66
METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN: eAD+ KAIST, Industrial and Systems Engineering Mijeong Shin, James Morrison and Hyo Won Suh IDETC/CIE 2010 DETC2010/VIB-29171

METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN: eAD+

  • Upload
    devlin

  • View
    28

  • Download
    0

Embed Size (px)

DESCRIPTION

IDETC/CIE 2010 DETC2010/VIB-29171 . METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN: eAD+. KAIST, Industrial and Systems Engineering Mijeong Shin, James Morrison and Hyo Won Suh. CONTENTS. Background Necessity and Trend of Eco-Design - PowerPoint PPT Presentation

Citation preview

Page 1: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

METHODOLOGY TO SUPPORT ENVIRONMEN-TALLT AWARE PRODUCT DESIGN USING AX-

IOMATIC DESIGN:

eAD+

KAIST, Industrial and Systems EngineeringMijeong Shin, James Morrison and Hyo Won Suh

IDETC/CIE 2010 DETC2010/VIB-29171

Page 2: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 2

CONTENTS

Background Necessity and Trend of Eco-Design Previous Approaches

Proposed Approach (eAD+) Methodology Flow diagram Comparisons to Other Methodologies

Methodologies Axiomatic Design Based Methodology Structured Eco-FR & Eco-DP Feedback Mechanism from Environmental Analysis Augmented Design Matrix

Example (Case Studies : Mobile phone, Stapler, Flash light) Concluding remarks

Page 3: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 3

Necessity and trend of eco-design

World’s development paradigms are rapidly changing Sustainability becomes main driver of new paradigm

[1] Jovane, F., Yoshikawa, H., Alting, L., Boer, C. R., Westkamper, E., Williams, D., Tseng, M., Seliger, G. and Paci, A. M., 2008, “The Incoming Global Technological and Industrial Revolution towards Competitive Sustainable Manufacturing”, CIRP Annals, pp. 641-659

[1]

Page 4: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 4

Necessity and trend of eco-design

Consumer sophistication regarding environmental issues has increased

International regulations for environmental emissions have become more strict

Need for product designs that satisfy international regulations

and meet consumer’s environmental expectations

Page 5: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 5

For proactive eco-design, eco-factors should be considered early in the design process

Previous approaches

( Reactive redesign )

Page 6: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 6

Previous approaches

( Reactive redesign )

Proactive eco-design- Eco Needs

Formal Method- LCT/LCA

Page 7: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 7

Proposed Approach: eAD+

eAD+ methodology follows the essentials of Axiomatic Design To manage couplings between eco-factors and product design parameters

: Axiomatic design theory -> Supporting domain of design-> Encouraging innovative alternatives-> Insensitive to iterative design changes

However, it has some different points: Pre-made and structured eco-FRs and eco-DPs

: Eco-FRs and Eco-DPs libraries Using feedback mechanism, design can be affected by eco-analysis result directly

: LCT/LCA to Re-design Environmental effects of each DP are quantitatively estimated

: Augmented Design Matrix

Page 8: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 8

Comparisons to other methodologies

[1]

[1] Integration of Sustainability Into Early Design Through the Function Impact Matrix, Devanathan S, Ramanujan D, Bernstein WZ, Zhao F, Ramani K, 2010, Journal of Mechanical Design

Page 9: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 9

eAD+ methodology flow

Eco-Factors&AxiomaticDesign

LCT/LCA

AD+ (Aug DM)

LCA

LCA

Page 10: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 10

Axiomatic design theory

“Axiomatic Design (AD) theory is a systems design methodology using matrix methods to systematically analyze the transformation of CN into FR, DP and PV”[1]

Customer Needs (CN): Voice of the customer (all stakeholders including eco-stakeholder) Functional Requirement (FR): Functions that a design must provide - goals Design Parameter (DP): Solution for each FRs (e.g. concept, component, process…) - methods Constraints & Selection Criteria

Axiom 1: Maintain independence of the FRs There is only one DP for each FR

[1] Axiomatic Design, N. P. Suh, 2002

-> Supporting domain of design-> Encouraging innovative alternatives-> Insensitive to iterative design changes

