2 cubic meter per minute, find the rate at which the height of the cylinder changes at 30 minute. 

Page 27: METODE KUANTITATIF

Practice 2

• The length of a rectangle increases by 3 meter per minute while the width decreases by 2 meter per minute. When the length is 40 meter and the width is 15 meter, what is the rate at which the changes area

Page 28: METODE KUANTITATIF

Practice 30,5 /

dym dtk

dt

?dx

dt

y= 15 m

X = 10 m

Page 29: METODE KUANTITATIF

Practice 4

y= 15 m

X = 10 m0,5 /

dxm dtk

dt

?dy

dt

Page 30: METODE KUANTITATIF

Practice 5

y= 15 m

X = 15m

0,5 /dx

m dtkdt

?dy

dt

Page 31: METODE KUANTITATIF

Practice 6• A wire of length 12 inches can be bent into a 

circle, a square, or cut to make both a circle and a square. How much wire should be used for the circle if the total area enclosed by the figure(s) is to be a minimum? A maximum?

Page 32: METODE KUANTITATIF

Practice 7• A window consisting of a rectangle topped by 

a semicircle is to have an outer perimeter P. Find the radius of the semicircle if the area of the window is to be a maximum.

Page 33: METODE KUANTITATIF

Practice 8• A rectangular field as shown is to be bounded 

by a fence. Find the dimensions of the field with maximum area that can be enclosed with 1000 feet of fencing. You can assume that fencing is not needed along the river and building.

Page 34: METODE KUANTITATIF

Practice 9

• A company manufactures cylindrical barrels to store nuclear waste. The top and bottom of the barrels are to be made with material that costs $10 per square foot and the rest is made with material that costs $8 per square foot. If each barrel is to hold 5 cubic feet, find the dimensions of the barrel that will minimize the total cost.

Page 35: METODE KUANTITATIF

The Integral

• The Indefinite Integral

• Substitution

• The Definite Integral As a Sum

• The Definite Integral As Area

•The Definite Integral: The Fundamental Theorem of Calculus

Page 36: METODE KUANTITATIF

AntiderivativeAn antiderivative of a function f is a function F such that

F f

Ex.

2( ) 3 2F x x

An antiderivative of ( ) 6f x x

since ( ) ( ).F x f x

is

Page 37: METODE KUANTITATIF

( )f x dxmeans to find the set of all antiderivatives of f.

The expression:read “the indefinite integral of f with respect to x,”

( )f x dx

Integral sign Integrand

Indefinite Integral

x is called the variable of integration

Page 38: METODE KUANTITATIF

Every antiderivative F of f must be of the form F(x) = G(x) + C, where C is a constant.

Notice 26 3xdx x C

Constant of Integration

Represents every possible antiderivative of 6x.

Page 39: METODE KUANTITATIF

Power Rule for the Indefinite Integral, Part I

1

if 11

nn xx dx C n

n

Ex.

43

4

xx dx C

Page 40: METODE KUANTITATIF

Power Rule for the Indefinite Integral, Part II

1 1lnx dx dx x C

x

x xe dx e C Indefinite Integral of ex and bx

ln

xx bb dx C

b

Page 41: METODE KUANTITATIF

Sum and Difference Rules

( ) ( )kf x dx k f x dx

f g dx fdx gdx Ex.

( constant)k

4 43 32 2 2

4 2

x xx dx x dx C C

2 2x x dx x dx xdx 3 2

3 2

x xC

Constant Multiple Rule

Ex.

Page 42: METODE KUANTITATIF

Integral Example/Different Variable

Ex. Find the indefinite integral:

273 2 6ue u du

u

213 7 2 6ue du du u du du

u

323 7 ln 6

3ue u u u C

Page 43: METODE KUANTITATIF

Position, Velocity, and Acceleration Derivative Form

If s = s(t) is the position function of an object at time t, then

Velocity = v = Acceleration = a = ds

dtdv

dt

Integral Form

( ) ( )s t v t dt ( ) ( )v t a t dt

Page 44: METODE KUANTITATIF

Integration by SubstitutionMethod of integration related to chain rule differentiation. If u is a function of x, then we can use the formula

