41
S1 MetalOrganic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature Zhanyong Li† 1 , Aaron W. Peters† 1 , Varinia Bernales† 2 , Manuel A. Ortuño† 2 , Neil M. Schweitzer 3 , Matthew R. DeStefano 1 , Leighanne C. Gallington 4 , Ana E. Platero-Prats 4 , Karena W. Chapman 4 , Christopher J. Cramer 2 *, Laura Gagliardi 2 *, Joseph T. Hupp* 1 and Omar K. Farha* 1,5 1. Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States 2. Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, USA 3. Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States 4. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439- 4858, United States 5. Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia †These authors contribute equally to this work (the first two, the experiments, the second two, the theory). Corresponding authors: C.J.C. ([email protected]), L.G. ([email protected]), J.T.H. (j- [email protected]) or O.K.F ([email protected]).

Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S1

Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative

Dehydrogenation of Propane at Low Temperature

Zhanyong Li†1, Aaron W. Peters†1, Varinia Bernales†2, Manuel A. Ortuño†2, Neil M.

Schweitzer3, Matthew R. DeStefano1, Leighanne C. Gallington4, Ana E. Platero-Prats4,

Karena W. Chapman4, Christopher J. Cramer2*, Laura Gagliardi2*, Joseph T. Hupp*1 and

Omar K. Farha*1,5

1. Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United

States

2. Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota,

Minneapolis, Minnesota 55455, USA

3. Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road,

Evanston, Illinois 60208, United States

4. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-

4858, United States

5. Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

†These authors contribute equally to this work (the first two, the experiments, the second two,

the theory).

Corresponding authors: C.J.C. ([email protected]), L.G. ([email protected]), J.T.H. (j-

[email protected]) or O.K.F ([email protected]).

Page 2: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S2

Table of Contents

Materials ................................................................................................................................. S4

Physical methods and measurements ................................................................................... S4

Gas-phase catalysis ................................................................................................................. S2

Syntheses ................................................................................................................................. S3

Characterization ..................................................................................................................... S3

Computational modeling ..................................................................................................... S15

List of Figures

Figure S1. Structural representation of the used cobalt precursor, bis(N,N′-di-isopropyl-

acetamidinato)Co(II), Co(MeC(Ni-Pr)2)2. ................................................................................ S4

Figure S2. Characterization of Co-AIM+NU-1000 before catalysis: a, SEM-EDS line scan of

Co (red) and Zr (blue) and a baseline (green) b. powder X-ray diffraction pattern (black) as

compared to that of NU-1000 (blue). c, N2 isotherm of Co-AIM (blue) as compared to the

parent MOF, NU-1000 (red). D, XPS scan of the as-synthesized Co-AIM in the Co 2p region.

.................................................................................................................................................. S5

Figure S3. Characterization of Co-SIM+NU-1000 before catalysis: a, SEM image b. powder

X-ray diffraction pattern (green) as compared to that of NU-1000 (blue). c, N2 isotherm

(green) compared to that of the parent MOF, NU-1000 (blue). d, XPS spectrum of the as-

synthesized Co-SIM+NU-1000 in the Co 2p region. ............................................................... S5

Figure S4. DFT calculated pore-size distributions of Co-AIM and Co-SIM+NU-1000 before

and after propane ODH catalysis. ............................................................................................ S6

Figure S5. DRIFTS spectra of as-synthesized Co-SIM and Co-AIM+NU-1000 as compared

to the parent MOF, NU-1000. .................................................................................................. S6

Figure S6. TGA diagram of NU-1000, Co-SIM and Co-AIM+NU-1000 before catalysis

under a flow of N2. ................................................................................................................... S6

Figure S7. Temperature programmed oxidation data of Co-AIM+NU-1000 and Co-SIM+NU-

1000 as compared to the parent MOF NU-1000. ..................................................................... S7

Figure S8. Oxidative dehydrogenation of propane catalyzed by Co-AIM+NU-1000 (a) and

Co-SIM+NU-1000 (b)at 200 °C where the TOF is determined to be 0.36±0.06 and 0.27±0.09

h−1 for these two materials, respectively. ................................................................................. S7

Figure S9. Characterization of Co-ZrO2 after calcination at 600 °C in air. (a). SEM image (b).

Corresponding elemental map of Co, and (c) elemental map of Zr. (d) N2 isotherms of Co-

ZrO2 at 77 K. ............................................................................................................................ S8

Figure S10. The determination of the TOF for the propane ODH process catalyzed by Co-

ZrO2 at 230 °C. ......................................................................................................................... S8

Figure S11. Delplots for Co-SIM+NU-1000 (a) and Co-AIM+NU-1000 (b) for the oxidative

dehydrogenation of propane. .................................................................................................... S9

Figure S12. XANES spectra for Co-SIM, Co-AIM+NU-1000 before and after activation,

along with the data for cobalt reference samples. .................................................................. S10

Figure S13. Experimental (blue) and fit (orange) data for the Co-ZrO2 before activation in O2

at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d, imaginary part of

R-space. .................................................................................................................................. S10

Page 3: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S3

Figure S14. Experimental (blue) and fit (orange) data for the Co-AIM+NU-1000 before

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space. ..................................................................................................... S11

Figure S15. Experimental (blue) and fit (orange) data for the Co-SIM+NU-1000 before

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space. ..................................................................................................... S11

Figure S16. Experimental (blue) and fit (orange) data for the Co-AIM+NU-1000 after

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space. ..................................................................................................... S12

Figure S17. Experimental (blue) and fit (orange) data for the Co-SIM+NU-1000 after

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space. ..................................................................................................... S12

Figure S18. Characterization of Co-AIM+NU-1000 after propane ODH catalysis: a, SEM-

EDS line scan of Co (green) and Zr (blue) and a baseline (red) b. PXRD pattern (green) as

compared to the as-synthesized Co-AIM (black) and NU-1000 (blue). c, N2 isotherm (green)

as compared to NU-1000 (red) and the as-synthesized Co-AIM (blue). d, XPS spectrum of

Co-AIM+NU-1000 in the Co 2p region. The highlighted feature is indicative of the presence

of Co(III). ............................................................................................................................... S14

Figure S19. Characterization of Co-SIM+NU-1000 after catalysis: a, SEM-EDS line scan of

Co (blue) and Zr (green) and a baseline (red) b. PXRD pattern (purple) as compared to that of

NU-1000 (blue) and Co-SIM+NU-1000 before catalysis (green). c, N2 isotherm (blue) as

compared to that of the parent MOF (green) and Co-SIM+NU-1000 (red) before catalysis. d,

XPS spectrum of Co-SIM+NU-1000 in the Co 2p region. The feature highlighted in the box

indicates the appearance of Co(III). ....................................................................................... S15

Figure S20. Dehydrated cluster model of Co deposited on NU-1000. .................................. S16

Figure S21. (a) Structures for A-1-(S=5/2) and A-1-(S=3/2) and (b) proposed electronic

configurations based on Mulliken spin densities. .................................................................. S17

List of Tables

Table S1. EXAFS fitting parameters for Co(OH)2. ................................................................. S9

Table S2. Fitting results for the as-synthesized and activated Co-SIM+NU-1000, Co-

AIM+NU-1000 and Co-ZrO2. ................................................................................................ S13

Table S3. Electronic energies in kcal mol–1 at different levels of theory. ............................. S17

Table S4. Charge analysis and spin densities at the M06-L/BS1 level of theory. <S2>

represents the spin operator expectation value. SUM(HSD) stands for sum overall Hirshfeld

spin densities and SUM(MSD) stands for sum overall Mulliken spin densities. Atom labeling

is presented in Figure S21. ..................................................................................................... S18

Table S5. Electronic energies and enthalpies at M06-L/BS1. <S2> represents the spin operator

expectation value. ................................................................................................................... S20

Table S6. Electronic energies at the M06-L/BS2, B3LYP-D3/BS1, and TPSSh/BS1. <S2>

represents the spin operator expectation value. ...................................................................... S20

Page 4: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S4

Materials

Zirconyl chloride octahydrate, 1,3,6,8-tetrabromopyrene, (4-

(methoxycarbonyl)phenyl)boronic acid, K3PO4, tetrakis(triphenylphosphine) palladium(0),

benzoic acid, hydrochloric acid, hydrogen peroxide, cobalt(II) acetate tetrahydrate, high

purity silica, cobalt and zirconium ICP standards were purchased from Sigma Aldrich

Chemicals Company, Inc. (Milwaukee, WI) and were used as received. Ligand for NU-1000,

1,3,6,8-tetrakis(p-benzoic acid)pyrene, was synthesized by a published procedure and its

purity confirmed by 1H-NMR spectroscopy. Concentrated sulfuric acid was purchased from

VWR Scientific, LLC (Chicago, IL). Compound bis(N,N’-di-isopropyl-acetamidinato)Co(II)

(98%) was obtained from Strem Chemicals, and used without further purification. Acetone,

chloroform, 1,4-dioxane, N,N-dimethylformamide (DMF), tetrahydrofuran (THF) were

obtained from Fisher Scientific and used without further purification. Ultrapure deionized

water (18.2 MB•cm resistivity) was obtained from a Millipore Milli-Q Biocel A10 instrument

(Millipore Inc., Billerica, MA).

All gases used for the adsorption and desorption measurements were Ultra High Purity Grade

5 and were obtained from Airgas Specialty Gases (Chicago, IL).

Physical methods and measurements

Atomic layer deposition of cobalt in NU-1000 was carried out on a Savannah 100 (Cambridge

Nanotech, Inc).

Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku X-ray Diffractometer

Model ATX-G (Tokyo, Japan) equipped with an 18 kW Cu rotating anode, an MLO

monochromator, and a high-count-rate scintillation detector. Measurements were made over

the range 2°<2θ< 15° in 0.05° step width with a 3°/min scanning speed.

N2 adsorption and desorption isotherms were measured on a Micromeritics Tristar II 3020

(Micromeritics, Norcross, GA) instrument at 77 K. Pore-size distributions were obtained

using DFT calculations using a carbon slit-pore model with a N2 kernel. Before each run,

samples were activated at 120 °C for 12–24 h under high vacuum on a Smart Vacprep from

Micromeritics. Around 50 mg of sample was used in each measurement and BET surface area

was calculated in the region P/P0 = 0.005–0.05.

Inductively coupled plasma atomic–emission spectroscopy (ICP–AES) was conducted on an

iCAP™ 7600 ICP-AES Analyzer (Thermo Scientific™) over the 166–847nm spectral range.

Samples (2–3 mg) were digested in a small amount (1 mL) of a mixture of 3:1 v/v conc.

H2SO4:H2O2 (30 wt % in H2O) by heating in a Biotage (Uppsala, Sweden) SPX microwave

reactor (software version 2.3, build 6250) at 150 °C for 5 minutes. The acidic solution was

then diluted to a final volume of 15 mL with Millpore H2O and analyzed for Co (228.616,

237.862 and 238.892nm) and Zr (327.305, 339.198, and 343.823 nm) content as compared to

standard solutions.

Scanning electron microscopy (SEM) images were collected on a Hitachi SU8030 FE-SEM

(Dallas, TX) microscope at Northwestern University’s EPIC/NUANCE facility. Samples

Page 5: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S5

were coated with OsO4 to ~20 nm thickness in a Denton Desk III TSC Sputter Coater

(Moorestown, NJ) before imaging.

Diffuse reflectance infrared spectra (DRIFTS) were recorded on a Nicolet 6700 FTIR

spectrometer (Thermo Scientific) equipped with an MCT detector and a Harrick praying

mantis accessory. Samples were activated at 120 °C under high vacuum for 24 h before each

measurement. The spectra were collected at 1 cm−1 resolution over 64 scans. A sample of

solid KBr was utilized as the background.

Thermogravimetric analysis (TGA) was performed on a TA Instruments Q500 in a flow of N2

at a heating rate of 10 °C/min from 25 to 600 °C.

