21
201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern Mexico, is made up of orthogneisses and paragneisses, both affected by a variable degrees of migmatization. These rocks are intruded by several episodes of Jurassic-Oligocene, calc-alkaline granitic magmatism. Three phases of ductile deformation affected the gneisses and migmatites. D 1 produced an amphibolite-facies metamorphic banding (M 1 ) and a penetrative S 1 foliation, axial planar to isoclinal, recumbent F 1 folds with axes parallel to a NE to NW, gently plunging, L 1 stretching lineation. D 2 consists of a S 2 foliation defined by hornblende, biotite and garnet, synchronous with M2 migmatization that generated leucosomes, which are generally parallel to S 1 . D 3 is made up of asymmetric, chevron F 3 folds that deform the composite S 1 /S 2 foliation during greenschist to lower amphibolite metamorphism (M3). U-Pb SHRIMP (Sensitive High-Resolution Ion Micropobe) geochronology carried out on zircon separated from two orthogneisses yielded an Early Jurassic magmatic event (178.7 ± 1.1 Ma) and the age of migmatization (133.6 ± 0.9 Ma). Two episodes of Pb loss were also recognized, the first at 129.2 ± 0.4 Ma, and the second during the earliest Paleocene (61.4 ± 1.5 Ma); they are probably associated with two episodes of magmatism. The Early Jurassic magmatic arc may be correlated with a magmatic arc in the eastern Guerrero terrane. The Early Cretaceous migmatization is inferred to have resulted from shortening, possibly due to the accretion of an exotic block, such as the Chortís block along whose northern margin contemporaneous, high-pressure metamorphism has been recorded. Key words: migmatization, U-Pb, Mesozoic, Xolapa Complex, southern México. RESUMEN El Complejo Xolapa es el terreno metamórfico más extenso en el sur de México. En el segmento que va de Acapulco a Tierra Colorada está constituido por ortogneises y paragneises, afectados por un grado variable de migmatización. El basamento del Complejo Xolapa está también afectado por diversos episodios de magmatismo granítico de afinidad geoquímica calcialcalina y edades que van del Jurásico al Oligoceno. Tres fases de deformación dúctil afectan los gneises y migmatitas. Un bandeamiento metamórfico se desarrolla durante D 1 , y está asociado con una foliación penetrativa S 1 , en facies de anfibolita, que actúa como plano axial de pliegues de recumbentes a isoclinales F 1 . Una lineación de estiramiento L 1 está presente en toda el área de estudio, con buzamiento tanto al NE como NW. La Mesozoic geologic evolution of the Xolapa migmatitic complex north of Acapulco, southern Mexico: implications for paleogeographic reconstructions Rosalva Pérez-Gutiérrez 1 , Luigi A. Solari 2,* , Arturo Gómez-Tuena 2 , and Uwe Martens 3 1 Instituto de Geología, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, 04510 México D.F., Mexico. 2 Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, 76230 Querétaro, Qro., Mexico. 3 Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Bldg 320, Stanford, CA 94304, United States. *[email protected] Revista Mexicana de Ciencias Geológicas, v. 26, núm. 1, 2009, p. 201-221

Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 201

ABSTRACT

The Xolapa Complex in the Acapulco-Tierra Colorada area, southern Mexico, is made up of orthogneisses and paragneisses, both affected by a variable degrees of migmatization. These rocks are intruded by several episodes of Jurassic-Oligocene, calc-alkaline granitic magmatism. Three phases of ductile deformation affected the gneisses and migmatites. D1 produced an amphibolite-facies metamorphic banding (M1) and a penetrative S1 foliation, axial planar to isoclinal, recumbent F1 folds with axes parallel to a NE to NW, gently plunging, L1 stretching lineation. D2 consists of a S2 foliation defined by hornblende, biotite and garnet, synchronous with M2 migmatization that generated leucosomes, which are generally parallel to S1. D3 is made up of asymmetric, chevron F3 folds that deform the composite S1/S2 foliation during greenschist to lower amphibolite metamorphism (M3). U-Pb SHRIMP (Sensitive High-Resolution Ion Micropobe) geochronology carried out on zircon separated from two orthogneisses yielded an Early Jurassic magmatic event (178.7 ± 1.1 Ma) and the age of migmatization (133.6 ± 0.9 Ma). Two episodes of Pb loss were also recognized, the first at 129.2 ± 0.4 Ma, and the second during the earliest Paleocene (61.4 ± 1.5 Ma); they are probably associated with two episodes of magmatism. The Early Jurassic magmatic arc may be correlated with a magmatic arc in the eastern Guerrero terrane. The Early Cretaceous migmatization is inferred to have resulted from shortening, possibly due to the accretion of an exotic block, such as the Chortís block along whose northern margin contemporaneous, high-pressure metamorphism has been recorded.

Key words: migmatization, U-Pb, Mesozoic, Xolapa Complex, southern México.

RESUMEN

El Complejo Xolapa es el terreno metamórfico más extenso en el sur de México. En el segmento que va de Acapulco a Tierra Colorada está constituido por ortogneises y paragneises, afectados por un grado variable de migmatización. El basamento del Complejo Xolapa está también afectado por diversos episodios de magmatismo granítico de afinidad geoquímica calcialcalina y edades que van del Jurásico al Oligoceno. Tres fases de deformación dúctil afectan los gneises y migmatitas. Un bandeamiento metamórfico se desarrolla durante D1, y está asociado con una foliación penetrativa S1, en facies de anfibolita, que actúa como plano axial de pliegues de recumbentes a isoclinales F1. Una lineación de estiramiento L1 está presente en toda el área de estudio, con buzamiento tanto al NE como NW. La

MesozoicgeologicevolutionoftheXolapamigmatiticcomplexnorthofAcapulco,southernMexico:

implicationsforpaleogeographicreconstructions

Rosalva Pérez-Gutiérrez1, Luigi A. Solari2,*, Arturo Gómez-Tuena2, and Uwe Martens 3

1 Instituto de Geología, Universidad Nacional Autónoma de México, Cd. Universitaria,Del. Coyoacán, 04510 México D.F., Mexico.

2 Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla,Blvd. Juriquilla 3001, 76230 Querétaro, Qro., Mexico.

3 Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Bldg 320, Stanford, CA 94304, United States.

*[email protected]

Revista Mexicana de Ciencias Geológicas, v. 26, núm. 1, 2009, p. 201-221

Page 2: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.202

INTRODUCTION

High-grade metamorphic terrains form a largeportionofthecontinentalcrustexposedinPhanerozoicandPrecambrianorogens.Inasmuchasthesekindsofmetamorphic terrains representexhumedportionsofthemiddleandlowercontinentalcrust,understandingtheirgeologicevolutionshedslightonthedeepcrustalprocesses.