/

ffdx du

du dx

Page 45: METODE KUANTITATIF

Integration by Substitution

Ex. Consider the integral: 92 33 5x x dx3 2pick +5, then 3 u x du x dx

10

10

uC

9u du 103 5

10

xC

Sub to get Integrate Back Substitute

23

dudx

x

Page 46: METODE KUANTITATIF

2Let 5 7 then 10

duu x dx

x

Ex. Evaluate

3/ 21

10 3/ 2

uC

3/ 225 7

15

xC

25 7x x dx

2 1/ 215 7

10x x dx u du

Pick u, compute du

Sub in

Sub in

Integrate

Page 47: METODE KUANTITATIF

3ln

dx

x xLet ln then u x xdu dx

Ex. Evaluate

3

3ln

dxu du

x x

2

2

uC

2ln

2

xC

Page 48: METODE KUANTITATIF

3

3 2

t

t

e dt

e 3

3Let +2 then

3t

t

duu e dt

e

Ex. Evaluate

3

3

1 1

32

t

t

e dtduue

ln

3

uC

3ln 2

3

teC

Page 49: METODE KUANTITATIF

Shortcuts: Integrals of Expressions Involving ax + b

Rule

1

1( 1)

nn ax b

ax b dx C na n

1 1lnax b dx ax b Ca

1ax b ax be dx e Ca

1

lnax b ax bc dx c C

a c

Page 50: METODE KUANTITATIF

Riemann SumIf f is a continuous function, then the left Riemann sum with n equal subdivisions for f over the interval [a, b] is defined to be

0 1 1( ) ( ) ... ( )nf x x f x x f x x

1

0

n

kk

f x x

0 1where ... are the na x x x b

0 1 1( ) ( ) ... ( )nf x f x f x x

subdivisions and ( ) / .x b a n

Page 51: METODE KUANTITATIF

The Definite IntegralIf f is a continuous function, the definite integral of f from a to b is defined to be

1

0

( ) limb n

kn

ka

f x dx f x x

The function f is called the integrand, the numbers a and b are called the limits of integration, and the variable x is called the variable of integration.

Page 52: METODE KUANTITATIF

Approximating the Definite Integral

Ex. Calculate the Riemann sum for the

integral using n = 10.22

0

x dx

1 9

2

0 0

1

5

n

k kk k

f x x x

2 2 2(1/ 5) (2 / 5) ... (9 / 5) (1/ 5) 2.28

Page 53: METODE KUANTITATIF

The Definite Integral

is read “the integral, from a to b of f(x)dx.”

( )b

a

f x dx

Also note that the variable x is a “dummy variable.”

( ) ( )b b

a a

f x dx f t dt

Page 54: METODE KUANTITATIF

The Definite Integral As a Total

If r(x) is the rate of change of a quantity Q (in units of Q per unit of x), then the total or accumulated change of the quantity as x changes from a to b is given by

Total change in quantity ( )b

a

Q r x dx

Page 55: METODE KUANTITATIF

The Definite Integral As a Total

Ex. If at time t minutes you are traveling at a rate of v(t) feet per minute, then the total distance traveled in feet from minute 2 to minute 10 is given by

10

2

Total change in distance ( )v t dt

Page 56: METODE KUANTITATIF

Area Under a Graph

a b

Idea: To find the exact area under the graph of a function.

( )y f x

Method: Use an infinite number of rectangles of equal width and compute their area with a limit.

Width:b a

xn

(n rect.)

Page 57: METODE KUANTITATIF

Approximating AreaApproximate the area under the graph of

using n = 4.

2( ) 2 on 0,2f x x

0 1 2 3( ) ( ) ( ) ( )A x f x f x f x f x

1 1 30 1

2 2 2A f f f f

1 1 9 70 2

2 2 2 2A

Page 58: METODE KUANTITATIF

Area Under a Graph

a b

( )y f x

f continuous, nonnegative on [a, b]. The area is

1

0

Area limn

kn

k

f x x

( )b

af x dx

Page 59: METODE KUANTITATIF

Geometric Interpretation

(All Functions)

( )b

af x dx Area of R1 – Area of R2 + Area of

R3

a b

( )y f xR1

R2

R3

Page 60: METODE KUANTITATIF

Area Using Geometry

Ex. Use geometry to compute the integral

5

1

1x dx

Area = 2

5

1

1 4 2 2x dx

Area =4

Page 61: METODE KUANTITATIF

Fundamental Theorem of Calculus

Let f be a continuous function on [a, b].