Temperature Programmed Oxidation (TPO) profile diagram of the samples was collected on

AutoChem 2920. Before the TPO process, the sample was heated in He flow for 2 hours at

120 °C to remove any physisorbed water. Under a flow of 10% O2/He, the sample was heated

to 300 °C at a heating rate of 2 °C/min. The signal was recorded with a thermal conductivity

detector (TCD).

X-ray photoelectron spectroscopy (XPS) measurements were carried out at the KECK-

II/NUANCE facility at NU on a Thermo Scientific ESCALAB 250 Xi (Al Kα radiation, hν =

S5 1486.6 eV) equipped with an electron flood gun. XPS data was analyzed using Thermo

Scientific Avantage Data System software and all spectra were referenced to the C1s peak

(284.8 eV).

Catalyst activity and selectivity measurements were recorded using a packed-bed flow reactor

(Microactivity Efficient, MAE). Using an Agilent 7890A GC system, the amount of propane

and propene were analyzed by an FID detector using an Agilent J&W GC column (GS-

Alumina, 30 m X 0.535 mm); the amount of CO2 and CO is determined by a TCD detector

using a combination of two columns (Column 1: HP-Plot Q, Column 2: HP-Plot Molesieve).

The amounts of the gases were determined based on the integration areas converted to mol%

using relevant calibration curves.

Ambient temperature x-ray powder diffraction measurements were performed at beamline 17-

BM-B at the Advanced Photon Source at Argonne National Laboratory. Diffraction patterns

were collected on an amorphous silicon area detector at a nominal sample-detector distance of

1 m. Sample-detector distance, beam center, detector tilt and rotation, and angular corrections

were determined via calibration with NAC (Na2Ca3Al2F14) in GSAS-II.

1 Diffraction images were processed in QXRD and subsequently reduced to one-dimensional

patterns in GSAS-II.2 Lattice parameters and Bragg scattering intensities of reflections out to

2θ=10° were extracted via Le Bail whole pattern fitting of the previously reported NU-1000

crystal structure to diffraction data.345 Structure envelopes (SEs) encompassing regions of

high electron density were generated from extracted peak intensities as previously

described.67 Reflections out to {6 -1 0} (lmax=2) were utilized to improve resolution along the

c axis. To isolate contributions from species added during deposition, difference envelope

densities (DEDs) were calculated via subtraction of the SE of the parent material from those

of metalated MOFs.7

Page 6: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S2

X-ray absorption spectroscopy (XAS) measurements at the Co K-edge (7709 eV) were

performed on the insertion device beamline of the Materials Research Collaborative Access

Team (MRCAT, Sector 10-ID) at the Advanced Photon Source (APS), Argonne National

Laboratory. The beamline was detuned to 50% in order to minimize the presence of

harmonics. Data was acquired in transmission in step-scan mode in about 10 min using

ionization chambers optimized for the maximum current with linear response (~1010 photons

detected/sec) with 10% absorption in the incident ion chamber and 70% absorption in the

transmission X-ray detector. A Co foil spectrum was acquired simultaneously with each

sample measurement for energy calibration. Samples were pressed into a cylindrical sample

holder consisting of six wells, forming a self-supporting wafer with a thickness chosen to give

an edge step of ~1.0.

The samples were activated in a flow of 3% propane/He and 10% O2/He at 230 °C for 4 hours

and then put on the beamline for measurements in the same gas mixture.

Gas-phase catalysis

The gases used for gas-phase oxidative dehydrogenation of propane catalysis were 3%

propane balanced with Ar and 10% O2 balanced with He.

The catalyst (~80–100 mg Co-AIM+ or Co-SIM+NU-1000, diluted with ~600 mg of high

purity, low surface area SiO2) was packed on quartz wool in a stainless reactor. The reaction

temperature was controlled with a K-type thermocouple at the top of the catalyst bed. For the

catalyst pretreatment procedure, the temperature was ramped at 10 °C/min to 180 °C and then

2 °C/min to a final temperature of 230 °C under a flow of 48 mL/min O2 (10% diluted with

He) and 96 mL/min of C3H8 (3%, diluted with Ar) (2 bar pressure) until the propane

conversion is constant (usually takes 4 hours for Co-AIM+NU-1000 and 6 hours for Co-

SIM+NU-1000). For the catalysis, the ratio of flow rates between the two reacting gases is

kept constant for all the experiments, in which the mol ratio of C3H8:O2 is 6:5. Further tests,

in which the amount of catalyst and the flow of the gases were increased to 1.5 of their

original values, were carried out to ensure that the kinetic data were recorded in a reaction-

rate-limited regime, viz, no mass transfer limitation. The rates used in the Arrhenius plot were

recorded in the differential conversion regime (< 10% conversion). Control experiments

where the feed gases were Ar and O2 and the used materials in the catalytic reactor were NU-

1000, Co-SIM+NU-1000 and Co-AIM+NU-1000 were also conducted.

For NU-1000, we only observed CO2 formation in the first 40 minutes’ time on stream (TOS)

from the GC injection. For Co-AIM+ and Co+SIM+NU-1000, we observed CO2 formation

for only the first 3 and 5 hours TOS, respectively.

For both catalysts, a chemical formula of [Zr6(μ3-O)8(OH)8Co4(H2O)8](TBAPy)2 was used as

a close estimation to calculate the molecular weight of the two materials; the TOFs are

determined on a per Cobalt atom basis.

Page 7: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S3

Syntheses

The parent MOF, NU-1000, was synthesized via a literature reported procedure. 8 Upon

thermal activation, the integrity and quality of the obtained material was confirmed by N2

isotherm measurements at 77 K and PXRD. High surface area ZrO2 was synthesized

according to a published procedure and calcined at 600 °C before use.9

Co-SIM+NU-1000: Cobalt(II) acetate tetrahydrate (360.0 mg, 1.45 mmol) was suspended in

40 mL DMF in a 100 mL screw cap jar. It was subsequently incubated in a 100 °C oven for

30 min or until the solution became clear. Next, NU-1000 (400 mg, 0.185 mmol) was added

to the jar and it was subjected to 5 minutes of sonication before being incubated in a 100 °C

oven for 24 h. The suspension was transferred to a centrifuge tube and the mother liquor was

decanted while hot after centrifuge. The solid residue was washed with hot DMF three times

(3 × 50 mL) or until the DMF solution was colorless. The recovered solid material was then

immersed in acetone for an hour and then washed three times (30 min intervals) to exchange

out the residual DMF solvent. After subsequent suspension in acetone for another 8 h, the

green solid material was put in a vacuum oven for 2 h before it was activated at 120 °C on a

smart vacuum prep instrument for 24 h. The recovered material, denoted as Co-SIM+NU-

1000, was kept in a vacuum desiccator for storage. The cobalt amount in the material is

determined to be 4.0 ± 0.3 Co per Zr6 node via ICP-AES.

Co-AIM+NU-1000: Compound bis(N,N′-diiso-propyl-acetamidinato)Co(II), Co(MeC(Ni-

Pr)2)2 (reactant A, Figure S1), was chosen as the Co precursor from our previous work for

CoS-AIM and Co-AIM. 10 , 11 Room temperature deionized H2O is used as a coreactant

(reactant B), instead of the H2S in our previous work, to produce the Co–O(H) motif. In a

typical experiment, a custom-made stainless steel powder sample holder containing

microcrystalline NU-1000 (60.0 mg, 0.028 mmol) was placed in the ALD chamber, which

was held at 125 °C for 30 min to remove any physisorbed water before dosing with the Co

precursor. A cylinder containing Co(MeC(Ni-Pr)2)2 is held at 120 °C, and each of its pulses

followed the time sequence of t1−t2−t3, where t1 is the precursor pulse time, t2 is the substrate

exposure time, and t3 is the N2 purge time (t1 = 1 s, t2 = t3 = 300 s). To ensure full metalation

of the Zr6 sites throughout the microcrystals, the Co(MeC(Ni-Pr)2)2 pulsing cycle was run 60×

before exposing the MOF to H2O pulses, which adopts the same time sequence as the Co

pulse (t1 = 0.015 s, t2 = t3 = 120 s). The typical cobalt content in Co-AIM+NU-1000 is

determined to be 4.0 ± 0.5 per Zr6 node from ICP-AES measurements.

Co-ZrO2: Cobalt(II) acetate tetrahydrate (250.0 mg, 1.0 mmol) was dissolved in 30 mL

Millipore H2O and 600 mg of high surface area ZrO2 was subsequently added to the solution,

forming a suspension. Under constant stirring, it was gradually heated to and maintained at 95

°C to let the water slowly evaporate. Upon the complete evaporation of the solvent, the

remaining solid was collected and calcined in a 600 °C oven for 3 hours (5 °C/min heating

rate) in air.

Characterization

The characterization techniques for both Co-AIM and Co-SIM+NU-1000 are the same,

therefore only the description for Co-AIM+NU-1000 (Figure S2) is detailed in the following

section. The characterization data for Co-SIM+NU-1000, however, is included as Figure S3.

Page 8: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S4

After anchoring Co to NU-1000 via AIM, the crystallinity of Co-AIM is retained, as

can be seen from the PXRD pattern. Upon digestion, the Co content in the samples is

determined by ICP−AES and it is consistently 4.0 ± 0.5 Co atoms for each Zr6 node (9.8 ±

1.1% wt. of Co). The deposition of Co(II) is demonstrated to be conformal within each NU-

1000 micro-crystallite, as confirmed via scanning electron microscopy−energy-dispersive X-

ray spectroscopy (SEM−EDS). The surface area of Co-AIM is abstracted from the

Brunauer−Emmett−Teller (BET) analysis of the N2 isotherm of an activated sample (120 °C,

evacuated for 12 h) and a decrease from 2200 to 1200 m2•g−1 as compared to undecorated

NU-1000 is observed. This is not surprising due to the incorporation of Co (II) and is also in

line with our previous findings (Figure S2).12 Pore-size distributions calculated from DFT

analysis show a decrease in the diameter of the hexagonal pores from 29 to 27 Å (Figure S4).

The valence of the cobalt ions in Co-AIM is determined by X-ray photoelectron spectroscopy

(XPS), from which we can clearly observe a peak at 779.7 eV as well as a satellite peak at ~

785 eV, which can be assigned as Co(II) (Figure S2). In its diffuse reflectance infrared

Fourier transform spectrum (DRIFTS), a decrease in the intensity of the peak at ~3674 cm−1,

along with the disappearance of the hydrogen-bonded −OH/−H2O stretching at 2745, 2747,

and 2551 cm−1, was observed for the Co-AIM material as compared to that of NU-1000,

indicative that the metalation occurs at the −OH2 and −OH sites of the Zr6 node (Figure S5).13

The excellent thermal stability of Co-AIM is shown by the thermal gravimetric analysis, with

little mass loss up to 300 °C under N2 flow (Figure S6).

Figure S1. Structural representation of the used cobalt precursor, bis(N,N′-di-isopropyl-

acetamidinato)Co(II), Co(MeC(Ni-Pr)2)2.

Page 9: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S5

Figure S2. Characterization of Co-AIM+NU-1000 before catalysis: a, SEM-EDS line scan of

Co (red) and Zr (blue) and a baseline (green) b. powder X-ray diffraction pattern (black) as

compared to that of NU-1000 (blue). c, N2 isotherm of Co-AIM (blue) as compared to the

parent MOF, NU-1000 (red). D, XPS scan of the as-synthesized Co-AIM in the Co 2p region.

Figure S3. Characterization of Co-SIM+NU-1000 before catalysis: a, SEM image b. powder

X-ray diffraction pattern (green) as compared to that of NU-1000 (blue). c, N2 isotherm

(green) compared to that of the parent MOF, NU-1000 (blue). d, XPS spectrum of the as-

synthesized Co-SIM+NU-1000 in the Co 2p region.