ThegeologyofsouthernMexicoiscomposedofamo-saicoftectonostratigraphicterranes,(Figure1)(CampaandConey,1983;Sedlocket al.,1993;Keppie,2004).Alongthe Pacific coast, the Xolapa (or Chatino) terrane, ~600 km long and ~50–80 km wide, is a composite plutonic and metamorphicterrane.TheXolapaterranetruncatestheter-ranesexposedtothenorth,whichconsist(fromWtoE)of:(a)theMesozoicGuerreroterrane(Talavera-Mendozaet al.,2007;Centeno-Garcíaet al.,2008),(b)thepolymetamor-phic,Paleozoic-bearingMixtecaTerrane(Ortega-Gutiérrezet al.,1999),and(c)theMesoproterozoic,granulite-bearingZapotecoterrane(Keppieet al.,2001;Keppieet al.,2003;Solariet al.,2003;Solariet al.,2004).TheMixtecaandZapotecoterraneswereamalgamatedduringthePermian,whereastheGuerreroterranewasaccretedintheMesozoic(Centeno-Garcíaet al.,1993;Elias-HerreraandOrtega-Gutiérrez,2002;Keppie,2004;Centeno-Garcíaet al.,2008).TheallochthonousorautochthonousnatureoftheXolapaComplexisstilldebated(e.g.,Keppie,2004;Duceaet al.,2004;Corona-Chávezet al., 2006). One view sug-geststhattheXolapaComplexisautochthonous,originatedin situbythinningandreheatingofthecontinentalcrustduringTertiary(e.g.,Herrmannet al.,1994;Schaafet al.,1995; Morán-Zenteno et al., 1996; Ducea et al.,2004).AcontrastingideasuggeststhattheXolapaisallochthonous,andwasaccretedtothecontinentalmarginofsouthern

Mexico during Mesozoic–Tertiary (e.g.,Corona-Chávezet al., 2006).

Inanattempttoresolvethisdebate,weundertookacombination of fieldwork, petrologic and geochronologic analysestobetterdocumentthesequenceoftectonother-maleventsintheXolapaComplex.Akeyquestiontobeaddressedisthetimingofmigmatizationandhigh-grademetamorphismoftheXolapaComplex.Varioustimerangeshavebeenproposed:LateJurassictoearliestCretaceous(e.g.,Duceaet al.,2004;Solariet al.,2007),LateCretaceousto earliest Paleocene (~60–110 Ma, Corona-Chávez et al.,2006), and Early Tertiary (46–66 Ma; Herrmann et al.,1994).Inthispaper,wepresentdetailedstructuraldescrip-tionoftheXolapaComplexnorthofAcapulco(Figures1and2),thegeochemicalcharacteristicofsomeofthehigh-grademetamorphicrocks,andU-Pbzircongeochronology.ThesedataarethenappliedtoTertiaryreconstructions(e.g.,Solariet al.,2007).

REGIONAL GEOLOGY

TheXolapaComplexismadeupbyasequenceofhigh-grademetasedimentaryandmetaigneousrocksthatarefrequentlyintrudedbybothdeformedandundeformedplutonicrocks.Previousworkwasgenerallylimitedtoeitherfield descriptions, (i.e., De Cserna, 1965), combined geo-chemicalandgeochronologicalanalyses(Morán-Zenteno,1992;Herrmannet al.,1994;Duceaet al.,2004),orcom-bined field and petrological work without geochronology (Corona-Chávezet al., 2006). As there is some confusion about what constitutes the Xolapa Complex, we define theXolapaComplexasthoserocksthatareaffectedbymigmatizationandductiledeformation,whichpredatetheintrusion and further solid-state shearing of the ~130 Ma

orientación de las estructuras D1 controla el emplazamiento de los lentes de leucosoma D2, generados durante el proceso de migmatización. Afuera de los dominios leucosomáticos, la foliación S2 está caracterizada por la asociación hornblenda + biotita + granate. Pliegues asimétricos de tipo chevron relacionados a la fase F3 deforman la foliación compuesta S1/S2, en condiciones de facies de esquistos verdes hasta anfibolita. La geocronología de U-Pb por SHRIMP (microsonda iónica de alta resolución) realizada en zircones separados de dos muestras de ortogneises permitió reconocer un evento magmático jurásico temprano (178.7 ± 1.1 Ma), así como la edad de migmatización en esta porción del complejo de Xolapa calculada en 133.6 ± 0.9 Ma. Dos episodios de pérdida de Pb se pueden reconocer en algunos de los zircones de las muestras fechadas. El primero es posterior al pico de migmatización (129.2 ± 0.4 Ma), y el segundo ocurrió durante el Paleoceno temprano (61.4 ± 1.5 Ma), y probablemente ambos son un efecto térmico asociado a dos de los episodios magmáticos posteriores. Estos datos sugieren que un arco magmático del Jurásico temprano habría constituido el basamento del Complejo Xolapa; se sugiere que este mismo arco corresponda a la porción este del terreno Guerrero, en donde algunas edades magmáticas similares han sido reportadas. La migmatización ocurrió durante el Cretácico temprano como consecuencia del acortamiento producido por la accreción de un bloque exótico. El bloque de Chortís es un candidato posible para tal colisión, ya que registra un evento metamórfico de alta presión contemporáneo con el evento de migmatización en el Complejo Xolapa.

Palabras clave: migmatización, U-Pb, Mesozoico, Complejo Xolapa, sur de México.

Page 3: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 203

0 50 100 km

XT

At

TC

Tehuantepec

Salina Cruz

Chilpancingo

Mexico City

Cuernavaca

Puebla

Matías Romero

Pacific Ocean

Mesozoic Xolapa Complex

Paleozoic-Mesozoic(?) Mazatlán Complex

Sierra de Juarez Mylonitic Complex

Paleozoic Acatlán Complex

Precambrian Oaxacan Complex

Precambrian Guichicovi Complex

Major shear zones

PermianCaltepec fault

Studied area(Figure 2)

Mid-Jurassic(right lateral)

Tertiary (thrust, Laramide normal, Oligocene/Miocene)

?Triassic(thrust)

Laramide (thrust)

LaramidePapalutla fault

tt

ne

Cuica ecoerra

Zapoteco

terane

r

Puerto Ángel

Chacalapa shear zone(Oligocene)

Oaxaca

La Venta shear zone(Early Eocene)

Mane

aya terr

96°98°

18°

17°

16°

MEXICO CITY

Paific

cean

c

O

Gulf of Mexico

USA

XC

ME

IO

90°

30°

Fig. 1a16°

100°110°

Acapulco Xolapa te raner

Oaxaca fault

a)

Aca.Zihuat. Huat.

b)

Huatulco

n

Mixteco terrae

Tejupilco

Tel

lop

nsu

bter

rae

oa

an

Gu rrero terr nee

a

Acatlán

La Venta shear zone(Early Eocene)