Page 11: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 11

Eco-FR and Eco-DP list

Eco-customer needs were collected from literature survey Y. Zhang, H. –P. Wang, C. Zhang, “Green QFD-II-: a life cycle approach for envi-

ronmentally conscious manufacturing by integrating LCA and LCC into QFD matri-ces”, International Journal of Production Research, 1999, vol. 37, No. 5, 1075-1091

K. Masui, T. Sakao, A. Inaba, “Quality function deployment for environment QFDE”, IEEE, 2001, 852-857

T. Hur, J. Lee, J. Ryu, E. Kwon, “Simplified LCA and matrix methods identifying the environmental aspects of a product system”, Journal of Environmental Manage-ment, 2005, 229-237

P. Park, K. Lee, “Development of an ecodesign method for electronics products and application to mobile phone”, Journal of Korean Institute of Industrial Engi-neering, 2004, Vol. 26

17 companies’ web pages and environmental reports

Page 12: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 12

Eco-FR and Eco-DP list

2004 OECD key environmental indicators Climate change: CO2 and greenhouse has emission intensities Ozone layer: Ozone depleting substances Air quality: SOx and NOx emission intensities Waste generation: municipal waste generation intensities Freshwater quality: waste water treatment connection rates Freshwater resources: intensity of use of water resources Forest resources: intensity of use of forest resources Fish resources: intensity of use of fish resources Energy resources: Intensity of energy use Biodiversity: Threatened species

Page 13: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 13

Eco-FR and Eco-DP list

Environmental benchmarking pa-rameters

Ecodesign strate-gies for electronic

products

Source: P. Park, K. Lee, “Development of an ecodesign method for electronics products and application to mo-bile phone”, Journal of Korean Institute of Industrial Engineering, 2004, Vol. 26

Page 14: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 14

Eco-FR and Eco-DP list

- Preserve material- Design for disassembly- Reduce weight- Save Energy- Improve logistics- Battery-free product- Reduce amount of liquid residues- Eliminate cleaning process- Reduce emission- …

~100 eco-CNs for the eco-stakeholders CNs are simply things the

stakeholder-thinks they want

NOTE: There is generally little/no structure to CNs - They can include goals, methods, constraints, feel-ings, contradictions - un-structured

Page 15: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 15

Eco-FR and Eco-DP list

FRs are goals DPs are methods

What goals can we find to satisfy the eco-stake-holder?

Eco-CNs may be categorized in 3 classes

- Less emission

- Less amount of liquid residues

Page 16: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 16

Eco-FR and Eco-DP list

Page 17: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 17

Eco-FR and Eco-DP list

* FRs which are directly related with LCA index

*

**

**

**

**

Life Cycle

Page 18: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 18

Eco-FR and Eco-DP list

Eco-FR and eco-DP are intended to serve as a reference for the designer They can be readily incorporated into the design process

Possible DPs -

-

FRs

Page 19: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 19

Feedback mechanism from eco-analysis

Direct feedback mechanism from eco-analysis result to the design process Using relationships between LCT/LCA index and Eco-FR,

LCT/LCA result can be linked with augmented design matrix

Page 20: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 20

Feedback mechanism from eco-analysis

LCT/LCAValues DPs

FRs

Page 21: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 21

Augmented design matrix

A design might have several couplings Each coupling has different effects on cus-

tomer/eco satisfaction In practice, eliminating all couplings might

be very difficult due to technology, time or resource limitation

Augmented DM

Using weighted DP, critical coupling can be defined Effective and efficient design process is possible

* Augmented Design Matrix is inspired by House of Quality in Quality Function Deployment (QFD) methodology

Page 22: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 22

Augmented design matrix

Environmental analysis results are mapped to FR and FR weight are mapped to DP

Finally, critical DP which has the worse effect on the environment will be iden-tified

Environmental analysis

Functional Re-quirement

Design Param-eter

Critical coupling is identified!