Page 10: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S6

Figure S4. DFT calculated pore-size distributions of Co-AIM and Co-SIM+NU-1000 before

and after propane ODH catalysis.

Figure S5. DRIFTS spectra of as-synthesized Co-SIM and Co-AIM+NU-1000 as compared

to the parent MOF, NU-1000.

Figure S6. TGA diagram of NU-1000, Co-SIM and Co-AIM+NU-1000 before catalysis

under a flow of N2.

Page 11: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S7

Figure S7. Temperature programmed oxidation data of Co-AIM+NU-1000 and Co-SIM+NU-

1000 as compared to the parent MOF NU-1000.

Figure S8. Oxidative dehydrogenation of propane catalyzed by Co-AIM+NU-1000 (a) and

Co-SIM+NU-1000 (b)at 200 °C where the TOF is determined to be 0.36±0.06 and 0.27±0.09 h−1 for these two materials, respectively.

Page 12: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S8

Figure S9. Characterization of Co-ZrO2 after calcination at 600 °C in air. (a). SEM image (b).

Corresponding elemental map of Co, and (c) elemental map of Zr. (d) N2 isotherms of Co-

ZrO2 at 77 K.

Figure S10. The determination of the TOF for the propane ODH process catalyzed by Co-

ZrO2 at 230 °C.

Page 13: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S9

Figure S11. Delplots for Co-SIM+NU-1000 (a) and Co-AIM+NU-1000 (b) for the oxidative

dehydrogenation of propane.

Data analysis of the XANES and EXAFS region was performed using the

Athena/Artemis/Hephaestus software package14 which makes use of IFEFFIT.15 The XANES

data was processed using standard protocols. The edge energies for all of the samples and

references were calibrated to Co foil. The edge energy was identified as the zero value of the

second derivative of the XANES curve.

Backscattering amplitude and phase shift functions for EXAFS fitting were calculated using

the built-in FEFF function of Artemis. The amplitude reduction factor (S02) used to calculate

the coordination number of Co-O in the chi-difference spectra in Table S1 was calculated

from an Co(OH)2 with a fixed coordination number of 6.

Table S1. EXAFS fitting parameters for Co(OH)2.

Path

Coordination

number (N)

Bond

Distance (R, Å)

Debye-Waller

factor (σ², Å2)

Amplitude

Reduction

Factor (S02)

Edge

Shift (E,

eV)

Co-O 6 2.09 0.008±0.001 0.9682 −5.30±0.82

Co-Co 6 3.17 0.0076±0.0008 0.9682 −5.30±0.82

Page 14: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S10

Figure S12. XANES spectra for Co-SIM, Co-AIM+NU-1000 before and after activation,

along with the data for cobalt reference samples.

Figure S13. Experimental (blue) and fit (orange) data for the Co-ZrO2 before activation in O2

at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d, imaginary part of

R-space.

Page 15: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S11

Figure S14. Experimental (blue) and fit (orange) data for the Co-AIM+NU-1000 before

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space.

Figure S15. Experimental (blue) and fit (orange) data for the Co-SIM+NU-1000 before

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space.

Page 16: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S12

Figure S16. Experimental (blue) and fit (orange) data for the Co-AIM+NU-1000 after

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space.

Figure S17. Experimental (blue) and fit (orange) data for the Co-SIM+NU-1000 after

activation in O2 at 230 °C a, k-space b, magnitude of R-space c, real part of R-space and d,

imaginary part of R-space.

Page 17: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S13

Table S2. Fitting results for the as-synthesized and activated Co-SIM+NU-1000, Co-

AIM+NU-1000 and Co-ZrO2.

Co-AIM Activated

Co-AIM

Co-SIM Activated

Co-SIM

Co-ZrO2

Co–O

coordination

number

4.4±0.3 3.7±0.1 4.4±0.4 3.6±0.3 4.7±0.3

Co–O bond

distance (Å)

2.01 1.95 2.00 1.96 2.00

Debye-

Waller

Factor (σ²,

Å2)

0.0094±0.0010 0.0075±0.0004 0.0088±0.0010 0.0064±0.0010 0.011±0.001

Co–Co

coordination

number

NA 0.55±0.01 NA NA 2.05±1.07

Co–Co

distance (Å)

NA 2.88 NA NA 3.37

Debye-

Waller

Factor (σ²,

Å2)

0.0053±0.0015 0.016±0.006

Co–Zr

coordination

number

NA 1.54±0.27 NA NA NA

Co–Zr

distance (Å)

NA 3.23 NA NA NA

Debye-

Waller

Factor (σ²,

Å2)

0.0136±0.002

Page 18: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S14

Post-Catalysis

The crystallinity, the uniform distribution of the cobalt atoms in Co-AIM and Co-SIM remain

the same as evidenced by the data displayed in Figures S18 and 19. Although there is a slight

decrease in the surface area of Co-AIM after catalysis, we cannot exclude the contamination

from the used quartz wool during the catalysis in the measured sample. From the XPS

spectrum of the Co-AIM, there is appearance of satellite peaks at ~790 and ~805 eV that can

be attributed to the Co(III) species.

Figure S18. Characterization of Co-AIM+NU-1000 after propane ODH catalysis: a, SEM-

EDS line scan of Co (green) and Zr (blue) and a baseline (red) b. PXRD pattern (green) as

compared to the as-synthesized Co-AIM (black) and NU-1000 (blue). c, N2 isotherm (green)

as compared to NU-1000 (red) and the as-synthesized Co-AIM (blue). d, XPS spectrum of

Co-AIM+NU-1000 in the Co 2p region. The highlighted feature is indicative of the presence

of Co(III).

Page 19: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S15

Figure S19. Characterization of Co-SIM+NU-1000 after catalysis: a, SEM-EDS line scan of

Co (blue) and Zr (green) and a baseline (red) b. PXRD pattern (purple) as compared to that of

NU-1000 (blue) and Co-SIM+NU-1000 before catalysis (green). c, N2 isotherm (blue) as

compared to that of the parent MOF (green) and Co-SIM+NU-1000 (red) before catalysis. d,

XPS spectrum of Co-SIM+NU-1000 in the Co 2p region. The feature highlighted in the box

indicates the appearance of Co(III).

Computational modeling

Computational Details

Methodology. All calculations were carried out at the DFT level using the M06-L16 local

density functional as implemented in Gaussian 09. 17 This functional has shown a good

performance in modeling dispersion interactions,16 ,18-19 transition metals,16,18-19 spin states in

cobalt complexes,16,20 zeolites,21 and transition metals supported on NU-1000.12,22 The def2-

SVP basis set was used on H, C, and O atoms, and the def2-TZVPP basis set on Co and Zr

atoms.23,24 The SDD pseudopotential was used to represent the core electrons on Zr atoms.25

This set of basis functions will be referred as BS1. Numerical integrations were performed

with an ultrafine grid. An automatic density-fitting set generated by the Gaussian program

was employed to reduce the computational cost. All geometry optimizations were performed

in the gas phase. The nature of all stationary points and transition states was confirmed by

analytic computation of vibrational frequencies, which were also used to compute

thermochemical quantities at 503.15 K. All frequencies below 50 cm–1 were replaced by 50

cm–1 when computing vibrational partition functions. To test the influence of the basis set,

single-point calculations were performed with def2-TZVP for H, C, and O atoms (same def2-

TZVPP for Co, and def2-TZVPP/SDD for Zr). This set of basis functions will be referred as

BS2. To test the influence of the density functional, single-point calculations with B3LYP-

D3/BS126 -27 and TPSSh/BS128 were performed on all intermediates and transitions states

previously optimized at the M06-L/BS1 level of theory. The B3LYP density functional was

employed by Sauer et al. for studies on oxidative dehydrogenation of propane using vanadium

complexes, whereas the TPSSh density functional has been recommended for iron and cobalt

Page 20: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S16

complexes.29-31 Mulliken charges and spin densities, Hirshfeld charges and spin densities, and

CM5 charges for all species are collected in Table S4.32-33

Cluster Models. For NU-1000, a neutral cluster model formed by one node and eight organic

linkers was extracted from previously reported periodic DFT calculations.13 The mix-S proton

topology was used to describe the node, i.e., [Zr6(μ3−O)4(μ3−OH)4(OH)4(OH2)4]8+.13 The eight

TBAPy4– (1,3,6,8-tetrakis(p-benzoate)pyrene) linkers were truncated to acetate groups.

During the geometry optimization and frequency analysis, methyl groups of the acetate

linkers were kept fixed to account for the rigidity of the solid structure. Due to the high

temperature of the experiments (230 °C, 503.15 K), we assumed a dehydrated pattern for the

cluster models, where the node has lost six water molecules (see arrows in Figure S20).

Figure S20. Dehydrated cluster model of Co deposited on NU-1000.

Oxidation state of cobalt in activated Co-SIM

Figure S21a shows the optimized geometries for A-1-(S=5/2) and A-1-(S=3/2). Interestingly,

one oxygen atom in A-1-(S=3/2) changes its coordination mode from μ3 to μ2 (see

dislocation).34 After the first C–H bond abstraction via A-TS2-3, the node recovers its initial

symmetric configuration.

Figure S21b shows several proposed electronic configurations for A-1 assuming oxidation

states from Co(IV) to Co(II). In A-1-(S=5/2), the spin density on Co is 2.89e and ca. 2

unpaired electrons are delocalized over three oxygen atoms. This scenario is consistent with a

Co(II) high spin compound. In A-1-(S=3/2), the spin density on Co is 2.04e and ca. 1

unpaired electron is delocalized over three oxygen atoms. This scenario is consistent with a

Co(III) intermediate spin species. Regarding enthalpies, Co(III) A-1-(S=3/2) is 8.7 kcal mol–1

more stable than the Co(II) A-1-S(3/2), which is in line with the experimental detection of

Co(III) upon activation.

Page 21: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S17

Co1 O1O2

O3

dislocation

Co1 O1O2

O3

A-1-(S=5/2)

A-1-(S=3/2)

(a) (b)

Figure S21. (a) Structures for A-1-(S=5/2) and A-1-(S=3/2) and (b) proposed electronic

configurations based on Mulliken spin densities.

Influence of basis set and density functionals for Co-SIM

Table S3 collects single-point energies for all species using different levels of theory.

Regarding the basis set, M06-L/BS2 performs similar to M06-L/BS1. Regarding density

functionals at BS1 level, similar trends are found for the functionals considered herein. The

quartet spin state A-1-(S=3/2) is always favored over A-1-(S=5/2). The rate-determining

barrier from A-4 to A-TS4-5 (20.0 kcal mol–1 for M06-L, 17.6 kcal mol–1 for B3LYP-D3,

16.7 kcal mol–1 for TPSSh) and the relative energies between competing transition states A-

TS4-5 and A-TS4-6 (4.5 kcal mol–1 for M06-L, 5.0 kcal mol–1 for B3LYP-D3, 3.1 kcal mol–1

for TPSSh) are similar between functionals.

Table S3. Electronic energies in kcal mol–1 at different levels of theory.

Species M06-L/BS1 M06-L/BS2 B3LYP-D3/BS1 TPSSh/BS1

A-1-(S=5/2) 0.0 0.0 0.0 0.0

A-1-(S=3/2) -9.0 -10.4 -19.9 -18.1

A-2-(S=3/2) -17.1 -18.1 -29.6 -15.7

A-2-(S=5/2) -6.8 -7.2 -10.8 2.4

A-TS2-3-(S=3/2) 0.2 1.9 -15.3 -0.6

A-TS2-3-(S=5/2) 2.4 4.0 -12.0 3.2

A-3-(S=3/2) -15.4 -13.4 -30.0 -12.2

A-4-(S=3/2) -40.2 -37.3 -54.8 -39.9

A-TS4-5-(S=3/2) -20.2 (20.0)a -16.2 (21.1)a -37.2 (17.6)a -23.2 (16.7)a

A-5-(S=3/2) -46.1 -46.9 -73.8 -59.3

A-TS4-6-(S=3/2) -15.7 (4.5)b -12.2 (4.0)b -32.2 (5.0)b -20.0 (3.1)b

A-6-(S=3/2) -70.7 -66.2 -99.4 -75.1 a Relative energy between A-TS4-5 and A-4. b Relative energy between A-TS4-6 and A-TS4-5.