Acatlán

Acapulco,Solariet al.(2007)presentedU-Pbconcordantages of ~129 Ma on undeformed to slightly deformed gran-ites, and ~55 Ma ages for other granites locally affected by ductile shearing. The ~129 Ma ages are in the range of the deformedgranitesofMorán-Zenteno(1992),whereasthe~55 Ma ages are similar to those previously determined byDuceaet al.(2004)ontheAcapulcosyeno-granite.GeochronologyofdeformedsamplesfromtheXolapaComplexindicatesthepresenceofprotolithssimilartotheneighboringmetamorphiccomplexes.Forinstance,northofPuertoÁngel(Figure1)rockshavebothigneousandmeta-morphicGrenvillianages,similartothoseintheOaxacanComplex(e.g.,Keppieet al.,2001;Duceaet al.,2004).NorthofPuertoEscondido,Duceaet al.(2004)reportedPermianagesinabiotite-bearinggneissthataresimilartoagesreportedingraniteandgranodioritebelongingtotheAcatlánComplex(Yañezet al.,1991;Keppieet al.,2004,2008),theJuchatengocomplex(Grajales-Nishimura,1988;Grajales-Nishimuraet al.,1999),andthestitchinggranitesalongtheCaltepecfaultzone(Elias-HerreraandOrtega-Gutiérrez,2002).IntheAcapulcotransect,agesreportedsofararenoolderthanMiddleJurassic,andaresimilarto

deformedgranites(e.g.,Solariet al.,2007,andseebelow).Previous definitions of the Xolapa Complex included all the metamorphicandigneouspre-Oligocenerocksexposedinthearea(e.g., De Cserna, 1965; Alaniz-Álvarez and Ortega-Gutiérrez,1997.

ThenorthernboundaryoftheXolapaterrane(Figure1)ismarkedbynormalandleft-lateralductileshearzones,whichwereactivefromtheEoceneonthewest(TierraColoradashearzone,Rilleret al.,1992;Solariet al.,2007),totheOligoceneintheeast(Chacalapashearzone,Tolson,2005). While protolith ages of the metasediments have yettobedetermined,theoldestmagmaticarcintrudingtheXolapaComplexisdocumentedasJurassictoEarlyCretaceous(e.g.,Guerrero-Garcíaet al.,1978;Morán-Zenteno,1992;Herrmannet al.,1994;Duceaet al.,2004).TheyoungestundeformedplutonsintrudingtheXolapaComplex range from ~34 Ma in the Acapulco – Tierra Coloradaarea(Hermannet al.1994;Duceaet al.,2004),and become younger toward SE (~25–29 Ma in Puerto Escondido – Huatulco; Hermann et al.1994;Duceaet al.,2004).Atleasttwootherintrusiveeventsoccurredbetweentheoldestandyoungestmagmaticevents.Thus,northof

Figure 1. Simplified terrane subdivision of southern Mexico. Main basement complexes are also indicated. Modified from Solari et al.(2007).TerranesubdivisionaccordingtoCampaandConey(1983),Sedlocket al.(1993),andKeppie(2004).

Page 4: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.204

60

5543

43

5

48

12

54

56

60 57

16

41

47

25

36

57

71

54

42

35

35

53

60

64

55

33

52

35

1825

62

40

33

49

3021

4334

7444

56

35

38

87

42

22

31

8

73

74

32

50

70

53

5366

32

65

36

33

74

65

49

2415

59

36

81

24

49

25

36

49

73

58

66

64

4843

6044

29

69

19

22

30

37

52

5182

5153 50

74

63

2585

5152

85

41

18

53

8127 12

64

32

32

46

37

25

6870

82

56

68

48

46 38

82

23

2729

27

12

47

51

41

61

O

22

O

O

18

O

8

O

O

8

21 24

O

O

26

O

9

O

51

47

060

700

400

900

070

600

09 0

700

600

200

020

100

100

100

200

030

200

300

100

300

300

500

900

1000

800

700

600

400

200

100

01010

0

010

100

800

600

500

020

300

500300

300

200

100

200

100

400

600

7 00

600

050

400

400

200

100

01 0

030

003

600

700

7 00

600

500

300

100

200

100

100

010

200

400

010

100

100

500

600

070

1200

El Quemado

Kilómetro Veintiuno

Paso de Texca

Lomas de San Juan

Texca

Las Joyas

La Sierrita

KilómetroCuarenta y dos

KilómetroCuarenta y cinco

Piedra Imán

La Providencia

Xaltianguis

Las Marías

La Calera

El Playón

El Salitre

Dos Arroyos

Los Guajes

Alto delCamarón

Pochotlaxco

Las Parotas

Los Hílamos

ParotillasLa ConcepciónSan Isidro Gallinero

San JoséCacahuatepec

Ejido Nuevo

Sabanillas

AguasCalientes

Amatillo

Tasajeras

El Bejuco ColoniaDiez de Abril

Tres Palos

Tuncingo

El Salto

Río Papagayo

Paag

yo

pa

Río a g yoP pa a

Xa t an u sl i g i

l

Potreri los

aaban

LS

a

Laaban

Sa

o17 00”

o17 00”

o17 05”o17 05”

o16 55”

o16 50”

o16 50”

o16 55”

o99 40”

o99 50”o99 45”

o99 40”

o99 35”

26

41

KilómetroTreinta y cuatro

Metlapil

o99 45”

El Limón

50

61

N

Río

Cerrode Piedra

B

MEX

95

MEX

95

cta a e

Viadu o Di m nt

A

O

O

54

64

6639

47

24

38

86

53

0 1 3 5 km

GRAPHIC SCALE

SabanillasEl Treinta –

Dos Arroyos

Autopistadel Sol

Autopistadel Sol

Autopistadel Sol

0500

1000

m snm 0500

1000

A A´

400

2000m snm

4002000

El Limón El Salitre El ChorroCarr. Fed.Méx-Aca

B B´

51

TOPOGRAPHYTopographic contour

Town

Federal highway

RoadRiver

200

HighwayMEX

95

MEX

95

17

O

39

6757

3856

58

61

34

63

1269

43 39

23

23

14

9

23

19

12

63

21

34

61

61

54

51

48

56

16

20

2736

36

16

3914

65

60

31

56

73

66

47

76

53

76

27

O

17

56

8

19

28

12

50

5227

27

39

53

37

46

57

70

1878

48

74

37

35

6646

24

21

18

4520

16

2237

12 35

40

25

36

32

21

RB 76

RB 71

RB 105

KilómetroTreinta

1566

1230

42

46

58

54 47

XO 0301

XO 0214

Tertiary volcanicsUndeformed granite (~30 Ma)El Pozuelo g 129 Ma, Solari et al., 2007)ranite (

Migmatitic orthogneiss

Migmatitic paragneissOrthogneiss (165 Ma, Guerrero-García et al., 1978)Paragneiss

LEGENDAlluvium

OrthomigmatiteParamigmatite

Marble

USED SYMBOLS

Geologic section traceA A´

Foliation and lineation1247

Thrust fault

Left-lateral fault

Foliation, with dip47

Fold axis9 O

Lineation, with plunge18

Inferred fault

Dated samples

Geochemical samples

63

86

57

29

3326

34

TenienteJosé Azueta

Bellavista

RB 109

38

Garrapatas

XO 030382

28

KilómetroTreinta y nueve

XO 0230

La

naSaba

Page 5: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 205

thoseintheGuerreroTerrane(Talavera-Mendozaet al.,2007;Centeno-Garcíaet al.,2008).ThesecorrelationscanbeinterpretedastheprimeevidencefortheautochthonousnatureoftheXolapaterrane.