Page 23: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 23

Augmented design matrix

Page 24: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 24

Augmented design matrix (ADM)

Normally, whether there is a coupling or not is indicated on the design matrix (not the magnitude of coupling)

In ADM, specific numbers are used to express magnitude of couplings

Using those numbers, result of environmental analysis can be mapped to FR and each DP’s environmental effects are quanti-tatively calculated

Designer can easily see which part has the worst effect on the environment

Page 25: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 25

Case Study 1 – mobile phone

Objective: design eco-friendly mobile phone

Start with existing mobile phone design, modify the de-sign specifications using eAD+ methodology

Using this activity, we can verify the effectiveness of eAD+ methodology for designing eco-friendly product

Samsung ElectronicsSPH-C2300

Page 26: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 26

eAD+ methodology flow

LCA

LCA

Page 27: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 27

LCA (Life Cycle Assessemt)

Product Life cycle Data

Inventory Calcula-tion

Characterization

NormalizationEnvironment Impact Re-sult

LCA(Life Cycle Assessment)

2. Analyze inventory

3. Evaluate effect

4. Interpret result

MethaneSO2

GWAD

1. Set objective and range

Page 28: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 28

LCI DB (PASS, Korean Government)   Material Category Unit Total

PP (1kg)

Crude oil Raw g 1.200E+03CO2 Air g 1.800E+03NOx Air g 1.000E+01SOx Air g 1.100E+01VOC Air g 9.600E+00

Stainless steel (1kg)

Crude oil Raw g 2.940E+02Coal Raw g 7.790E+02

Chromium Raw g 2.030E+02Iron (ore) Raw g 6.550E+02

CO2 Air g 3.650E+03

Electricity (1kWh)Coal Raw g 4.950E+01CO2 Air g 2.900E+02

Methane Air g 5.320E-01SOx Air g 1.180E+00

Transport(4.5t Truck, 60km/h,

ton.km)

Crude oil Raw g 2.948E-02CO Air g 3.592E-05CO2 Air g 9.148E-02HC Air g 6.350E-04NOx Air g 1.239E-03

Incineration (20%)(1kg waste)

Coal Raw g 1.610E-01Crude oil Raw g 7.020E-01

CO2 Air g 3.560E+00NOx (as NO2) Air g 1.270E-01

Landfill (30%)(1kg waste)

Crude oil Raw g 9.540E-01CO2 Air g 1.870E+01

Methane Air g 1.970E+00SOx (as SO2) Air g 3.240E-02

Recycling (50%)(1kg waste)

Coal Raw g 7.880E+00Crude oil Raw g -7.490E+01Iron (ore) Raw g -3.020E+02

CO2 Air g -2.000E+02

Natural Rubber(1kg)

SOx Air g 7.597E-01Crude oil Raw g 5.475E+01

CO2 Raw g 1.800E+02NOx Air g 2.661E+00VOC Air g 5.201E-01COD Water g 1.000E+01

Natural gas Air g 4.752E+00CO Air g 6.181E-01

  Material Category Unit Total

Aluminum(1kg)

CO2 Air g 1.790E+03Crude oil Raw g 4.120E+02

Coal Raw g 3.840E+02NOx Air g 9.430E+00SOx Air g 6.620E+00VOC Air g 1.160E+00

Methane Air g 1.990E+00

PCB (1kg)

Copper ore (35%) Raw g 5.611E+04CO2 Air g 1.002E+04Coal Raw g 1.302E+03

Crude oil Raw g 1.060E+03COD Water g 2.475E+02BOD Water g 1.494E+02

Li-ion Battery(1EA)

CO2 Air g 2.272E+02Natural gas Air g 1.185E+02

Coal Raw g 3.574E+01Crude oil Raw g 1.212E+01

SOx Air g 5.318E-01NOx Air g 4.540E-01

Methane Air g 3.057E-01

LCD (1kg)

Crude oil Raw g 2.760E+03CO2 Air g 5.400E+03NOx Air g 2.400E+01SOx Air g 1.980E+01VOC Air g 1.440E+01BOD Water g 4.483E+02COD Water g 4.950E+02

Plastic Extrusion(1kg)

CO2 Air g 2.186E+02Coal Air g 7.880E+01

Natural gas Air g 1.010E+01Crude oil Raw g 9.761E+00

SOx Air g 7.310E-01NOx Air g 5.350E-01

Press Process(3500T)