Page 22: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S18

Charges and spin densities

Table S4. Charge analysis and spin densities at the M06-L/BS1 level of theory. <S2> represents the spin operator expectation value. SUM(HSD)

stands for sum overall Hirshfeld spin densities and SUM(MSD) stands for sum overall Mulliken spin densities. Atom labeling is presented in

Figure S21.

Atom

Charges A-1 A-1 A-2 A-2 A-TS2-3 A-TS2-3 A-3 A-4 A-TS4-5 A-5 A-TS4-6 A-6

S 3/2 5/2 3/2 5/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2

<S2> 3.75 8.75 3.75 8.75 3.77 8.75 3.78 3.75 3.75 3.75 3.75 3.75

Co1

CM5 0.71 0.77 0.67 0.76 0.68 0.68 0.65 0.62 0.57 0.63 0.56 0.62

Hirshfeld 0.38 0.48 0.35 0.47 0.41 0.42 0.4 0.33 0.32 0.43 0.3 0.41

Hirshfeld spin density 2.08 3.02 2.07 3.02 2.74 2.85 2.78 2.38 2.51 2.65 2.45 2.62

Mulliken 0.7 0.78 0.63 0.75 0.72 0.71 0.64 0.65 0.6 0.71 0.58 0.68

Mulliken spin density 2.04 2.89 2.03 2.87 2.73 2.77 2.77 2.39 2.55 2.72 2.5 2.67

O(1)

CM5 -0.5 -0.48 -0.5 -0.48 -0.49 -0.47 -0.49 -0.47 -0.53 -0.61 -0.46 -0.41

Hirshfeld -0.29 -0.29 -0.29 -0.28 -0.29 -0.27 -0.29 -0.26 -0.28 -0.3 -0.27 -0.21

Hirshfeld spin density 0.33 0.68 0.37 0.68 0.64 0.7 0.65 0.52 0.31 0.07 0.24 0.14

Mulliken -0.47 -0.47 -0.47 -0.46 -0.47 0.24 -0.47 -0.46 -0.57 -0.49 -0.51 -0.66

Mulliken spin density 0.36 0.76 0.38 0.77 0.72 0.79 0.74 0.59 0.35 0.07 0.27 0.15

O(2)

CM5 -0.49 -0.49 -0.5 -0.48 -0.47 -0.43 -0.43 -0.59 -0.61 -0.61 -0.6 -0.6

Hirshfeld -0.3 -0.29 -0.38 -0.28 -0.24 -0.23 -0.23 -0.28 -0.3 -0.3 -0.28 -0.28

Hirshfeld spin density 0.37 0.67 0.37 0.66 -0.16 0.72 0.72 0.1 0.09 0.07 0.13 0.11

Mulliken -0.48 -0.47 -0.48 -0.47 -0.55 -0.49 -0.49 -0.48 -0.48 -0.49 -0.49 -0.49

Mulliken spin density 0.41 0.75 0.41 0.75 -0.22 0.81 0.13 0.09 0.09 0.07 0.13 0.11

Page 23: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S19

O(3)

CM5 -0.51 -0.54 -0.51 -0.54 -0.62 -0.63 -0.63 -0.64 -0.64 -0.64 -0.68 -0.67

Hirshfeld -0.24 -0.26 -0.29 -0.26 -0.31 -0.32 -0.33 -0.33 -0.33 -0.33 -0.35 -0.35

Hirshfeld spin density 0.13 0.46 0.35 0.46 0.18 0.22 0.19 0.17 0.17 0.15 0.1 0.07

Mulliken -0.59 -0.65 -0.59 -0.65 -0.72 -0.74 -0.71 -0.67 -0.73 -0.75 -0.74 -0.75

Mulliken spin density 0.14 0.53 0.13 0.53 0.19 0.24 0.21 0.2 0.19 0.16 0.1 0.07

ΣO atoms SUM(HSD) 0.84 1.8 1.1 1.8 0.65 1.63 1.56 0.79 0.57 0.29 0.46 0.31

SUM(MSD) 0.91 2.04 0.93 2.05 0.69 1.84 1.08 0.88 0.62 0.29 0.5 0.33

Page 24: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S20

Energies in Hartrees for all species

Table S5. Electronic energies and enthalpies at M06-L/BS1. <S2> represents the spin operator

expectation value.

Species S <S2> E H (503.15 K) Imaginary

frequency

A-1 3/2 3.75 -4245.130405 -4244.871293 N/A

A-1 5/2 8.75 -4245.116027 -4244.857413 N/A

A-2 3/2 3.80 -4364.177219 -4363.799471 N/A

A-2 5/2 8.75 -4364.160772 -4363.783513 N/A

A-TS2-3 3/2 3.77 -4364.149570 -4363.779276 959.6i

A-TS2-3 5/2 8.75 -4364.146101 -4363.774166 119.1i

A-3 3/2 3.78 -4364.174564 -4363.799401 N/A

A-4 3/2 3.75 -4364.214010 -4363.836932 N/A

A-TS4-5 3/2 3.75 -4364.182195 -4363.811693 1711.7i

A-5 3/2 3.75 -4246.429416 -4246.145168 N/A

A-TS4-6 3/2 3.75 -4364.175043 -4363.800080 360.7i

A-6 3/2 3.75 -4364.262672 -4363.883858 N/A

Propane 0 N/A -119.033918 -118.918090 N/A

Propene 0 N/A -117.799298 -117.708708 N/A

Table S6. Electronic energies at the M06-L/BS2, B3LYP-D3/BS1, and TPSSh/BS1. <S2>

represents the spin operator expectation value.