Corona-Chávezet al. (2006) recognized a single high-grade metamorphic event (830–900 °C and 6.3–9.5 kbar) withaclockwisepressure-temperature(P-T)pathintheXolapa Complex of the Puerto Escondido – Puerto Ángel area(Figure1).Fluidsreleasedbythebreakdownofbiotiteandamphiboleproducedintensemigmatization.ThevastmajorityofplutonicrocksoftheXolapaComplexarecalc-alkalinegranitesandgranodiorites(Herrmann,1994).TheTertiary(PaleocenetoOligocene)granitesandgranodioriteshavesimilarcompositions(Morán-Zenteno,1992;Schaafet al., 1995; Morán-Zenteno et al., 1996; Morán-Zenteno et al.,1999;Morán-Zentenoet al., 2005).

ROCK TYPES

Thestudyarea,locatednorthofAcapulco,coversabout700km2.Previousstudiesinthisareawerefocusedon general field descriptions of the northern part of the XolapaComplexintheBarrancadeXolapa(Figure2),where the Xolapa Complex was first defined (De Cserna, 1965). Subsequently, Alaniz-Álvarez and Ortega-Gutiérrez (1997)describedmediumtohigh-grademetasedimentsatthislocality(quartz-K-feldspar-biotite-muscovite-sil-limanite-garnet,andrarecordieriteandcorundum)thatareintrudedbydifferentgenerationsofvariablydeformedpegmatite, mafic dikes and granites. Other studies dealt with regionalgeologicalmapping(e.g.,Sabanero-Sosa,1990),orcombinedgeologicmappingwithisotopicdetermina-tions(Morán-Zenteno,1992).ForinstanceMorán-Zenteno(1992)producedaregionalmap,andgeochemical,Rb-SrandSm-Nddataonthedeformedgranitoids,whichyieldedan age of ~130 Ma, interpreted as the age of intrusion. Other studiesnorthofAcapulcoprovidedgeochronologicaldataon gneisses (~134–140 Ma, Ducea et al.,2004)andunde-formed,Oligoceneplutons(e.g.,Herrmannet al.,1994;Schaafet al., 1995; Ducea et al.,2004),butthelackofdetailed mapping makes it difficult to establish a complete geologicalrecord.Northeastofthestudyarea,Torres-deLeón (2005) and Solari et al.(2007)documentedtheal-lochthonousnatureoftheTierraColoradaarea(Figure1).Torres-de León (2005) and Solari et al.(2007)establishedthestructuralandmagmaticevolutionoftheTierraColoradaarea as a series of alternating magmatic (~130, ~55, and ~34 Ma) and deformation pulses (>130, ~45, and between 45 and 34 Ma).

Ourgeologicmapping(Figure2)revealedtheex-

istenceofseverallithologiesexposednorthofAcapulcothatbelongtotheXolapaComplex.Therecognizedpre-migmatiticrocksweregroupedintopara-andortho-gneiss-es,whichareaffectedbyvariabledegreesofmigmatization.Their petrographic characteristics and field relationships are describedinthefollowingsection.

Metasediments

Metasediments,includingpsammitic-peliticparag-neissesaswellasmarbles,aremainlydistributedtothesouth and southeast of the study area and constitute ~30% of the area (Figure 2). They generally consists of 5–30 cm thick bandsofgreytoochre-browncoloredquartzofeldsphaticmicaschists,whosemainconstituentsaregranoblasticquartz,plagioclase,biotite,muscovite,cordierite,garnet,±sillimanite,±staurolite.Stauroliteandmuscovitearenotpresentinthemigmatiticrocks.Theassociationbiotite+sillimanite+cordierite+corundum+hercyniteisquitecommoninthemetasedimentaryrestites.Zirconandapatitearecommonaccessoryminerals.Tourmalineisanabundantaccessorymineralinsomesamples.Biotite,muscoviteand sillimanite (often present as fibrolite) are generally intergrown,andalignedalongfoliationplanes.Themin-eralogysuggestsagreywacke/minorpelitesprotolith.Upto1kmwidemarblebodieswithinthesequencearemadeup of ≤85% calcite, minor dolomite, and accessory quartz, plagioclase,diopsideanddetritalzircons.

Orthogneisses

Orthogneisses,themostabundantlithologyinthestudyarea,aremainlyleucocratictomesocratic,pervasivelyfoliatedgranitesandgranodiorites(notdistinguishedonFigure2).Theorthogneissesarebandedandoftencharac-terizedbyupto20cmthickdarkbandsmainlycomposedofbiotite,hornblende,plagioclaseandopaqueminerals.Leucocraticbandsarecomposedofquartz,plagioclase,potassicfeldspar,biotite,±hornblende.Commonaccessorymineralsarezirconandapatite.Chloritedevelopsasasec-ondarymineralphaseattheexpenseofbiotite.Orthoclaseporphyroclastsarepresent,sometimesdevelopingcoreandmantletextures,withsodium-richmantlesaroundpotas-sium-rich cores. The foliation is defined by biotite and feld-sparporphyroclastsintheleucocraticbands,andhornblendeandbiotiteinthemelanosomes(e.g.,Figure3a).Thesharpcontactsbetweenparagneissesandorthogneisses,aswellassomepreservedcross-cuttingrelationships,indicateoforiginalintrusiverelationships.

Figure 2. Geologic map of the Xolapa Complex between Acapulco and Tierra Colorada, Guerrero, southern Mexico. Modified from Pérez-Gutiérrez (2005).

Page 6: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.206

Figure3.Fieldphotographsillustratingthemainaspectsofthemigmatitescroppingoutinthestudiedarea.a:Medium-grainedorthogneiss,showingS2 foliation made up of aligned biotite and hornblende: the black marker is ~12 cm long. b: Close to isoclinally folded stromatic migmatite: the black marker on the top center is ~12 cm long. c: Pinch and swell, to agmatic migmatite, with injecting leucosomatic vein, lacking a preferred orientation of intrusion; the notebook is ~16×20 cm in size. d: Raft (Schöllen) migmatite, where dm-sized block of melanosome float into a heterogeneous leucosome; the notebook is ~12×17 cm in size. e: Diktyonitic migmatite, with a vein of leucosome that is intruding the granitic mesosome, showing diffuse contacts; vertical pencil, in the mid of the picture, is ~15 cm long. f: Orthogneiss with granitic leucosome pods, with diffuse contacts, is characterized by centimetric crystals of biotite and hornblende: the pencil is ~15 cm long. g: Leucosome veins, or lens, are intruding the paleosome parallel to S1surfaces,buttheyarenot deformed themselves; the notebook is ~12×17 cm in size. h: ca.1m-thickmuscoviteandgarnet-bearing,F5foldedpegmatite.FoldaxisisroughlysubhorizontalandEWoriented.AxialplaneisNNE-steeplyplunging,ESE-WNWtrending.

a)

c)

e)

g)

d)

f)

b)

h)

Page 7: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 207

(2007)arguedthatthecrystallizationofElPozuelogranitepostdatesmigmatizationintheXolapaComplex.Duceaet al. (2004, 2006) also reported ~134 to ~140 Ma U-Pb zirconageson“syntectonic”hornblende-biotitegneissesinthestudyarea.