CO2 Air g 1.878E-01Coal Raw g 6.768E-02

Natural gas Air g 8.674E-03Crude oil Raw g 8.463E-03

CO Air g 1.870E-02SOx Air g 6.280E-04NOx Air g 4.600E-04

Page 29: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 29

Upstream processFrom raw material acquisition to part manufacturing

Parameter

Housing

Raw material aqusition Part manufacturing

SumPP STEEL RUBBER AL PE Press Electric-

ity

Part FRT Panel

Slide UPR Slide LWR Back

PanelInner Panel

Slide UPR Panel

PCB 2 Plate

Metal(screws) Key Pad Number

PadKey Pad

Ring PP STEEL (kWh)

Mass (g) 9.0 8.0 6.0 8.0 3.0 6.0 5.0 1.5 0.5 1.0 0.5 34.0 12.5 1.0

Crude oil 1.080E+01

9.600E+00

7.200E+00

9.600E+00 3.600E+00 1.764E+00 1.470E+00 1.800E+00 2.738E-

02 5.475E-02 2.060E-01 3.319E-01 1.058E-04  4.645E+01

Coal           4.674E+00 3.895E+00 1.169E+00    1.920E-01 2.679E+00 8.460E-04 4.950E+0

16.211E+01

Chromium           1.218E+00 1.015E+00 3.045E-01            2.538E+00

Iron           3.930E+00 3.275E+00 9.825E-01            8.188E+00

CO21.620E+0

11.440E+0

11.080E+0

11.440E+0

1 5.400E+00 2.190E+01 1.825E+01 5.475E+00 9.002E-02 1.800E-01 8.950E-01 7.433E+0

0 2.347E-03 2.900E+024.054E+02

Methane                     9.950E-04  1.084E-04 5.320E-01 5.331E-01

CO                 3.090E-04 6.181E-04    2.338E-04  1.161E-03

VOC 8.640E-02 7.680E-02 5.760E-02 7.680E-02 2.880E-02      2.601E-04 5.201E-04 5.800E-04      3.278E-01

NOx 9.000E-02 8.000E-02 6.000E-02 8.000E-02 3.000E-02      1.331E-03 2.661E-03 4.715E-03 1.819E-02 5.750E-06  3.669E-01

SOx 9.900E-02 8.800E-02 6.600E-02 8.800E-02 3.300E-02      3.798E-04 7.597E-04 3.310E-03 2.485E-02 7.850E-06 1.180E+0

01.583E+00

COD                 5.001E-03 1.000E-02        1.500E-02

Natural gas                2.376E-03 4.752E-03  3.433E-01    3.504E-01

Copper ore                              BOD                              

Page 30: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 30

From raw material acquisition to part manufacturing

Parameter

Electronics Battery

TotalSum

Raw material aqusition Part M.

Sum

Raw material aqusition Part M.

SumPCB LCD Electricity PP PCB PACK PE Electricity

Part PCB 1 PCB 2 LCD (kWh) Battery Housing PCB Battery PACK PP (kWh)

Mass (g) 5.0 5.0 10.0 2.5 7.0 4.0 15.0 7.0 2.0

Crude oil 5.298E+00 5.298E+00 2.760E+01  3.820E+01 8.400E+00 4.238E+00 1.817E-01 6.833E-02  1.289E+01 9.754E+01

Coal 6.511E+00 6.511E+00  1.238E+02 1.368E+02  5.209E+00 5.361E-01 5.516E-01 9.900E+01 1.053E+02 3.042E+02

Chromium                       2.538E+00

Iron                       8.188E+00

CO2 5.009E+01 5.009E+01 5.400E+01 7.250E+02 8.792E+02 1.260E+01 4.007E+01 3.409E+00 1.530E+00 5.800E+02 6.376E+02 1.922E+03