Species <S2> BS2 <S2> B3LYP-D3 <S2> TPSSh

A-1 3.75 -4247.939954 3.75 -4245.491552 3.75 -4245.325718

A-1 8.75 -4247.923396 8.75 -4245.459904 8.75 -4245.296877

A-2 3.75 -4367.116708 3.75 -4364.568419 3.75 -4364.391397

A-2 8.75 -4367.099308 8.75 -4364.538383 8.75 -4364.362574

A-TS2-3 3.77 -4367.084813 3.78 -4364.545652 3.77 -4364.367432

A-TS2-3 8.75 -4367.081482 8.75 -4364.540381 8.75 -4364.361258

A-3 3.78 -4367.109304 3.78 -4364.568970 3.77 -4364.385837

A-4 3.75 -4367.147345 3.75 -4364.608617 3.75 -4364.430013

A-TS4-5 3.75 -4367.113718 3.75 -4364.580539 3.75 -4364.403301

A-5 3.75 -4249.233521 3.75 -4246.813318 3.75 -4246.627263

A-TS4-6 3.75 -4364.175043 3.75 -4364.572541 3.75 -4364.398341

A-6 3.75 -4367.193406 3.75 -4364.679606 3.75 -4364.486103

Propene N/A -117.929169 N/A -117.825582 N/A -117.833573

Propane N/A -119.164499 N/A -119.061325 N/A -119.069522

Page 25: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S21

XYZ coordinates (Å) for all species

A-1-(S=3/2) SCF=-4245.130405 au

C -4.304430 2.549920 3.199910

C 4.196270 -3.415330 3.024640 C -4.486640 -3.235910 2.911830

C 4.347290 2.140480 3.359610

C 4.209400 -3.082060 -3.181270 C -4.260360 2.880470 -2.833850

C 4.422600 2.478090 -2.850360

C -4.460500 -2.928950 -3.119860 H -4.614760 1.811670 3.952420

H -3.957120 3.444110 3.728290

H -5.187510 2.777240 2.592530 H -5.455470 -3.127980 2.413120

H -4.268350 -4.290730 3.112930

H -4.551350 -2.728310 3.884530 H 3.809500 -4.205790 3.675700

H 4.912270 -3.836360 2.307780

H 4.756010 -2.689280 3.629010 H 4.025310 2.339000 4.387750

H 5.240070 1.506800 3.342220

H 4.606190 3.103250 2.896590 H -5.248600 2.815050 -2.366910

H -3.978410 3.927120 -2.996640

H -4.321140 2.406450 -3.823590 H -4.648970 -2.216610 -3.935410

H -4.183080 -3.886600 -3.573130

H -5.391250 -3.023270 -2.550030

H 4.454930 2.123880 -3.889860

H 4.222710 3.557020 -2.884280

H 5.391460 2.283930 -2.379890 H 3.836140 -3.436910 -4.147380

H 5.051880 -2.394900 -3.321440

H 4.597200 -3.946420 -2.624360 C -3.347430 -2.590580 2.114360

C -3.206660 1.933080 2.390910

C -3.166230 2.111630 -2.125800 C 3.282900 1.756890 -2.163240

C 3.103810 -2.401580 -2.402900

C 3.062620 -2.714220 2.294280 C -3.292630 -2.323740 -2.323360

C 3.193630 1.562970 2.542500 O -1.069860 1.211840 -0.061960

O -3.517360 1.217010 -1.301280

O -3.605870 -1.440350 -1.473120 O -3.592280 1.192930 1.438600

O -2.002020 2.149900 2.681520

O 2.001300 1.823430 2.861720 O 1.847960 -2.887340 2.595060

O 3.539650 0.881490 1.526290

O 3.468160 -1.934570 1.379610 O 3.585620 0.994970 -1.205080

O 3.487610 -1.748280 -1.398420

O 1.890570 -2.494170 -2.778960 O 2.106970 1.951120 -2.600830

O 1.113620 -0.166960 -1.211640

O 1.318170 2.029680 0.118570 O 0.040620 3.585850 1.695070

O 0.222010 3.743790 -1.523350

O 1.136440 -0.344240 1.574330 O -1.298100 -0.324910 1.990270

O -2.147280 -2.978640 2.245310

O -3.702120 -1.644180 1.349060 O -0.722190 -0.113300 -2.768950

O -1.971780 2.354250 -2.443280

O -2.098190 -2.666600 -2.591870 O 1.048910 -2.431510 -0.085170

O -1.276100 -1.653220 -0.210840

Zr 2.588180 -0.466370 0.110360 Zr -0.079780 1.356910 1.763340

Page 26: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S22

Zr 0.036610 1.509910 -1.818240 Zr -0.045920 -1.753510 -1.849940

Zr -2.655790 -0.192060 0.118830

Zr -0.094650 -1.974640 1.479290 Co 0.620720 3.618050 0.110920

A-1-(S=5/2) SCF=-4245.116027 au

C -4.165850 2.905200 3.013270

C 4.083550 -3.405110 3.089030 C -4.585750 -2.875490 3.046880

C 4.463500 2.149780 3.115190

C 4.038640 -3.413460 -3.125650 C -4.177920 2.902590 -3.029730

C 4.480930 2.143150 -3.104420

C -4.616760 -2.900950 -2.992510 H -4.497170 2.222650 3.808230

H -3.776510 3.811920 3.488220

H -5.045900 3.134980 2.402450 H -5.555080 -2.755230 2.551980

H -4.408110 -3.925660 3.303960

H -4.618630 -2.312970 3.990630 H 3.672490 -4.142130 3.786310

H 4.773520 -3.893930 2.389910

H 4.679130 -2.670700 3.647130 H 4.161640 2.417350 4.133730

H 5.329560 1.479940 3.124480

H 4.755790 3.074270 2.597330 H -5.162520 2.903330 -2.550720

H -3.855690 3.926100 -3.252640

H -4.269210 2.377770 -3.991160 H -4.785430 -2.227150 -3.844410

H -4.383560 -3.892500 -3.394690

H -5.543850 -2.925390 -2.409770

H 4.486830 1.731410 -4.123000

H 4.324520 3.225850 -3.196020

H 5.446410 1.935350 -2.632930 H 3.640190 -3.805040 -4.067200

H 4.906590 -2.770120 -3.311430

H 4.397520 -4.261090 -2.525500 C -3.410080 -2.305100 2.240850

C -3.084640 2.168240 2.255570

C -3.108290 2.156200 -2.258640 C 3.305810 1.549670 -2.341570

C 2.948450 -2.672970 -2.357390

C 2.971110 -2.684510 2.332310 C -3.425740 -2.326040 -2.210390

C 3.287150 1.545550 2.363670

O -1.002380 1.347040 -0.003170 O -3.491120 1.361750 -1.354760

O -3.706380 -1.406450 -1.389480

O -3.468560 1.375180 1.350310 O -1.877860 2.352780 2.585410

O 2.110270 1.859400 2.720310 O 1.752190 -2.806260 2.669280

O 3.583380 0.802860 1.386060

O 3.381870 -1.959580 1.382300 O 3.593820 0.797240 -1.368450

O 3.369740 -1.959140 -1.405600

O 1.723600 -2.796960 -2.677870 O 2.132090 1.857680 -2.711620

O 1.126830 -0.311530 -1.538510

O 1.451670 1.798780 -0.001890 O 0.275070 3.647360 1.514400

O 0.270580 3.637040 -1.533450

O 1.133660 -0.311580 1.539710 O -1.235010 -0.187650 2.085700

O -2.231670 -2.733750 2.465200

O -3.696830 -1.392190 1.415850 O -1.244520 -0.194660 -2.084650

O -1.899820 2.344790 -2.583530

O -2.248480 -2.749760 -2.445480 O 0.967710 -2.365620 0.000840

O -1.401680 -1.789590 0.004680

Zr 2.480750 -0.543260 -0.000870 Zr 0.023890 1.447200 1.771300

Page 27: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S23

Zr 0.016680 1.443450 -1.776580 Zr -0.190600 -1.885150 -1.654280

Zr -2.575400 -0.095350 0.001140

Zr -0.183420 -1.881920 1.658050 Co 1.091890 3.577180 -0.009880

A-2-(S=3/2) SCF=-4364.177219 au

C 4.794540 0.354290 -3.205570

C -5.414820 -1.545960 -3.015290 C 2.559980 -4.985660 -2.912080

C -3.247380 3.571670 -3.355060

C -5.279790 -1.235080 3.190380 C 4.900160 0.676050 2.827900

C -3.167160 3.912530 2.854390

C 2.672140 -4.693130 3.119260 H 4.769580 -0.446460 -3.957630

H 4.848810 1.311790 -3.734380

H 5.693180 0.195030 -2.599280 H 3.487010 -5.289050 -2.414570

H 1.923560 -5.854710 -3.112040

H 2.828230 -4.550820 -3.885400 H -5.391680 -2.425870 -3.666020

H -6.239880 -1.631780 -2.297160

H -5.623660 -0.653360 -3.619570 H -2.873490 3.618100 -4.383920

H -4.322600 3.365510 -3.336140

H -3.082760 4.555130 -2.892880 H 5.771390 0.206060 2.359940

H 5.078110 1.745240 2.990260

H 4.760070 0.219660 3.818120 H 3.140220 -4.122660 3.933970

H 2.023000 -5.449000 3.573680

H 3.479050 -5.165100 2.548530

H -3.342080 3.603970 3.894350

H -2.537540 4.811170 2.887170

H -4.129840 4.137630 2.385250 H -5.086010 -1.712220 4.156430

H -5.760920 -0.259990 3.330820

H -5.992000 -1.860610 2.634780 C 1.791750 -3.924420 -2.115480

C 3.540950 0.246460 -2.394700

C 3.585570 0.429180 2.121260 C -2.428140 2.785210 2.165810

C -3.992690 -1.070960 2.411870

C -4.092160 -1.375790 -2.288520 C 1.858330 -3.657550 2.324360

C -2.434930 2.569750 -2.538090

O 1.309580 0.480930 0.058500 O 3.534620 -0.530090 1.296950

O 2.508100 -2.983790 1.472300

O 3.588910 -0.583480 -1.439820 O 2.534520 0.941570 -2.687710

O -1.244690 2.310000 -2.863770 O -3.058300 -2.035120 -2.591280

O -3.025940 2.098170 -1.515860

O -4.139160 -0.496590 -1.375530 O -3.015110 2.221540 1.202420

O -4.073920 -0.314160 1.410030

O -2.925710 -1.656550 2.785790 O -1.280340 2.472800 2.607880

O -1.253650 0.141500 1.207620

O -0.481000 2.242490 -0.112230 O 1.265610 3.088360 -1.738540

O 1.191100 3.290700 1.544030

O -1.354380 -0.012250 -1.571040 O 0.866450 -1.012520 -1.987370

O 0.539170 -3.779380 -2.246320

O 2.508410 -3.209670 -1.351850 O 0.441710 -0.579450 2.764230

O 2.602430 1.148200 2.440940

O 0.630590 -3.474200 2.596790 O -2.142680 -1.937480 0.086580

O 0.296300 -2.218000 0.212320

Zr -2.727550 0.469080 -0.106020 Zr 0.455080 1.033430 -1.763930

Page 28: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S24

Zr 0.420000 1.222070 1.812770 Zr -0.856610 -1.782420 1.853000

Zr 2.157190 -1.455060 -0.120950

Zr -0.909990 -2.007430 -1.477380 Co 0.852690 3.374100 -0.118560

C 4.210350 2.753390 -0.208330

H 3.258840 2.220390 -0.048350 H 5.003140 2.100580 0.187350

H 4.351510 2.826970 -1.297640

C 4.228630 4.120890 0.446690 H 3.972890 4.026150 1.515420

H 5.257650 4.518830 0.424220

C 3.321950 5.146400 -0.201110 H 2.243020 4.965350 -0.000420

H 3.491560 6.157510 0.194670

H 3.430200 5.177150 -1.294380

A-2-(S=5/2)

SCF=-4364.160772 au C 4.751720 0.404530 -3.196060

C -5.449410 -1.522570 -2.878770

C 2.534440 -4.942610 -2.904100 C -3.299330 3.602390 -3.217540

C -5.231000 -1.247990 3.326210

C 4.938370 0.690770 2.837300 C -3.135720 3.906770 2.992240

C 2.727640 -4.685450 3.126830

H 4.718500 -0.391840 -3.952490 H 4.796500 1.365250 -3.719850

H 5.658900 0.243890 -2.602990

H 3.468840 -5.246690 -2.421010 H 1.897420 -5.812150 -3.100560

H 2.788360 -4.501460 -3.878350

H -5.432990 -2.398590 -3.534970

H -6.264480 -1.614690 -2.150070

H -5.668630 -0.626970 -3.474900

H -2.939530 3.655870 -4.251020 H -4.373670 3.393410 -3.185240

H -3.130860 4.583540 -2.751730

H 5.804330 0.225790 2.354770 H 5.115880 1.759400 3.003320

H 4.812830 0.228310 3.826520

H 3.205340 -4.118720 3.938470 H 2.086550 -5.445700 3.585500

H 3.527870 -5.152110 2.542400

H -3.295740 3.591620 4.032620 H -2.507920 4.806800 3.021810

H -4.105240 4.132190 2.537550

H -5.022990 -1.730410 4.286690 H -5.712570 -0.275020 3.478980

H -5.949180 -1.872050 2.776580

C 1.763660 -3.866330 -2.126500 C 3.477330 0.269640 -2.393660

C 3.625730 0.466580 2.114340 C -2.374580 2.812210 2.259410

C -3.947900 -1.114870 2.512130

C -4.110360 -1.342760 -2.169440 C 1.898170 -3.676100 2.318280

C -2.496660 2.571760 -2.438690

O 1.316140 0.583590 -0.083460 O 3.582880 -0.464320 1.262110

O 2.536820 -3.023390 1.444030

O 3.491430 -0.563580 -1.444020 O 2.470910 0.957560 -2.731340

O -1.315460 2.304790 -2.818290

O -3.085790 -2.014380 -2.505690 O -3.064840 2.090110 -1.418620

O -4.124370 -0.466220 -1.259310

O -2.996770 2.224500 1.329860 O -4.032470 -0.336400 1.522240

O -2.899650 -1.759470 2.834380

O -1.178100 2.575700 2.607990 O -1.286990 0.133230 1.549540

O -0.670160 2.093060 -0.100460

O 1.165840 3.132680 -1.725370 O 1.250450 3.265770 1.325840

Page 29: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S25

O -1.381760 -0.012810 -1.516000 O 0.772080 -0.992860 -2.082910

O 0.512050 -3.729990 -2.320960

O 2.453540 -3.140690 -1.355830 O 0.899990 -0.799890 2.082540

O 2.642250 1.199430 2.427600

O 0.663560 -3.512580 2.582650 O -2.109610 -1.849080 0.131750

O 0.266220 -2.396660 0.085680

Zr -2.646320 0.462090 0.036600 Zr 0.390730 1.045730 -1.856490

Zr 0.498090 1.211820 1.686700

Zr -0.811540 -1.856950 1.751700 Zr 2.073980 -1.412180 -0.011390

Zr -0.913240 -2.012210 -1.554490

Co 0.453690 3.515890 -0.193350 C 4.366250 2.653840 -0.254530

H 3.320100 2.330440 -0.372380

H 4.934830 1.793830 0.130580 H 4.749610 2.869760 -1.265020

C 4.464260 3.867940 0.647850

H 3.970500 3.645740 1.608560 H 5.521720 4.073880 0.891000

C 3.842890 5.108050 0.038830

H 2.785820 4.934610 -0.220380 H 3.876640 5.970490 0.719460

H 4.347130 5.400630 -0.894890

A-3-(S=3/2)