Undeformed, post-Laramide plutonsAsecondgroupofpost-migmatiticgranitestypically

have ~55 Ma ages. They slightly postdate Laramide defor-mationinsouthernMexico(Cercaet al.,2007;Solariet al.,2007).Suchbodieslackofsolid-statedeformation,althoughtheyarelocallyaffectedbylow-gradeductileshearingorbrittledeformation.Forinstance,theAcapulcogranite,intrudingtheXolapamigmatitesandgneissesjustSWofthemappedarea,wasdatedbyDuceaet al. (2004) at 54.9 ±2Ma.TheSalitreperaluminousandLasPiñasgraniteswere dated at 55.3 ± 3.3 and 54.2 ± 5.8 Ma, respectively (Solariet al.,2007),andcropoutnortheastofthestudyarea,justwestoftheLaVentashearzone.Theplutonsareeitherfoliated(ElSalitre)orunfoliated(LasPiñas),andlo-cally,alongLaVentashearzone,theydisplayS-Cfabricsassociatedwiththeshearing.

Eocene-Oligocene undeformed granitoidsAthirdgroupofundeformed,Eocene-Oligocene

granitoidscropoutinthestudiedarea(Herrmannet al.,1994;Schaafet al., 1995; Ducea et al.,2004;Hernández-Pineda, 2006). These plutonic bodies lack ductile, solid-state deformation,buttheygenerallyshowmagmaticbandingaswellasbrittlefaultsandjoints.

Severalgenerationsofdioritic-quartzodioriticdikes,pegmatites,andminoraplites,intrudeboththeXolapabasement,andtheEocene-Oligocenegranitoids.SomepegmatitescroppingoutintheBarrancadeXolapaweredated by Morán-Zenteno (1992) at ~59 Ma, and by Solé (2004) at 60–62 Ma. Although no isotopic ages are available forthedioriticdikes,theyoungestgenerationpost-datesthe34MaTierraColoradagranite.

STRUCTURAL EVOLUTION

Threephasesofductiledeformationwererecognizedinthegneissesandmigmatitesofthestudyareathatareabsentinthepost-migmatizationgranitoids.Post-migmati-zationdeformationwaspreviouslydescribedbySolariet al.(2007) as ~45 Ma greenschist facies extension, 45–34 Ma brittle-semibrittleSW-vergentthrustingandopenfolding.

D1: metamorphic banding and initial stages of migmatization

S1metamorphicbandingconsistsofalternatingleu-cocratic and melanocratic horizons, which range from 0.5 to10cmintheorthogneissesbutareasthinasfewmil-limetersinparagneisses.Penetrativeductiledeformationisassociatedwithdevelopmentofagentlytomoderately,

Ortho- and para-migmatites

Migmatizationissuperimposedonbothortho-andpara-gneisses(Figure2).Themainrecognizabletypesare(following Mehnert, 1968, and modifications in Milord and Sawyer,2003,andBrown,2004):(1)stromatic,i.e.bandedmigmatites,whereupto10cmthickmelanosomaticbands,madeupofhornblende,biotite,plagioclase,andopaqueminerals,alternatewithleucosomesmadeupofquartz,plagioclase,±feldspar,±garnet,±muscovite(Figure3b);(2)Agmatictodiktyoniticmigmatites,inwhichabreccia-likepaleosomeisinjectedbyanetworkofneosomeveins(Figure3c)oftrondhjeimitictotonaliticcompositions(thelatteroftenshowsgreenpoikiloblastsofhornblende,±garnet±biotite);(3)Raftmigmatites(Figure3d),inwhichsmall pieces of paleosomatic gneisses float in a heteroge-neousleucosome;(4)nebuliticmigmatites(Figure3e),inwhichtheadvanceddegreeofmigmatizationalmostcom-pletelyerasestheoriginalstructuresoftheformergneisses.Podsofgraniticleucosomearecommon,andtheygenerallyshowcentimetricporphyroblastsofbiotiteandhornblende(Figures3eand3f).Basedonthedegreeofmigmatization,fourdifferentunitsweremapped(Figure2):(1)migmatiticparagneisses,i.e.rockswithwell-preservedgneissosity,<30% of partial melting, and sedimentary (peraluminous) protolith;(2)migmatiticorthogneiss,sameas(1)butwithigneousprotolith;(3)para-migmatite,wheretheleucosomesconstitute >30% and the rock lack of clear, traceable gneiss bands;theabundantAl-richphases,suchassillimaniteandgarnet,areindicativeofasedimentaryorigin;and(4)ortho-migmatite,sameas(3),butwithaclearigneouspro-tolithsuggestedbytheabsenceofAl-richphases,togetherwiththepresenceofbiotiteandhornblendeasprincipalmafic phases.

Post-migmatization units

Threegroupsofpost-migmatizationrocktypeswererecognizedinthestudyarea(Figure2).

Deformed plutonsThedeformedplutonshavecompositionsranging

fromgranitetogranodioriteandlocallytonalite.PlutonicrockscroppingouttowardstheSEofthestudyareausuallydisplayamagmaticfoliationthatwaslateroverprintedbysolid-statedeformation(e.g.,Morán-Zenteno,1992).Basedon field relations and geochronologic data, Morán-Zenteno (1992)arguedthattheemplacementofdeformedgraniteswassyntectonicwiththemaintectonothermaleventthataffectedtheprotolithsoftheXolapaComplex.However,intheN-NNW-vergent,LaVentashearzone,the129MaElPozuelogranite(Figure2)wasdeformedundergreen-schist facies conditions at ~45 Ma (Torres-de León, 2005; Solariet al.,2007).AstheElPozuelograniteisnotshearedoutside the ~100 m wide La Venta shear zone, Solari et al.