Methane       1.330E+00 1.330E+00    4.585E-03  1.064E+00 1.069E+00 2.932E+00

CO                       1.161E-03

VOC     1.440E-01  1.440E-01 6.720E-02        6.720E-02 5.390E-01

NOx     2.400E-01  2.400E-01 7.000E-02  6.810E-03 3.745E-03  8.055E-02 6.875E-01

SOx     1.980E-01 2.950E+00 3.148E+00 7.700E-02  7.977E-03 5.117E-03 2.360E+00 2.450E+00 7.181E+00

COD 1.238E+00 1.238E+00 4.950E+00  7.425E+00  9.900E-01      9.900E-01 8.430E+00

Natural gas               1.778E+00 7.067E-02  1.848E+00 2.199E+00

Copper ore 2.805E+02 2.805E+02    5.611E+02  2.244E+02      2.244E+02 7.855E+02

BOD 7.472E-01 7.472E-01 4.483E+00  5.978E+00  5.978E-01      5.978E-01 6.576E+00

Upstream process

Page 31: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 31

Upstream LCA Result

Housin

g PP

Housin

g STEEL

Housin

g RUBBER

Housin

g AL

Electro

nics P

CBLC

D

Battery

Hou

sing

PCB Batt

ery

Battery

PACK

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

Part

GW

Page 32: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 32

Downstream process

ParameterManufacture Delivery Use Disposal

Electricity Delivery Electricity Incineration(20%) Landfill(30%) Recycling(50%) Sum

Crude oil   1.393E-03 1.084E+02 6.634E-02 9.015E-02 -7.078E+00 -6.922E+00

Coal 3.465E+01     1.521E-02   7.447E-01 7.599E-01

Chromium              Iron           -7.078E+00 -7.078E+00

CO2 2.030E+02 4.323E-03 6.351E+02 3.364E-01 1.767E+00 -1.890E+01 -1.680E+01

Methane 3.724E-01   1.165E+00   1.862E-01   1.862E-01

CO   1.697E-06          VOC              NOx   5.854E-05   1.200E-02     1.200E-02

SOx 8.260E-01   2.584E+00   3.062E-03   3.062E-03

COD              Natural gas              Copper ore              

BOD              HC   3.000E-05          

Page 33: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 33

Characterization

Inventory Loadi

GW AD EU POC ARD

(g CO2 eq/fu) (g SO2 eq/fu) (g PO43- eq/fu) (g ethene eq/fu) (g/fu yr)

eqvi,j CIi,j eqvi,j CIi,j eqvi,j CIi,j eqvi,j CIi,j eqvi,j CIi,j

Crude oil 1.99E+02                 2.48E-02 4.94E+00

Coal 3.40E+02                 3.44E-03 1.17E+00

Chromium 2.54E+00                 3.81E-03 9.67E-03

Iron 1.11E+00                 7.21E-03 8.00E-03

CO2 2.74E+03 1.00E+00 2.74E+03                Methane 4.66E+00 2.30E+01 1.07E+02         6.00E-03 2.79E-02    

CO 1.16E-03             2.70E-02 3.14E-05    VOC 5.39E-01             4.16E-01 2.24E-01    NOx 7.00E-01     7.00E-01 4.90E-01 1.30E-01 9.09E-02 2.80E-02 1.96E-02    SOx 1.06E+01     1.00E+00 1.06E+01            

Sum   2.85E+03   1.11E+01   9.09E-02   2.72E-01   6.12E+00

Page 34: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 34

Normalization

Reference

1. Year : 1995

2. Global population : 5,675,675,676

3. Regional population (East china region) : 45,093,000

E. Ef -fect

Ni NIi(pe.yr/

fu)Bound-ary

Ref.-Value Unit

GW Global 5.66E+06 g CO2 eq/pe.yr 5.04E-

04

AD Regional 5.64E+04 g SO2 eq/pe.yr 1.97E-

04

EU Regional 8.90E+03 g SO4

3- eq/pe.yr 1.02E-05

POC Regional 7.37E+03

g ethene eq/pe.yr

3.69E-05

ARD Global 1.87E+04 g/pe.yr2 3.27E-

04

GW AD EU POC ARD0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

Norm

aliz

ed E

nviro

nmen

tal E

ffect

(pe.

yr/fu

)