2. If F is any continuous antiderivative of f and is defined on [a, b], then

( ) ( ) ( )b

af x dx F b F a

1. If ( ) ( ) , then ( ) ( ). x

a

A x f t dt A x f x

Page 62: METODE KUANTITATIF

The Fundamental Theorem of Calculus

Ex. 3 4 If ( ) 5 , find ( ). x

a

A x t tdt A x

3 4 ( ) 5A x x x

Page 63: METODE KUANTITATIF

Evaluating the Definite Integral

Ex. Calculate

5

1

12 1x dx

x

55 2

1 1

12 1 lnx dx x x x

x

2 25 ln 5 5 1 ln1 1

28 ln 5 26.39056

Page 64: METODE KUANTITATIF

Substitution for Definite Integrals

Ex. Calculate 1 1/ 22

02 3x x dx

2let 3u x x

then 2

dudx

x

1 41/ 22 1/ 2

0 02 3x x x dx u du

43/ 2

0

2

3u

16

3

Notice limits change

Page 65: METODE KUANTITATIF

Computing Area Ex. Find the area enclosed by the x-axis, the vertical lines x = 0, x = 2 and

the graph of

23

02x dx

Gives the area since 2x3 is nonnegative on [0, 2].

22

3 4

00

12

2x dx x 4 41 1

2 02 2

8

Antiderivative Fund. Thm. of Calculus

22 .y x

Page 66: METODE KUANTITATIF

Applications of Definite Integrals

Page 67: METODE KUANTITATIF

Area of between a Curve and the x-axis

b

a

n

ii

x

dxxf

xzf

PQRSofarea

)(

)(lim1

0

Page 68: METODE KUANTITATIF

0

)(lim1

0

n

ii

xxzf

PQRSofarea

dxxf

dxxf

b

a

b

a

)(

|)(|

1

1

Page 69: METODE KUANTITATIF

b

c

c

a

b

c

c

a

b

a

dxxfdxxf

dxxfdxxf

xf

areashadedtheofareathe

)()(

)()(

)(

22

22

2

Page 70: METODE KUANTITATIF

Area of between a Curve and the y-axis

d

c

n

ii

y

dyyg

yzg

PQRSofarea

)(

)(lim1

0

Page 71: METODE KUANTITATIF

0

)(lim1

0

n

ii

yyzg

PQRSofarea

dyyg

dyyg

d

c

d

c

)(

|)(|

1

1

Page 72: METODE KUANTITATIF

d

e

e

c

d

e

e

c

d

c

dyygdyyg

dyygdyyg

yg

areashadedtheofareathe

)()(

)()(

)(

22

22

2

Page 73: METODE KUANTITATIF

Area between Two Curves

b

adxyy

Aareaofareashaded

)( 21

Page 74: METODE KUANTITATIF

d

cdyxx

Aareaofareashaded

)( 21

Page 75: METODE KUANTITATIF

Volume of Solid of Revolution about the Coordinate Axes

x

y

0

axis of revolutionsphere

semi-circle

Page 76: METODE KUANTITATIF

Volume of Solid of Revolution about the Coordinate Axes

x

y

0

axis of revolution

rectangle

cylinder

Page 77: METODE KUANTITATIF

cylinder

made up of many many different sizes of cylinder

Page 78: METODE KUANTITATIF

Consider a vertical rectangular stripe on the interval [xi-1, xi] with thickness x, a thin cylinder is formed. This cylinder has radius yi and height x. From the formula for the volume of a cylinder, we have

xyV ii 2

Page 79: METODE KUANTITATIF

xyV ii 2

n

ii

x

n

ii

x

xy

VV

1

2

0

10

lim

lim

b

adxyV 2

Page 80: METODE KUANTITATIF

d

cdyxV 2

Page 81: METODE KUANTITATIF

Volume of Hollow Solid of Revolution about the Coordinate Axes

dxyyVb

a)( 2

22

1

hollow

Page 82: METODE KUANTITATIF

dyxxVd

c)( 2

22

1

hollow

Page 83: METODE KUANTITATIF

Differential Equations

• Adifferential equation is an equation involving an unknown function and its derivatives

Page 84: METODE KUANTITATIF

Differential Equations

• A differential equation is an ordinary differential equation if the unknown function depends on only one independent variable. 