Page 8: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.208

N

N = 140

N

N = 42

N

N = 93

N

N = 58

S average axial plane3

F fold axis3

S poles3

N

Pole to S /S foliation 1 2Pole to S /S foliation 1 2

S /S a1 2 verage foliation plane S /S a1 2 verage foliation plane

N

Pole to foliation S4 L stretching lineation4

L mineral lineation3

(northern sector)

a) b)

c)

e)

d)

f)

L mineral lineation1/L2L mineral lineation1/L2

L (355º/34º avg) in2

supracrustal rocks,La Venta (from Solari et al., 2007)

Density curves: S poles in2

supracrustal rocks, La Venta(from Solari et al., 2007)

N = 187

S a4 verage foliation plane

N = 183

L mineral lineation3

(southern sector)

3

Figure4.Lowerhemispherestereoplotsofstructuralmeasuredfabrics.a:polestoS1/S2foliationandL1/L2minerallineationinthewesternpartofthestudyarea.b:polestoS1/S2foliationandL1/L2minerallineationintheeasternpartofthestudyarea.c:F3foldaxesandtheaverageS3axialplane.d:DispersedL3minerallineation.e:PoletoS4foliationsmeasuredintheXolapaComplex.DensitycurvesareanaverageplotofpolestofoliationforthesamephaseofdeformationinthesupracrustalrocksoftheLaVentaarea(Solariet al.,2007).f:L4stretchingminerallineations.Kinematics,asobservedinsupracrustalrocks,isnormalwithatop-to-theNNWcomponent(cf. Solariet al.,2007).SquaresindicatetheaveragestretchinglineationofthesamephaseofdeformationinthesupracrustalrocksoftheLaVentaarea(Solariet al.,2007).

NEtoENEdippingS1foliationinthewestandsouthwestofthestudyarea,whereasitismoderatelyWtoWNWdip-pingintheeast(stereonetsofFigures4aand4b).Pre-D1graniticdikesintrudingtheparagneisses(e.g.,Figure3c)weredeformedbyrecumbenttoisoclinal,rarelyrootless,F1folds,withaxialplanessubparalleltotheS1foliation.S1 is defined by polygonal quartz, micas and sillimanite in theparagneisses,andbybiotite,hornblendeandquartzinorthogneisses.Thegrainsizeofthequartzvariesfrombandtoband.Stretchedquartzandelongatedfeldsparporphyro-clasts define the gently NE- to NW-plunging L1lineation(Figures4aand4b).

D2 /M2: ductile deformation, migmatization and leucosome emplacement

Inthepara-gneissesoutsidethemigmatiticzone,afoliation,S2, ismadeupofalignedsillimanite+bi-otite±muscovite±staurolite.Garnetisoftenpresentinthefoliationplanes.Intheorthogneisses,alignedbrownhornblende+biotite+titanite±garnetconstituteS2(e.g.,Figure3a).S1andS2appeartoformacompositefoliation,S1/2,formedatthehighestmetamorphicgradeaspartofonecontinuoustectonothermalevent.Undeformed,1to7cmthickleucosomaticlensesinjectedintothepaleosomeparalleltoS1(Figure3g)haverandomlyorientedminer-

Page 9: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 209

Bt1 mm

S3

S3

NNW SSE

a)

b)

c)

alssuggestingthatthemigmatizationpostdatestheD1deformation.However,itispossiblethattheheatassoci-atedwithD1frictionwasresponsibleforpartialmelting,andactedasthedrivingmechanismforneosomegen-erationduringthehigh-grademetamorphism(cf.Brown,2005). The absence of a S2foliationinthemigmatitesandmigmatiticgneissesisinferredtobeduetothehighductilityofmoltenleucosomeduringD2,whichprecludedtherecrystallizingmineralsfrombecomingoriented(e.g.,Solariet al.,2003).

D3: ductile deformation of migmatitic structures TheS1/2foliationandbandingarelocallydeformed

bychevron,gentlytomoderatelyNWtoSEplunging,subverticaltosteeplyNNEdipping,slightlyasymmetricF3 folds (Figures 4c and 5a). These folds are common in boththeparagneissesandmigmatiticgneisses,butarelesscommoninorthogneisses.Inparagneisses, theS3axialplanesarecharacterizedbyalignmentofbiotiteandmuscovite;intheorthogneissesS3 is defined by aligned hornblende and biotite (Figure 5b). This suggests that the

Figure 5. Field and microstructural character of post-migmatitic structures in the Xolapa Complex. a: Mesoscale, chevron F3folds;theruleris30cmlong.b:microscopicdetailofF3chevronfoldscutperpendiculartothefoldhinges:biotitecrystalsgrowparalleltotheS3 axial planes. c: Deflection of theuppermostlimbofaS3foldbytop-to-theNNW-vergentS4 shear planes; 5 cm scale.

Page 10: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.210

metamorphicgradeassociatedwithD3wasintheuppergreenschisttoamphibolitefacies.AL3minerallineationvariesinorientationfromnorthtosouthinthestudyarea(Figure4d).ThisvariationisprobablyduetothelaterD4shearingandD5refolding.

D4: greenschist facies extension in the post-migmatization units

Top-to-theNNWD4shearzones,developedundergreenschistfaciesconditions,affectedbothXolapaComplexandpost-XolapaComplexunitsinthenortheasternpartofthestudyarea(Figure2).Forexample,F3foldlimbsarede-flected in the shear zones (e.g., Figure 5c). Whereas S4shearzonesaremappableinsupracrustalrocksoftheChapolapaFormation, and in both post-migmatization ~130 and ~55 Magranites(cf.Solariet al.,2007),intheXolapagneisses,S4isgenerallyparalleltoS2,constitutingacompositeS2/S4foliation,associatedwithacompositeL2/4stretchinglinea-tion(Figures4eand4f,respectively).

D5: folding of ~55 Ma pegmatitesGarnet and muscovite-bearing pegmatites, up to 60

cmthick,werecloselyfoldedduringD5.TheS5axialpla-narcleavageisnotpresentinfoldedpegmatites,butitisvisibleinthehostparagneisses.F5foldaxes(e.g.,Figure3h)areroughlysubhorizontal,andEWtrending,whereasaxialplanearesubverticaltoNNWsteeplyplunging,andESE-WNWtrending.

SUMMARY OF STRUCTURAL EVENTS IN THE XOLAPA COMPLEX AND ITS COVER

Fivephasesofductiledeformationhavebeenrecog-nizedintheTierraColoradaareaoftheXolapaComplex:

(a)D1andD2areassociatedwithhigh-grademeta-morphismandmigmatization;

(b)D3ischaracterizedbychevronfolds;(c)D4ispresentinthenorthwesternpartofthestudy

area, where it is congruent with the ~45 Ma, normal to left-lateralductileshearingintheLaVentashearzone(D2ofSolariet al.,2007);

(d)D5producedfoldsinsomepegmatitescroppingoutinthenorthwesternportion,anditcanbecorrelatedwiththeadjacentSSW-vergentthrustingoftheMorelosFm.overtheChapolapaFm.(D3ofSolariet al.,2007).

ANALYTICAL METHODS

GeochemicalanalyseswereperformedatActlabsLabortories(Texas,EE.UU).Majorelementsweredeter-minedbyInstrumentalNeutronActivation(INA),whereastraceelementsweremeasuredbyInductivelyCoupledPlasma–Mass Spectrometry (ICP-MS) employing lithium metaborate/tetraboratefusions.CommonPbanalyseswere

performedatLaboratorioUniversitariodeGeoquímicaIsotópica,UNAMonfeldsparsseparatedfromthecrushedrocksusingmethodsdescribedinSolariet al.(2004).