SCF=-4364.174564 au

C 4.804680 0.761790 -3.071760 C -5.282780 -1.712000 -3.023290

C 2.871870 -4.702020 -3.003680

C -3.404440 3.528080 -3.147240

C -5.192260 -1.640680 3.190490

C 4.865970 0.848840 2.970410

C -3.370300 3.626040 3.071640 C 2.941310 -4.643550 3.035180

H 4.827850 -0.008640 -3.854970

H 4.807410 1.741030 -3.562050 H 5.708160 0.628960 -2.466390

H 3.812290 -4.972790 -2.512460

H 2.285990 -5.596750 -3.241850 H 3.119460 -4.214690 -3.957290

H -5.207550 -2.562770 -3.708040

H -6.104870 -1.872190 -2.314590 H -5.538740 -0.809210 -3.593400

H -3.029280 3.636240 -4.170740

H -4.466400 3.261620 -3.143270 H -3.297190 4.500150 -2.645310

H 5.764160 0.447300 2.489900

H 4.982900 1.919030 3.175630 H 4.747370 0.346520 3.940780

H 3.373150 -4.080710 3.874750 H 2.333620 -5.452020 3.455190

H 3.775880 -5.046740 2.451550

H -3.532100 3.267150 4.097320 H -2.792200 4.556460 3.143810

H -4.342040 3.815440 2.605330

H -4.976210 -2.144420 4.138210 H -5.727940 -0.700500 3.366170

H -5.865890 -2.282560 2.605970

C 2.029300 -3.694050 -2.213250 C 3.527020 0.517430 -2.292730

C 3.583670 0.580070 2.202140

C -2.546600 2.593960 2.317500 C -3.904830 -1.422150 2.396270

C -3.966280 -1.487820 -2.276630

C 2.071940 -3.650080 2.250190 C -2.567040 2.518090 -2.378900

O 1.434440 0.732910 -0.024400

O 3.613260 -0.331960 1.338570 O 2.683340 -2.949750 1.397650

O 3.587670 -0.346080 -1.375330

O 2.487110 1.160620 -2.625020 O -1.361340 2.338480 -2.725250

Page 30: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S26

O -2.907180 -2.108440 -2.609060 O -3.139410 1.962880 -1.398760

O -4.037670 -0.638290 -1.345050

O -3.131090 2.000260 1.367030 O -4.006650 -0.608980 1.438120

O -2.840050 -2.048650 2.707320

O -1.346360 2.408240 2.676170 O -1.317540 -0.021930 1.589830

O -0.714360 1.993370 0.001630

O 1.027690 3.287420 -1.681430 O 1.034380 3.316920 1.606350

O -1.327610 -0.048450 -1.562330

O 0.920570 -0.899510 -1.938500 O 0.780620 -3.600030 -2.458320

O 2.659110 -2.978620 -1.387860

O 0.949390 -0.848020 1.945040 O 2.560940 1.276630 2.501050

O 0.829890 -3.547960 2.522380

O -1.992830 -1.952260 0.035650 O 0.388430 -2.504520 0.024080

Zr -2.621470 0.336380 0.011310

Zr 0.387720 1.134200 -1.741640 Zr 0.393820 1.153240 1.690640

Zr -0.731160 -1.994020 1.665580

Zr 2.122510 -1.306340 -0.010400 Zr -0.753870 -2.026470 -1.612120

Co 0.357920 3.572270 -0.142870

C 3.997850 3.098610 -0.188220 H 3.175980 2.371930 -0.009970

H 4.921650 2.594050 0.131550

H 4.015410 3.233460 -1.280600 C 3.771220 4.376000 0.513760

H 1.958490 3.506300 1.827460

H 4.161640 4.500510 1.532410

C 2.924740 5.433380 -0.048760

H 1.825680 5.219550 0.093120

H 3.080050 6.414080 0.419670 H 3.029340 5.519950 -1.140190

A-4-(S=3/2) SCF=-4364.214010 au

C 2.805480 -4.319990 2.798460

C -2.396360 4.655600 3.305650 C 5.405390 0.838540 3.271350

C -4.875030 -0.314490 2.909800

C -2.139830 5.066500 -2.890250 C 3.023790 -3.913300 -3.226830

C -4.676470 0.119130 -3.291400

C 5.649830 1.258840 -2.748540 H 3.345540 -3.872720 3.644650

H 2.082670 -5.037320 3.201410

H 3.550810 -4.828490 2.176980 H 6.271060 0.388750 2.774090

H 5.634710 1.856350 3.606050 H 5.188150 0.244170 4.170020

H -1.758560 5.128980 4.058920

H -2.822390 5.418120 2.641730 H -3.246490 4.170530 3.803410

H -4.733530 -0.745880 3.906840

H -5.418370 0.634450 2.965000 H -5.481190 -1.018280 2.321950

H 3.916120 -4.324840 -2.743800

H 2.342040 -4.716690 -3.528230 H 3.341840 -3.400130 -4.145290

H 5.576550 0.631230 -3.648060

H 5.827890 2.288560 -3.075970 H 6.495130 0.885540 -2.160610

H -4.489420 0.569460 -4.276050

H -4.943430 -0.931590 -3.463810 H -5.504240 0.649640 -2.810970

H -1.589880 5.337620 -3.797280

H -3.181030 4.820420 -3.128890 H -2.167010 5.944280 -2.229710

C 4.127430 0.818640 2.424160

C 2.135600 -3.161690 2.089570 C 2.301760 -2.872660 -2.392480

Page 31: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S27

C -3.392080 0.160730 -2.474100 C -1.442800 3.914310 -2.166230

C -1.619290 3.614500 2.499890

C 4.300090 1.132660 -2.026810 C -3.534570 -0.171450 2.203140

O 0.642200 -1.654860 -0.117240

O 2.955480 -2.326730 -1.469930 O 4.188630 0.140700 -1.256750

O 2.842670 -2.532830 1.254410

O 0.944050 -2.872940 2.406490 O -2.588940 -0.941880 2.537720

O -0.453410 3.248640 2.846360

O -3.494790 0.688200 1.276570 O -2.248860 3.159010 1.502970

O -3.408010 0.892520 -1.443320

O -2.140550 3.349750 -1.279290 O -0.247310 3.592510 -2.461440

O -2.417570 -0.547180 -2.860630

O -0.696980 0.999950 -1.541950 O -1.741330 -1.056000 -0.169810

O -1.521670 -3.264070 1.375460

O -1.460650 -3.019150 -2.005580 O -0.802650 0.775770 1.562500

O 1.357010 -0.280560 1.932960

O 3.182820 1.630960 2.703030 O 4.083750 -0.054990 1.517240

O 1.482620 -0.020450 -1.916060

O 1.096840 -2.601040 -2.705040 O 3.372690 1.974460 -2.270800

O 0.173150 2.708020 0.167120

O 2.223980 1.371410 0.145580 Zr -1.910430 1.591770 0.021750

Zr -0.460710 -1.292250 1.577660

Zr -0.356580 -1.037750 -1.804870

Zr 1.140580 1.947940 -1.492790

Zr 2.563720 -0.715250 0.018390

Zr 1.023660 1.722620 1.768380 Co -2.021440 -3.033620 -0.201510

H -0.858710 -3.710350 -2.312100

C -3.950790 -3.541210 -0.050850 H -3.843580 -4.464890 -0.651210

C -4.403350 -3.795110 1.348520

H -3.886240 -4.645290 1.806540 H -4.239220 -2.922780 1.994000

H -5.486600 -4.015660 1.347750

C -4.588210 -2.420230 -0.808060 H -4.128620 -2.283380 -1.796120

H -5.656630 -2.651450 -0.978270

H -4.536590 -1.463270 -0.267210

A-5-(S=3/2)

SCF=-4246.424081 au C -4.135170 2.971110 2.992020

C 4.042350 -3.431280 3.114740 C -4.620400 -2.803930 3.075600

C 4.485180 2.119010 3.093040

C 3.991510 -3.492130 -3.099560 C -4.153060 2.916970 -3.050660

C 4.496620 2.059090 -3.126170

C -4.657470 -2.880770 -2.963290 H -4.473400 2.299170 3.793180

H -3.735150 3.877420 3.458900

H -5.013190 3.205590 2.380120 H -5.588760 -2.676970 2.580500

H -4.454360 -3.853840 3.341460

H -4.645990 -2.233060 4.014500 H 3.623740 -4.157580 3.818690

H 4.726160 -3.933750 2.419270

H 4.646780 -2.698830 3.666070 H 4.187280 2.398750 4.109520

H 5.343600 1.439540 3.107400

H 4.787420 3.035680 2.567040 H -5.137130 2.932940 -2.570790

H -3.819500 3.934820 -3.282600

H -4.251220 2.385010 -4.007450 H -4.819290 -2.212330 -3.820840

Page 32: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S28

H -4.435850 -3.878230 -3.357230 H -5.584190 -2.889700 -2.379640

H 4.496820 1.638550 -4.141290

H 4.352310 3.142610 -3.227000 H 5.460100 1.844420 -2.653850

H 3.587720 -3.887270 -4.037370

H 4.866480 -2.860330 -3.291590 H 4.341330 -4.338660 -2.492460

C -3.437860 -2.251980 2.269020

C -3.073920 2.215400 2.220240 C -3.098980 2.165130 -2.259080

C 3.325400 1.481520 -2.346970

C 2.906780 -2.742600 -2.327160 C 2.933910 -2.711840 2.345440

C -3.456780 -2.313530 -2.192470

C 3.312410 1.514290 2.339700 O -1.081570 1.478480 -0.026050

O -3.503260 1.362410 -1.380760

O -3.725520 -1.399830 -1.365660 O -3.484940 1.404310 1.350280

O -1.856280 2.423130 2.514760

O 2.139560 1.848220 2.677410 O 1.713360 -2.839630 2.678590

O 3.610870 0.748880 1.378740

O 3.347950 -1.993450 1.393010 O 3.617030 0.712790 -1.387890

O 3.332130 -2.019800 -1.385950

O 1.679190 -2.881470 -2.638400 O 2.153020 1.814490 -2.693490

O 1.123870 -0.383110 -1.577840

O 1.398780 1.714170 -0.015330 O 0.378570 3.666140 1.689370

O 0.344780 3.639330 -1.721080

O 1.131610 -0.349090 1.583270

O -1.271990 -0.161940 1.946840

O -2.260490 -2.673120 2.523930

O -3.717940 -1.363360 1.419760 O -1.278820 -0.212220 -1.963350

O -1.879300 2.375490 -2.556380

O -2.283030 -2.741120 -2.450740 O 0.938680 -2.391250 0.022000

O -1.448400 -1.883680 0.020280

Zr 2.461960 -0.552560 0.004340 Zr 0.055520 1.442820 1.687010

Zr 0.045130 1.386070 -1.728920

Zr -0.221460 -1.940310 -1.622590 Zr -2.541940 -0.092020 0.006430

Zr -0.211420 -1.897970 1.659270

Co 1.217970 3.607720 -0.040190 H -0.540570 4.022140 -1.786900

H -0.423900 4.169400 1.867520

A-6-(S=3/2)

SCF=-4364.262672 au C -4.297590 3.026660 2.357620

C 4.211050 -2.780730 3.681870

C -4.471910 -2.649940 3.515280 C 4.354380 2.684740 2.626370

C 4.235150 -3.999570 -2.412180

C -4.242960 1.848430 -3.569270 C 4.440610 1.468840 -3.472750

C -4.435170 -3.850730 -2.403510

H -4.608360 2.497970 3.269320 H -3.952480 4.024700 2.647590

H -5.179870 3.094480 1.711360

H -5.439910 -2.670580 3.004100 H -4.252510 -3.621050 3.972620

H -4.538950 -1.916440 4.331390

H 3.824100 -3.385210 4.508330 H 4.928970 -3.365300 3.093040

H 4.768800 -1.926330 4.087660

H 4.030210 3.131290 3.572660 H 5.247850 2.067660 2.768260

H 4.612850 3.502460 1.939130

H -5.231960 1.898950 -3.102110 H -3.962150 2.821980 -3.986570

Page 33: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S29

H -4.301350 1.142990 -4.410290 H -4.622950 -3.363530 -3.370660

H -4.155650 -4.890390 -2.604130

H -5.366740 -3.802000 -1.829370 H 4.475220 0.867800 -4.391610

H 4.239370 2.505320 -3.773900

H 5.408800 1.399440 -2.967340 H 3.864020 -4.583780 -3.260540

H 5.076910 -3.367200 -2.717650

H 4.623060 -4.697660 -1.657590 C -3.311860 -2.195970 2.623050

C -3.185510 2.182630 1.761670

C -3.158150 1.311720 -2.651490 C 3.292860 0.985590 -2.599760

C 3.099830 -3.180190 -1.792580

C 3.072310 -2.283060 2.785540 C -3.276750 -3.085440 -1.754960

C 3.216710 1.900080 1.991090

O -1.164970 1.193070 -0.322890 O -3.533810 0.672910 -1.635700

O -3.607230 -2.058480 -1.102450

O -3.546540 1.218350 1.039810 O -1.983770 2.476570 2.055150

O 2.025320 2.258100 2.238070

O 1.856500 -2.436040 3.131140 O 3.561140 0.976130 1.203900

O 3.453540 -1.719790 1.722930

O 3.611370 0.428640 -1.511400 O 3.470390 -2.261860 -1.013600

O 1.885630 -3.458820 -2.064670

O 2.111870 1.193680 -3.005380 O 1.180850 -0.837920 -1.550920

O 1.313810 1.460210 -0.347420

O 0.144680 3.694040 0.777630

O 0.226030 3.037420 -2.345620

O 1.152480 -0.198710 1.654440

O -1.268380 -0.107880 1.882510 O -2.117040 -2.491930 2.961150

O -3.630420 -1.505450 1.618610

O -1.236610 -0.854480 -1.868240 O -1.949000 1.514160 -2.991510

O -2.078620 -3.479910 -1.942820

O 1.105110 -2.463780 0.434420 O -1.321770 -2.185770 0.351950

Zr 2.474090 -0.613060 0.082380

Zr -0.031660 1.499000 1.347300 Zr 0.002810 0.838600 -1.959820

Zr -0.075320 -2.432740 -1.260780

Zr -2.504810 -0.461580 -0.006360 Zr -0.104370 -1.792610 1.960910

Co 1.180980 3.389730 -0.752670

H -0.459450 3.576650 -2.751780 C -0.569690 4.894380 1.026930

H -1.034080 4.788810 2.023900 C 0.402840 6.054580 1.039320

H -0.098990 7.010520 1.243760

H 1.186100 5.906340 1.794660 H 0.894800 6.151190 0.053370

C -1.666290 5.061470 -0.006690

H -1.233370 5.252890 -1.003150 H -2.277910 4.151680 -0.077230

H -2.323800 5.909210 0.233180

A-TS2-3-(S=3/2)