• If the unknown function depends on two or more independent variables, the differential equation is a partial differential equation

Page 85: METODE KUANTITATIF

Standard and Differential Forms

• Standard form for a first-order differential equation in the unknown function y(x) is

• where the y ′ derivative appears only on the left side. Many, but not all, first-order differential equations can be written in standard form by algebraically solving for y ′ and then setting

     f (x,y) equal to the right side of the resulting equation  M(x, y)dx + N(x, y)dy = 0

' ( , )y f x y

Page 86: METODE KUANTITATIF

First Order Linear Equations• A first order linear differential equation has the following form:

• The general solution is given by 

• Where

• called the integrating factor. If an initial condition is given, use it to find the constant C.

Page 87: METODE KUANTITATIF

Here are some practical steps to follow• If the differential equation is given as

• rewrite it in the form

• where 

Page 88: METODE KUANTITATIF

Here are some practical steps to follow• Find the integrating factor

• Evaluate the integral

• Write down the general solution

• If you are given an IVP, use the initial condition to find the constant C.

.

Page 89: METODE KUANTITATIF

Separable Equations• The differential equation of the form

• is called separable, if f(x,y) = h(x) g(y); that is

• In order to solve it, perform the following steps:• Solve the equation g(y) = 0, which gives the constant solutions 

of (S);

Page 90: METODE KUANTITATIF

Separable Equations• Rewrite the equation (S) as

• and, then, integrate

• to obtain

Page 91: METODE KUANTITATIF

Separable Equations• Write down all the solutions; the constant ones 

obtained from (1) and the ones given in (2);• If you are given an IVP, use the initial condition to 

find the particular solution. Note that it may happen that the particular solution is one of the constant solutions given in (1). This is why Step 3 is important.

Page 92: METODE KUANTITATIF

Modeling via Differential Equations

• One of the most difficult problems that a scientist deals with in his everyday research is: "How do I translate a physical phenomenon into a set of equations which describes it?'‘

• It is usually impossible to describe a phenomenon totally, so one usually strives for a set of equations which describes the physical system approximately and adequately.

Page 93: METODE KUANTITATIF

Modeling via Differential Equations• In general, once we have built a set of equations, we 

compare the data generated by the equations with real data collected from the system (by measurement).

• If the two sets of data "agree'' (or are close), then we gain confidence that the set of equations will lead to a good description of the real-world system. 

• For example, we may use the equations to make predictions about the long-term behavior of the system. 

Page 94: METODE KUANTITATIF

Modeling via Differential Equations

• It is also important to keep in mind that the set of equations stays only "valid" as long as the two sets of data are close. 

• If a prediction from the equations leads to some conclusions which are by no means close to the real-world future behavior, then we should modify and "correct" the underlying equations.

• As you can see, the problem of generating "good" equations is not an easy exercise. 

• Note that the set of equations is called a Model for the system

Page 95: METODE KUANTITATIF

How do we build a Model?

• Clearly state the assumptions on which the model will be based. These assumptions should describe the relationships among the quantities to be studied.

• Completely describe the parameters and variables to be used in the model.

• Use the assumptions (from Step 1) to derive mathematical equations relating the parameters and variables (from Step 2).

Page 96: METODE KUANTITATIF

Exponential Growth – Population

 Let P(t) be a quantity that increases with time t and the rate of increase is proportional to the same quantity P as follows 

d P / d t = k P 

Where d p / d t is the first derivative of P, k > 0 and t is the time.  The solution to the above first order differential equation is given by 

P(t) = A ek t 

Where A is a constant not equal to 0. 

Page 97: METODE KUANTITATIF

Exponential Growth – Population

If P = P0 at t = 0, then  P0 = A e0 

which gives A = P0 

The final form of the solution is given by 

P(t) = P0 ek t 

Assuming P0 is positive and since k  is positive, P(t) is an increasing exponential. d P / d t = k P is also called an exponential growth model.