Page 35: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 35

Total LCA Result

Upstream

Sum

Manufac

ture

Delivery Use

Disposal-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

ARDPOCEUADGW

Life-Cycle Stage

Envi

ronm

enta

l Effe

ct

Page 36: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 36

Reference

1. Year : 1995

2. Global population : 5,675,675,676

3. Regional population (East china region) : 45,093,000

GW AD EU POC ARD0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04initial DesignRedesign

Nor

mal

ized

Envi

ronm

enta

l Effe

ct(p

e.yr

/fu)

Initial Design Redesign

E. Effect NIi(pe.yr/fu)

NIi(pe.yr/fu)

GW 5.04E-04 4.13E-04AD 1.97E-04 1.83E-04EU 1.02E-05 9.91E-06

POC 3.69E-05 3.54E-05ARD 3.27E-04 3.01E-04

Redesigned LCA Result

Page 37: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 37

Upstrea

m Sum

Manufac

ture

Delivery Use

Disposal

-2.00E-04

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

ARDPOCEUADGW

Life-Cycle Stage

Envi

ronm

enta

l Effe

ct

RedesignInitial Design

Upstrea

m Sum

Manufac

ture

Deliver

yUse

Disposal

-2.00E-04

-2.82E-18

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

ARDPOCEUADGW

Life-Cycle Stage

Envi

ronm

enta

l Effe

ct

Redesigned LCA Result

Page 38: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 38

Example – mobile phone

Back Panel

Battery

FRT panel

Inner Panel

Key Pad

Number Pad

LCDPCB 1

PCB 2

PCB 2 plate

Slide LWR Slide UPR

Slide UPR Panel

Bolts & Plastics

Page 39: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 39

Example – mobile phoneSamsung ElectronicsSPH-C2300

Page 40: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 40

Example – mobile phone

Phone

Phone type Slide

Size (mm) 93(L) X 46(W) X 16.9(H)

Weight(g) 94.9

LCD size (main) 2.0 inch

LCD Color (main) 262K Color

LCD resolution (main) 176 X 220

Body color Black

Battery

Capacity 800mAh

Type Li-ion polymer

Voltage 3.7V

Samsung ElectronicsSPH-C2300

Page 41: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 41

Example – mobile phone

Eco-FR

Page 42: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 42

Example – mobile phone

Eco-FR

Page 43: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 43

Example – mobile phone

GW value is mapped to FR 4.1 ARD value is mapped to FR 5.1

Page 44: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 44

Example – mobile phone

In the detailed design, augmented design matrix looks exactly same as LCA However, in the conceptual design, we cannot get LCA value because of lack

of detailed design specifications In the conceptual level, we can get DP’s environmental effect by assuming

coupling magnitude

Page 45: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 45

Example – mobile phone

Calculate each DP’s environmental effect score E.g. DP32 = (FR41) X 2 + (FR51) X 1 = (3.27E-04) X 2 + (5.04E-04) X 1 = 1.16E-03

Page 46: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 46

Example – mobile phone

Slide LWR

Slide UPR

Slide UPR Panel

Housing Slide structure →

Bar type structure Some parts are used

only to maintain slide structure, so these parts can be removed by chang-ing to bar type structure

Reduce amount of material

Page 47: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 47

Example – mobile phone

Battery Li-ion battery → Hybrid energy system (solar cell + Li-ion

battery) Solar energy is infinite energy source Reduce energy-providing material consumption

Display system LCD display → LED display LED display consumes less energy that LCD display Reduce energy-providing material consumption

Page 48: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 48

Example – mobile phone

Couplings were Elimi-nated

Average of coupling significantly reduced (2.73→1.64)

Page 49: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 49

Case Study 2 – stapler

Objective: design eco-friendly stapler

Conducting design process by another person, we can find out what is missing in the eAD+ methodology

Using this activity, we could make modified and detailed eAD+ methodology flow

Page 50: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 50

eAD+ methodology flow

LCA

LCA

Page 51: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 51

Example – stapler

Collect customer needs Using survey and interview

Hold enough number of papers (10 to 20 pages) Can be removable (easier is better) Cost should be reasonable Should maintain condition (hold condition) Papers should not rotate related to each other Not too thick Should not contain hazardous materialMechanism should be safe to human bodyEasy to use Use with small power Durable from outside impact Be eco-friendly…