SCF=-4364.149570

C 4.700430 0.567310 -3.286360 C -5.382040 -1.871180 -2.760660

C 2.766340 -4.877480 -2.831220

C -3.504410 3.347120 -3.256500 C -5.087130 -1.432300 3.431660

C 4.960500 1.011810 2.734760

C -3.265660 3.813050 2.941180 C 3.034420 -4.461730 3.188030

H 4.697180 -0.248210 -4.022870

H 4.687860 1.515780 -3.833660 H 5.623220 0.468040 -2.704130

Page 34: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S30

H 3.722180 -5.121310 -2.355900 H 2.172190 -5.783120 -2.996600

H 2.982840 -4.448170 -3.819640

H -5.330090 -2.761210 -3.395880 H -6.180510 -1.986840 -2.017140

H -5.655860 -1.003020 -3.374580

H -3.163030 3.393440 -4.296360 H -4.565890 3.084310 -3.201930

H -3.379900 4.346900 -2.816860

H 5.842070 0.580020 2.249710 H 5.085020 2.091940 2.872250

H 4.873470 0.568160 3.736560

H 3.494110 -3.851370 3.978150 H 2.440200 -5.242220 3.674910

H 3.849000 -4.901100 2.602280

H -3.393930 3.515970 3.991070 H -2.684710 4.744500 2.939080

H -4.252050 3.977210 2.496570

H -4.840440 -1.879640 4.399970 H -5.615950 -0.481880 3.568760

H -5.780150 -2.105790 2.908610

C 1.952170 -3.823120 -2.072150 C 3.447580 0.378260 -2.454190

C 3.648950 0.694930 2.036920

C -2.461070 2.748220 2.209710 C -3.823540 -1.260380 2.588310

C -4.042230 -1.612990 -2.069670

C 2.143060 -3.510220 2.374760 C -2.651980 2.368440 -2.466090

O 1.424570 0.737410 -0.143050

O 3.653130 -0.257130 1.214320 O 2.727430 -2.865000 1.462070

O 3.533610 -0.431890 -1.491020

O 2.398550 1.006490 -2.788590

O -1.465900 2.147750 -2.852170

O -2.996080 -2.257260 -2.397080

O -3.192670 1.876730 -1.434310 O -4.082230 -0.712480 -1.185060

O -3.083350 2.084530 1.334680

O -3.955640 -0.507340 1.585450 O -2.746150 -1.861110 2.905640

O -1.234530 2.608590 2.507680

O -1.249990 0.091560 1.603410 O -0.752630 1.967620 -0.139130

O 0.886180 3.195930 -1.924330

O 1.088040 3.447900 1.225330 O -1.380650 -0.147000 -1.534770

O 0.854240 -1.016610 -1.940370

O 0.694900 -3.742820 -2.277190 O 2.609520 -3.060750 -1.313070

O 1.019140 -0.722600 1.940390

O 2.632860 1.395770 2.341990 O 0.911160 -3.383040 2.682430

O -1.989230 -1.938650 0.205530 O 0.391160 -2.488180 0.142840

Zr -2.621800 0.338490 0.055670

Zr 0.325010 1.022680 -1.855860 Zr 0.470960 1.266900 1.577880

Zr -0.671410 -1.876580 1.789380

Zr 2.120780 -1.303340 -0.023030 Zr -0.807530 -2.120040 -1.480470

Co 0.253910 3.522800 -0.374680

C 3.960320 3.112520 -0.311150 H 3.343590 3.246630 -1.212880

H 3.906920 2.050550 -0.036060

H 5.006800 3.321730 -0.598320 C 3.532620 4.033750 0.790910

H 2.411410 3.670020 1.154280

H 4.081700 3.893050 1.736610 C 3.346070 5.471490 0.412840

H 2.643860 5.574210 -0.431330

H 2.976000 6.082510 1.246460 H 4.296710 5.916760 0.072510

A-TS2-3-(S=5/2) SCF=-4364.146101 au

Page 35: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S31

C 4.720850 0.772640 -3.217910 C -5.288360 -1.976770 -2.850160

C 2.947490 -4.735150 -2.881710

C -3.564150 3.303710 -3.231730 C -5.073810 -1.641550 3.351930

C 4.902260 1.115530 2.812720

C -3.406600 3.664180 2.975560 C 3.137800 -4.420710 3.146640

H 4.750230 -0.029120 -3.968810

H 4.685510 1.730070 -3.748360 H 5.639870 0.690610 -2.627110

H 3.905070 -4.958730 -2.399990

H 2.382830 -5.655080 -3.069910 H 3.161580 -4.281680 -3.859810

H -5.202660 -2.853180 -3.500490

H -6.090960 -2.129820 -2.117930 H -5.581660 -1.106240 -3.451610

H -3.213100 3.379110 -4.266660

H -4.617720 3.008190 -3.193900 H -3.474690 4.298650 -2.772990

H 5.801670 0.719290 2.330100

H 4.992560 2.196250 2.970810 H 4.817860 0.651390 3.805420

H 3.570260 -3.811240 3.952660

H 2.562230 -5.227390 3.612780 H 3.971580 -4.824720 2.562440

H -3.537170 3.344400 4.018480

H -2.854100 4.612550 2.996630 H -4.392640 3.806670 2.522780

H -4.824190 -2.098760 4.314870

H -5.632580 -0.710090 3.499920 H -5.740450 -2.325960 2.809150

C 2.093990 -3.719690 -2.114280

C 3.464080 0.527350 -2.405050

C 3.609510 0.771380 2.091260

C -2.566070 2.634400 2.236220

C -3.806500 -1.420740 2.523140 C -3.963330 -1.693060 -2.137690

C 2.226360 -3.485290 2.341290

C -2.687240 2.347690 -2.439670 O 1.413060 0.795070 -0.102700

O 3.652960 -0.166980 1.253550

O 2.799470 -2.810250 1.443260 O 3.563970 -0.294130 -1.454450

O 2.396610 1.125020 -2.745440

O -1.475670 2.204830 -2.789760 O -2.898060 -2.310090 -2.460160

O -3.232710 1.801890 -1.440340

O -4.034740 -0.805600 -1.242780 O -3.158340 1.966170 1.344650

O -3.945000 -0.646560 1.537910

O -2.719950 -2.009340 2.835560 O -1.338720 2.525310 2.546720

O -1.264430 0.018740 1.629130 O -0.840520 1.901730 -0.093520

O 0.858400 3.259660 -1.774550

O 0.884820 3.462760 1.353480 O -1.356030 -0.160720 -1.587250

O 0.920110 -0.954250 -1.919150

O 0.838270 -3.668350 -2.338640 O 2.718910 -2.956900 -1.329110

O 1.031160 -0.737560 1.928930

O 2.567070 1.433180 2.395740 O 0.988930 -3.399920 2.640640

O -1.925940 -1.969770 0.147070

O 0.461170 -2.494010 0.108800 Zr -2.604750 0.259060 0.036140

Zr 0.328070 1.059940 -1.815300

Zr 0.419930 1.246410 1.616060 Zr -0.628390 -1.931420 1.754510

Zr 2.161400 -1.241130 -0.012280

Zr -0.723500 -2.114530 -1.524470 Co 0.033570 3.551290 -0.304920

C 3.855700 3.188920 -0.365140

H 3.197460 3.226320 -1.248230 H 3.920770 2.140070 -0.044990

Page 36: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S32

H 4.861120 3.496440 -0.704540 C 3.370650 4.106790 0.716990

H 2.315740 3.726960 1.092940

H 3.935730 4.002160 1.659630 C 3.190070 5.543690 0.312710

H 2.552010 5.631100 -0.580750

H 2.748690 6.151590 1.113860 H 4.157540 6.002510 0.048660

A-TS4-5-(S=3/2) SCF=-4364.182195 au

C 2.744170 -4.436080 2.683990

C -2.464910 4.519580 3.418290 C 5.335040 0.698720 3.401500

C -4.936100 -0.429900 2.787240

C -2.081550 5.160360 -2.751490 C 3.085830 -3.805810 -3.316280

C -4.610570 0.233850 -3.388190

C 5.702710 1.342370 -2.592330 H 3.266910 -4.021120 3.557100

H 2.013100 -5.167180 3.045120

H 3.501950 -4.921850 2.059380 H 6.210600 0.266880 2.905660

H 5.557690 1.703150 3.778450

H 5.099310 0.071560 4.272810 H -1.842560 4.963990 4.201530

H -2.877100 5.306680 2.774630

H -3.325170 4.017170 3.880180 H -4.815130 -0.898210 3.770220

H -5.480240 0.516870 2.866590

H -5.530260 -1.110740 2.161340 H 3.968000 -4.235920 -2.830750

H 2.410210 -4.596760 -3.661230

H 3.422720 -3.259150 -4.208320

H 5.647710 0.748720 -3.515880

H 5.887660 2.383380 -2.877510

H 6.535720 0.946630 -2.001530 H -4.403310 0.720290 -4.351370

H -4.874190 -0.809480 -3.604980

H -5.447880 0.746940 -2.905380 H -1.513100 5.464480 -3.636380

H -3.117710 4.924360 -3.020360

H -2.122040 6.012990 -2.059440 C 4.075180 0.709230 2.528960

C 2.084430 -3.255240 2.000120

C 2.357590 -2.785620 -2.464700 C -3.346280 0.252640 -2.543030

C -1.392520 3.987180 -2.051030

C -1.669580 3.505630 2.588300 C 4.341470 1.194990 -1.899850

C -3.581330 -0.253610 2.116380

O 0.620440 -1.658230 -0.193440 O 2.985790 -2.286570 -1.498760

O 4.214940 0.177670 -1.166650 O 2.804390 -2.597950 1.199410

O 0.884300 -2.980880 2.300410

O -2.645890 -1.040670 2.440270 O -0.506710 3.135290 2.944880

O -3.525960 0.641400 1.227020

O -2.277300 3.079240 1.566200 O -3.383110 0.960140 -1.497180

O -2.105590 3.381280 -1.206000

O -0.182840 3.695270 -2.324420 O -2.369250 -0.452660 -2.927940

O -0.650500 1.072770 -1.576500

O -1.745980 -0.918370 -0.263870 O -1.638210 -3.267080 1.166290

O -1.395960 -2.893800 -2.204550

O -0.831110 0.702860 1.594180 O 1.327100 -0.374150 1.920660

O 3.122640 1.506450 2.823840

O 4.053110 -0.126520 1.586270 O 1.543050 0.048180 -1.890480

O 1.171750 -2.478570 -2.811190

O 3.422320 2.049770 -2.130750 O 0.157070 2.669900 0.263250

Page 37: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S33

O 2.225680 1.363510 0.237520 Zr -1.889350 1.558710 0.025450

Zr -0.494620 -1.368140 1.497380

Zr -0.292760 -0.956620 -1.891790 Zr 1.178550 2.005450 -1.403500

Zr 2.558190 -0.723610 0.035690

Zr 0.987080 1.636660 1.848010 Co -2.204220 -2.773630 -0.450410

H -0.751100 -3.590660 -2.380450

C -4.075120 -3.744790 0.160730 H -3.920530 -4.648260 -0.448690

C -4.044670 -3.914390 1.570600

H -4.175090 -4.937210 1.940510 H -2.806220 -3.694890 1.733660

H -4.529620 -3.146710 2.182570

C -4.583470 -2.561000 -0.585460 H -3.917380 -2.235240 -1.424090

H -5.499310 -2.824530 -1.142230

H -4.778460 -1.681460 0.040480

A-TS4-6-(S=3/2)