Page 98: METODE KUANTITATIF

Exponential Decay - Radioactive Mate Let M(t) be the amount of a product that decreases with time t and the rate of decrease is proportional to the amount M as follows 

      d M / d t = - k M 

where d M / d t is the first derivative of M, k > 0 and t is the time. Solve the above first order differential equation to obtain 

M(t) = A e- k t 

where A is non zero constant. 

Page 99: METODE KUANTITATIF

Exponential Decay - Radioactive Mate

If we assume that M = M0 at t = 0, then 

M0 = A e0 

which gives A = M0 

The solution may be written as follows 

M(t) = M0e- k t 

    Assuming M0 is positive and since k is positive, M(t) is an decreasing exponential. d M / d t = - k M is also called an exponential decay model.

Page 100: METODE KUANTITATIF

Falling Object• An object is dropped from a height at time t = 0. If h(t) is the height 

of the object at time t, a(t) the acceleration and v(t) the velocity. The relationships between a, v and h are as follows: 

a(t) = dv / dt , v(t) = dh / dt. 

For a falling object, a(t) is constant and is equal to g = -9.8 m/s. 

Combining the above differential equations, we can easily deduce the following equation 

d2h / dt2 = g 

Page 101: METODE KUANTITATIF

Falling Object

• Integrate both sides of the above equation to obtain 

dh / dt = g t + v0 

Integrate one more time to obtain 

h(t) = (1/2) g t + v0 t + h0 

The above equation describes the height of a falling object, from an initial height h0 at an initial velocity v0, as a function of time. 

Page 102: METODE KUANTITATIF

Newton's Law of Cooling It  is  a  model  that  describes,  mathematically,  the  change  in temperature  of  an  object  in  a  given  environment.  The  law states  that  the  rate of  change  (in time) of  the  temperature  is proportional  to  the  difference  between  the  temperature  T  of the  object  and  the  temperature  Te  of  the  environment surrounding the object. 

d T / d t = - k (T - Te)

Let x = T - Te so that dx / dt = dT / dt 

Using the above change of variable, the above differential equation becomes 

d x / d t = - k x 

Page 103: METODE KUANTITATIF

Newton's Law of CoolingThe solution to the above differential equation is given by 

x = A e - k t substitute x by T - Te

T - Te = A e - k t Assume that at t = 0 the temperature T = To 

To - Te = A e 0 which gives A = To - Te The final expression for T(t) i given by 

T(t) = Te + (To - Te) e - k t

 This last expression shows how the temperature T 

      of the object changes with time. 

Page 104: METODE KUANTITATIF

Dilution Problems

Consider a tank which initially holds Vo gal of brine that contains a lb of salt. Another solution, containing b lb of salt per gallon, is poured into the tank at the rate of e gal/min while simultaneously, the well-stirred solution leaves the tank at the rate of f gal/min (see Figure).

The problem is to find the amount of salt in the tank at any time t.

Page 105: METODE KUANTITATIF

Dilution Problems

Page 106: METODE KUANTITATIF

• Let Q denote the amount (in pounds) of salt in the tank at any time. 

• The time rate of change of Q, dQ/ dt, equals the rate at which salt enters the tank minus the rate at which salt leaves the tank. 

• Salt enters the tank at the rate of be lb/min. To determine the rate at which salt leaves the tank, we first calculate the  volume of brine in the tank at any time t, which is the initial volume Vo plus the volume of brine added et minus the volume of brine removed ft.

• Thus, the volume of brine at any time is

Vo + et − ft

Page 107: METODE KUANTITATIF

• The concentration of salt in the tank at any time is   Q / (V0 + et − ft)• from which it follows that salt leaves the tank at the rate of

Page 108: METODE KUANTITATIF

Practice 1

• A bacteria culture is known to grow at a rate proportional to the amount present. After one hour, 1000 strands of the bacteria originally in the culture. and after four hours, 3000 strands. Find 

(a) an expression for the approximate number of strands of the bacteria present in the culture at any time t and

(b) the approximate number of strands of the bacteria originally in the culture.

Page 109: METODE KUANTITATIF

Practice 2

• A tank initially holds 100 gal of a brine solution containing 20 lb of salt. At t = 0, fresh water is poured into the tank at the rate of 5 gal/min, while the well-stirred mixture leaves the tank at the same rate. 

• Find the amount of salt in the tank at any time t.