Page 52: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 52

Example – stapler

Benchmarking Identify existing staplers’ strengths and weaknesses

Page 53: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 53

Example – stapler

Benchmarking-environmental analysis From environmental analysis, using plastic is better that us-

ing steel (in global warming) Data comes from Life Cycle Analysis (LCA)

Page 54: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 54

Example – stapler

Grouping customer needs into categories Six categories were used:

• Functional CN• Ergonomic CN• Safety CN• Aesthetic CN• Cost CN• Environmental CN

Page 55: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 55

Example – stapler

Examples for each categories

•Hold enough number of papers•Can be used different type of papers

Functional CN

•Cost should be reasonableCost CN•Easy to use•Use with small power

Ergonomic CN

•Should not contain hazardous material•Mechanism should be safe to human body

Safety CN

•Look neat, pretty, and stylish•Not too thick

Aesthetic CN

•Use less material•Minimize environmental damageEnvironmental

CN

Page 56: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 56

Example – stapler

Classify grouped CN into FR, C and SC

FR: Things you want to achieve or design to address

Constraint: Things which limit your design

Selection criteria: Things which is better to have in your product, but you do not want to actively design for it.

Page 57: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 57

Example – stapler

FR listFR1. Hold papers (general A4 papers, up to 15 pages, secure and safe)

FR11. Hold papers togetherFR12. Hold papers relative position (rotating angle < 5 degree)FR13. Hold papers in proper position (do not intrude contents)

FR2. Provide continuously using condition (secure up to 100 times)

FR21. Automatically feed staplesFR22. Reload staplesFR23. Contain staples

FR3. Provide easy using condition to user

FR31. Work easily with human hand (continuously using for 30 times without pain)FR32. Need small amount of power (< xF)

FR4. Preserve environment

FR41. Use less materialFR42. Reduce emission

Page 58: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 58

Example – stapler

Constraint

Selection criteria

C1. Manufacturing cost should be < 10,000 KRWC2. Do not contain hazardous materialC3. Should not harm human bodyC4. Sound should be < 60dB

SC1. Look prettySC2. DurabilitySC3. Removable (hold)SC4. Thickness of held papersSC5. PortabilitySC6. Use for different materials

Page 59: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 59

Example – stapler

Concept ideation (less steel) Consider FR, three concepts were created

• Design 1– Reduce amount of staple material– Use half size staple

• Design 2– Use different material for staple– Use plastic staple

• Design 3– Do not use staple– Use paper twist method

Page 60: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 60

Example – stapler

Concept selection Use selection criteria, the best design is selected as a con-

ceptual design

Page 61: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 61

Example – stapler

Result – conceptual design (design 1 is selected)DP1. Staple mechanism

DP11. Steel stapleDP12. Two point holdingDP13. Staple position (in 2X2cm)

DP2. Feed mechanism

DP21. Spring feed mechanismDP22. Reloadable structureDP23. Magazine

DP3. Ergonomic structure

DP31. Cover structure which fits for human handsDP32. Spring in the push button

DP4. Eco-friendly stapler

DP41. Half size stapleDP42. Simple structure

Page 62: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 62

Detailed eAD+ methodology flow

Page 63: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 63

Example – stapler

Page 64: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 64

Case Study 3 – flash light

We are also conducting example for eco-friendly flash light Flash light consumes energy, so it could show whether

eAD+ methodology is applicable to energy-related prod-uct or not

Page 65: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 65

Example – flash light

QFD table

Design matrixCAD drawing

Page 66: METHODOLOGY TO SUPPORT ENVIRONMENTALLT AWARE PRODUCT DESIGN USING AXIOMATIC DESIGN:  eAD+

2010 – M. J. Shin / J. R. Morrison / H. W. Suh – 2010 ASME – 66

Concluding remarks

Proactive eco-design must be conducted early in the design process

eAD+

Future Issues Still depending on LCA Needs existing LCA’s values DP-based Evaluation