Zirconswereseparatedbymeansofstandardcrush-ing and concentration techniques, such as Wilfley shaking table,Frantzisodynamicmagneticseparator,andheavyliquids(e.g.,Solariet al.,2007).About10kgofsamplewereprocessedtoensurethateverymorphologicaltypeofzircon was adequately represented in the final concentrate. Representativezirconswerethenhandpickedinethanol,mountedinepoxyresintogetherwithchipsofstandardzirconR33(Blacket al.,2004).Themountwasthengroundtoexposezirconstoapproximatelyhalftheirthickness,andpolishedusingdiamondcompound.Polishedmountswere cleaned in 1N HCl, to avoid surficial common Pb contamination,andgoldcoated.Cathodoluminescenceimaging(CL)wasperformedonthepolishedzirconstogainknowledgeontheirinternalmorphology,guidetheanalysisandhelplaterwiththeageinterpretations.CLim-aging was performed in a JEOL 5600 LV SEM, equipped withaHamamatsuCLDetector,inStanford-USGSfacility.A total of 36 analyses, 20 on zircons belonging to sample Xo0301, and 16 on zircons belonging to sample Xo0303 wereperformedforU-Th-Pbgeochronology,followingthemethodologyreportedinNourseet al. (2005) and Weber et al., (2006), and utilizing the Stanford-USGS SHRIMP-RG (Sensitive High Resolution Ion Microprobe – Reverse Geometry)facilities.Oxygenwasusedasprimaryionbeam, and operated at about 2–4 nA, excavating an area of about 25–30 µm in diameter to a depth of about 1 µm. Sensitivity ranged from 5 to 30 cps per ppm Pb. Data for each spot were collected in sets of five scans through the massrange.IsotoperatioswerecorrectedforcommonPbusingthemeasured204Pb.Thereduced206Pb/238UratioswerenormalizedtothezirconstandardR33whichhasaconcordant TIMS age of 418.9 ± 0.4 Ma (2σ) (Black et al.,2004).FortheclosestcontrolofPb/Uratios,onestandardanalysiswasperformedaftereveryfourunknownsamples.Uraniumconcentrationsweremonitoredbyanalyzingastandard (CZ3) with ~550 ppm U. U and Pb concentrations are accurate to about 10–20%. SHRIMP isotopic data were reducedusingSQUID(Ludwig,2001)andplottedusingIsoplotEx(Ludwig,2004).

GEOCHEMISTRY

Afterextensivepetrographicscreeningtoeliminatealteredsamples,sixorthogneissandtwoparagneisswerechosenforgeochemicalanalysis(Table1).Thesesamplesinclude unmigmatized samples (RB71 and RB76), gneisses (Xo0303,Xo0230,Xo0214),andmigmatites(Xo0301,RB105, RB109). As most of the analyzed samples are high-grade metamorphic rocks, classification and interpretation usingdiagramsdesignedforunmetamorphosedrocksshouldbeviewedwithcaution.Nevertheless,comparisonsbetween

Page 11: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 211

Sample# RB 71 RB 76 RB 105 RB 109 XO 0301 XO 0303 XO 0230 XO 0214Rockdescription

Paragneiss Orthogneiss MigmatiteOrthogneiss

MigmatiteParagneiss

MigmatiteOrthogneiss

MigmatiticOrthogneiss

MigmatiticOrthogneiss

MigmatiticOrthogneiss

Mainminerals Qz-Pl-Bt-GntSil-Op

Pl-Hbl-Qz-Ttn

Qz-Pl-Bt-Gnt Pl-Bt-Hbl-Gnt-Qz

Qz-Pl-Bt-Hbl-Gnt-Op

Qz-Pl-Bt-Kfs-Gnt-Op

Qz-Pl-Bt-Gnt-Op

Qz-Pl-Bt-Gnt-Op

Lat N16˚52´23” N16˚54´07” N16˚52´37” N16˚46´32” N16˚57´29” N17˚00´56” N 16°53’36” N 16°59’22.1”Long W99˚46´31” W99˚43´25” W99˚52´35” W99˚36’19” W99˚44’51” W99˚39’31” W 99°44’54” W 99°47’45.5”

SiO2 70.59 58.78 74.73 68.50 69.32 67.79 69.80 66.25Al2O3 15.21 15.69 13.80 15.68 15.23 15.45 14.69 15.41Fe2O3 2.49 8.00 1.60 3.74 4.22 3.97 4.18 3.63MnO 0.033 0.116 0.034 0.074 0.073 0.047 0.075 0.050MgO 0.61 3.60 0.24 0.93 0.80 1.35 0.96 0.77CaO 2.87 8.91 1.82 4.22 4.41 2.90 3.64 2.01Na2O 3.74 2.24 3.85 3.58 3.61 3.58 3.89 3.49K2O 2.99 0.91 3.25 2.15 1.28 3.00 1.83 5.22TiO2 0.294 0.787 0.141 0.356 0.391 0.640 0.437 0.558P2O5 0.07 0.12 0.04 0.08 0.09 0.14 0.09 0.14LOI 0.81 0.64 0.51 0.51 0.51 1.13 0.29 1.52TOTAL 99.69 99.78 100.01 99.81 99.93 99.99 99.87 99.05Sc 7 29 4 10 12 9 12 8Zr 125 180 86 134 268 180 168 295Be 2 1 2 2 2 3 2 1V 34 190 9 55 47 75 49 26Cr -20 38 -20 -20 -20 30 -20 -20Co 2 16 -1 3 5 4 5 4Cu -10 -10 -10 -10 20 11 -10 11Zn 31 50 -30 38 33 43 77 41Ga 16 15 15 15 17 17 17 16Ge 0.8 1.8 0.9 0.8 1.4 0.7 1.2 0.9Rb 83 12 89 52 52 85 88 108Sr 181 312 98 290 215 201 171 198Y 16.0 34.2 30.2 13.1 36.7 27.1 30.5 21.6Zr 116 176 94 119 264 185 177 287Nb 4.6 5.9 5.3 4.1 6.3 10.3 7.1 8.6Sn 3 2 1 -1 2 2 2 1Cs 2.9 0.2 2.4 1.9 1.4 3.5 2.6 0.9Ba 667 147 884 1,120 448 1,240 506 2127La 17.1 16.7 23.1 26.0 27.7 29.5 27.2 50.5Ce 32.3 35.8 45.6 42.7 57.5 59.0 53.6 100Pr 3.75 4.48 5.17 4.39 7.19 6.79 5.44 10.3Nd 13.9 18.6 19.9 15.4 29.1 26.4 21.1 40.2Sm 2.75 4.56 4.53 2.63 6.39 5.49 4.64 6.77Eu 0.889 1.03 0.654 0.982 1.46 1.46 0.952 1.31Gd 2.33 4.95 4.54 2.28 6.29 4.99 4.80 5.97Tb 0.41 0.93 0.81 0.36 1.10 0.84 0.83 0.78Dy 2.41 5.33 4.69 2.02 6.80 4.51 4.96 3.99Ho 0.49 1.07 0.95 0.41 1.38 0.87 0.99 0.76Er 1.61 3.18 2.87 1.23 4.04 2.61 3.05 2.28Tm 0.263 0.512 0.438 0.202 0.569 0.382 0.465 0.339Yb 1.75 3.31 2.85 1.40 3.50 2.45 2.99 2.27Lu 0.279 0.490 0.428 0.233 0.515 0.380 0.445 0.341Hf 3.5 5.1 3.3 3.3 7.3 5.0 4.4 6.8Ta 0.40 0.45 0.39 0.30 0.40 0.68 0.39 0.61W -0.5 1.8 -0.5 -0.5 -0.5 0.6 -0.5 -0.5Tl 0.85 0.14 0.76 0.55 0.29 0.93 0.65 0.81Pb 10 8 15 8 7 23 9 17Bi 2.1 1.6 0.5 0.2 1.0 1.2 0.2 0.2Th 6.67 6.92 9.77 8.10 6.67 9.75 9.10 12.0U 1.89 2.57 1.87 1.63 1.74 1.81 1.96 1.38206Pb/204Pb† N.D. N.D. 19.00897 19.29560 19.1791 18.91633 19.0978 18.7343207Pb/204Pb† N.D. N.D. 15.67733 15.68175 15.6874 15.66799 15.6826 15.6554208Pb/204Pb† N.D. N.D. 38.81786 38.85647 38.9359 38.83747 38.8639 38.7383