SCF=-4364.175043 au C 2.572360 -4.638260 2.451650

C -2.528820 4.335200 3.605990

C 5.210720 0.393380 3.598490 C -5.047920 -0.519300 2.561820

C -1.920570 5.377320 -2.490560

C 3.132860 -3.617170 -3.477980 C -4.496930 0.547080 -3.540780

C 5.797180 1.426950 -2.322940

H 3.070190 -4.290970 3.367790 H 1.818580 -5.379320 2.738050

H 3.344400 -5.094190 1.822040

H 6.096740 -0.019270 3.104880

H 5.434590 1.366710 4.049100

H 4.935580 -0.286150 4.417400

H -1.927870 4.716160 4.437870 H -2.906780 5.170080 3.002780

H -3.411900 3.817780 4.003770

H -4.968230 -1.053750 3.514820 H -5.580720 0.429130 2.685790

H -5.629630 -1.147040 1.871980

H 3.991170 -4.093300 -2.992630 H 2.458330 -4.372040 -3.897780

H 3.508650 -3.018280 -4.319510

H 5.765930 0.896890 -3.285450 H 6.007080 2.481330 -2.531420

H 6.603180 0.978950 -1.732000

H -4.249060 1.092800 -4.461680 H -4.767900 -0.474980 -3.835680

H -5.343090 1.041010 -3.053430

H -1.317140 5.729890 -3.333320 H -2.949990 5.177120 -2.809620

H -1.972880 6.182730 -1.744810 C 3.981620 0.482000 2.689270

C 1.954770 -3.406020 1.816980

C 2.393190 -2.636410 -2.589630 C -3.261750 0.480010 -2.654940

C -1.269820 4.152240 -1.841070

C -1.718780 3.364190 2.735640 C 4.413060 1.262370 -1.687330

C -3.678060 -0.333830 1.927760

O 0.622040 -1.641530 -0.319800 O 2.998590 -2.213480 -1.574000

O 4.246850 0.202790 -1.026290

O 2.720260 -2.705590 1.101390 O 0.741470 -3.139570 2.074700

O -2.785170 -1.195310 2.185650

O -0.569730 2.962510 3.105960 O -3.572600 0.629980 1.124550

O -2.298180 3.008420 1.671820

O -3.320390 1.120990 -1.567960 O -2.021370 3.494360 -1.073020

O -0.047720 3.876600 -2.078460

O -2.287610 -0.223910 -3.051120 O -0.579680 1.220680 -1.583960

Page 38: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S34

O -1.718770 -0.794640 -0.401900 O -1.645830 -3.320440 0.771030

O -1.351740 -2.716130 -2.375110

O -0.900420 0.613470 1.635540 O 1.246130 -0.513040 1.894470

O 3.027360 1.266510 3.010940

O 3.984660 -0.283680 1.689310 O 1.611570 0.172000 -1.845650

O 1.228670 -2.280390 -2.960620

O 3.518170 2.148660 -1.891650 O 0.151990 2.625430 0.424780

O 2.228280 1.334900 0.387300

Zr -1.854080 1.577910 0.040130 Zr -0.578490 -1.444870 1.324750

Zr -0.238000 -0.798470 -1.971860

Zr 1.250760 2.094200 -1.246490 Zr 2.538770 -0.746510 0.050520

Zr 0.929310 1.495770 1.971020

Co -2.340960 -2.655640 -0.767460 H -0.778010 -3.455110 -2.609630

C -3.585970 -3.852510 0.350020

H -3.365750 -4.688840 -0.333040 C -3.795330 -4.267290 1.759100

H -4.794290 -4.730130 1.845890

H -3.043370 -4.991640 2.084620 H -3.762080 -3.394150 2.423980

C -4.544980 -2.827220 -0.219120

H -4.093790 -1.842880 -0.538420 H -5.090690 -3.208220 -1.092510

H -5.261530 -2.492670 0.541710

propane

SCF=-119.033918 au

C 1.265601 -0.255455 -0.000005

H 1.318326 -0.909126 0.883936

H 2.172056 0.365639 -0.000061

H 1.318266 -0.909225 -0.883877 C -0.000025 0.578472 -0.000006

H 0.000009 1.250131 -0.875049

C -1.265591 -0.255460 -0.000001 H -1.318964 -0.908107 0.884641

H -1.317535 -0.910239 -0.883160

H 0.000014 1.250013 0.875137 H -2.172077 0.365576 -0.001492

propene SCF=-117.799298 au

C 1.227291 0.162508 0.000011

H 1.812166 -0.151281 0.878640 H 1.183657 1.259939 -0.000862

H 1.812917 -0.152698 -0.877602

C -0.127190 -0.450508 -0.000094 H -0.158878 -1.548044 0.000208

C -1.282278 0.217632 -0.000028 H -1.311570 1.311957 0.000111

H -2.245229 -0.297666 0.000175

Page 39: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S35

References

1. Toby, B. H.; Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose

crystallography software package J. Appl. Crys. 2013, 46, 544–549.

2. Jennings, G. QXRD 0.8.4 ed.; Argonne National Laboratory: Lemont, IL, 2011.

3 Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection.

Powder Diffraction 2005, 20, 316–326.

4. Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.;

Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. Vapor-Phase

Metalation by Atomic Layer Deposition in a Metal–Organic Framework. J. Am. Chem. Soc.

2013, 135, 10294–10297.

5 . Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006:

General features. Zeitschrift für Kristallographie - Crystalline Materials 2014, 229, 345–352.

6 . Yakovenko, A. A.; Reibenspies, J. H.; Bhuvanesh, N.; Zhou, H.-C. Generation and

applications of structure envelopes for porous metal–organic frameworks. J. Appl. Crys. 2013,

46, 346–353.

7. Yakovenko, A. A.; Wei, Z.; Wriedt, M.; Li, J.-R.; Halder, G. J.; Zhou, H.-C. Study of Guest

Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference

Envelope Density. Crystal Growth & Design 2014, 14, 5397–5407.

8. Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Stoddart, J. F.; Hupp, J. T.;

Farha, O. K. Scalable synthesis and post-modification of a mesoporous metal-organic framework

called NU-1000. Nat. Protoc. 2016, 11, 149–162.

9. Hudson, M. J.; Knowles, J. A. Preparation and characterisation of mesoporous, high-surface-

area zirconium(IV) oxide. J. Mater. Chem. 1996, 6, 89–96.

10. Peters, A. W.; Li, Z. Y.; Farha, O. K.; Hupp, J. T. Atomically Precise Growth of Catalytically

Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework Via Atomic

Layer Deposition. ACS Nano 2015, 9, 8484–8490.

11. Kung, C. W.; Mondloch, J. E.; Wang, T. C.; Bury, W.; Hoffeditz, W.; Klahr, B. M.; Klet, R.

C.; Pellin, M. J.; Farha, O. K.; Hupp, J. T. Metal–Organic Framework Thin Films as Platforms

for Atomic Layer Deposition of Cobalt Ions to Enable Electrocatalytic Water Oxidation. ACS

Appl. Mater. Inter. 2015, 7, 28223–28230.

12. Li, Z.; Schweitzer, N. M.; League, A. B.; Bernales, V.; Peters, A. W.; Getsoian, A.; Wang, T.

C.; Miller, J. T.; Vjunov, A.; Fulton, J. L.; Lercher, J. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J.

T.; Farha, O. K. Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic

Framework. J. Am. Chem. Soc. 2016, 138, 1977–1982.

13. Planas, N.; Mondloch, J. E.; Tussupbayev, S.; Borycz, J.; Gagliardi, L.; Hupp, J. T.; Farha,

O. K.; Cramer, C. J. Defining the Proton Topology of the Zr6-Based Metal-Organic Framework

NU-1000. J. Phys. Chem. Lett. 2014, 5, 3716–3723.

14. B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray

absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

15. M. Newville, IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad.

2001, 8, 322–324.

16 . Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group

Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent

Interactions. J. Chem. Phys. 2006, 125, 194101–194117.

Page 40: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S36

17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.

R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li,

X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,

M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;

Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;

Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;

Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene,

M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.

E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;

Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian,

Inc.: Wallingford CT, 2009.

18. Zhao, Y.; Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc.

Chem. Res., 2008, 41, 157–167.

19 . Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group

thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and

transition elements: two new functionals and systematic testing of four M06-class functionals

and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

20. Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.;

Gagliardi, L.; Lu, C. C. Catalytic Silylation of Dinitrogen with a Dicobalt Complex. J. Am.

Chem. Soc. 2015, 137, 4638–4641.

21. Zhao, Y.; Truhlar, D. G. Benchmark Data for Interactions in Zeolite Model Complexes and

Their Use for Assessment and Validation of Electronic Structure Methods. J. Phys. Chem. C

2008, 112, 6860–6868.

22. Thompson, A. B.; Pahls, D. R.; Bernales, V.; Gallington, L. C.; Malonzo, C. D.; Webber, T.;

Tereniak, S. J.; Wang, T. C.; Desai, S. P.; Li, Z.; Kim, I. S.; Gagliardi, L.; Penn, R. L.; Chapman,

K. W.; Stein, A.; Farha, O. K.; Hupp, J. T.; Martinson, A. B. F.; Lu, C. C. Installing

Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chem.

Mater. 2016, 28, 6753–6762.

23. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys.

2006, 8, 1057–1065.

24. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem.

Chem. Phys. 2005, 7, 3297–3305.

25. Hay, P. J., ; Dunning Jr, T. H. Modern Theoretical Chemistry, Vol. 3. Methods of Electronic

Structure Theory. ; Plenum, New York, 1976; Vol. 1.

26. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem.

Phys. 1993, 98, 5648–5652.

27. Grimme, S. A., J.; Ehrlich, S.; Krieg, H.A A consistent and accurate ab initio parametrization

of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.

2010, 132, 154104–154124.

28. M. Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density

Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for

Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401–146404.

Page 41: Metal Organic Framework Supported Cobalt Catalysts for the ... · S1 Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature

S37

29. Rozanska, X.; Sauer, J. Oxidative conversion of C1–C3 alkanes by vanadium oxide catalysts.

DFT results and their accuracy. Int. J. Quantum Chem. 2008, 108, 2223–2229.

30. Jensen, K. P.; Cirera, J. Accurate computed enthalpies of spin crossover in iron and cobalt

complexes. J. Phys. Chem. A 2009, 113, 10033–10039.

31. Rozanska, X.; Fortrie, R.; Sauer, J. Oxidative Dehydrogenation of Propane by Monomeric

Vanadium Oxide Sites on Silica Support. J. Phys. Chem. C 2007, 111, 6041–6050.

32. Duanmu, K.; Wang, B.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. CM5PAC version

2015, University of Minnesota, Minneapolis, 2015. http://comp.chem.umn.edu/cm5pac/

33. Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. Charge Model 5: An Extension

of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in

Gaseous and Condensed Phases. J. Chem. Theory Comput. 2012, 8, 527–541.

34. Platero-Prats, A. E.; Mavrandonakis, A.; Gallington, L. C.; Liu, Y.; Hupp, J. T.; Farha, O. K.;

Cramer, C. J.; Chapman, K. W. Structural Transitions of the Metal-Oxide Nodes within Metal–

Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. J. Am. Chem. Soc. 2016,

138, 4178–4185.