Table1.Geochemicalanalyses,XolapaComplex,AcapulcoTierraColoradasector,southernMexico.

Major element concentration in wt. %; trace element concentrations in parts per million, determined by ICP-MS at ACTLABS laboratories. Negative numbersarebelowthedetectionlimit.†:Feldsparmeasuredinitialratios,followingSolariet al. (2004). 2-sigma errors on isotopic ratios are <0.06% (206Pb/204Pb ratios), <0.08% (207Pb/204Pb ratios) and <0.1% (208Pb/204Pbratios),respectively.

Page 12: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.212

0.1

1

10

100

1000

Cs

Rb

Ba Th U Nb Ta

K2O La Ce

Pb Pr

Sr

Nd Zr Hf

Sm Eu

TiO2

Gd Tb Dy

Ho Er

Yb Y Lu

Orthogneisses

Paragneisses

1

10

100

1000

La Ce PrNdSmEuGdTbDyHoErYbLu

Rock/PrimitiveMantle

Rock/Chondrite

calc-alkaline

tholeiitic

0.0

0.4

0.8

1.2

1.6

0.0 0.5 1.0Rb/Sr

F

A M

Nb/La

OrtGnParaGnPopoMORBMarianas

intracrustaldifferentiation

+fluids

+sediments or crust

0.0

0.2

0.4

0.6

0 20 40 60 80Ce/Th

U/Th

OrtGnParaGnPopoMORBHuiznop

+UC

+LC

15.4

15.5

15.6

15.7

16 17 18 19 2036.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

16 17 18 19 20

+UC

+LC

1

10

100

1000

1 10 100 1000

Yb+Nb

VAG

WPG

ORG

syn-COLG

Rb

OrtGnParaGnPopoMarianas

a) b) c)

d) e)

f) g) h)

206 204Pb/ Pb206 204Pb/ Pb

208

204

Pb/Pb

207

204

Pb/Pb

thecompositionsoftheanalyzedsamplesandpristineigne-ousrockscanprovidesomeusefulinsightsintothesourcesandprocessesthatleadtotheirformation.

The rocks can be classified as metaluminous I-type dioritestogranites,displayingavariablerangeinSiO2(58.8 to 74.7 wt%) that correlates negatively with TiO2,

MgOandFe2O3contents.OntheAFMdiagram,therocksplot in the calc-alkaline field (Figure 6a). MgO contents

(3.6–0.2 wt%) and Mg# (51–26) of the studied rocks indi-cate that they are significantly more differentiated than any magmainequilibriumwiththeuppermantle(LangmuirandHanson,1980),andthereforecannotbeconsideredasprimarymantlemelts.

Chondrite-normalized rare earth patterns (Figure 6e) areenrichedinlight-rareearthelements(LREE;La/SmN2.3–6.2), and unfractionated in the heavy rare earths (HREE;

Figure 6. Geochemical data for migmatites and gneisses of the Xolapa Complex plotted in diagrams. a: AFM diagram; b: Rb/Sr vs.La/Nbdiagram;c:Ce/Thvs.U/Thdiagram;d:Traceelementgeochemicalcompositionofselectedsamples,normalizedtotheprimitivemantlevaluesofSunandMcDonough(1989); e: REE elements normalized to the chondrite values of McDonough and Sun (1995); f: Y+Nb vs.Rbtectonicdiscriminationdiagram,afterPearceet al.(1984).Syn-COLG:syn-collisionalgranites;VAG:volcanic-arcgranites;WPG:within-plategranites;ORG:Ocean-ridgegranites.g:Uranogenic206Pb/204Pbvs.207Pb/204Pbdiagram;h:thorogenic206Pb/204Pbvs.208Pb/204Pbdiagram.ReferencedataofMORBanalysesreportedinFiguresb,c,fandgarefromLehnertet al.(2000).GeochemicaldataoftheMarianaarcinFiguresbandcarefromElliottet al.(1997).Popocatépetlvolcanogeochemicaldata(PopoinFiguresb,c,f,andg)arefromSchaafet al. (2005). Huiznopala gneiss isotopic data (Huizno in Figures f and g) from Lawlor et al.(1999).

Page 13: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 213

Dy/Ybn 1.0–1.4). The Xolapa orthogneisses also display strong negative Eu anomalies (Eu/Eu*=0.44–1) that are coupled with high Rb/Sr ratios (Figure 6b). These geochemi-calfeaturesindicatethatmagmaticdifferentiationoccurredin the stability field of plagioclase.

Incompatibletraceelementpatternsshowenrichmentsoflargeionlithophileelements(LILE)overhigh-fieldstrengthelements(HFSE)typicalofarcmagmas(Figure6d). The rocks also display low Nb/La ratios (Figure 6b) andincompatibleelementrelationshipsthatinvariablyplot within the field of volcanic-arc granites in the tectonic discriminationdiagramsofPearceet al. (1984) (Figure 6f). Nonetheless,theXolaparocksalsotendtohavemuchlowerU/Th and Ce/Th ratios (Figure 6c) than is typical for oceanic islandarcs,whichtendtopreservethechemicalsignatureof fluids released from the downgoing slab. Thus, the rela-tive enrichment in the fluid-immobile element Th likely indicatesstrongcontinentalcontributionstotheoriginalmagmas,eitherthroughsubductedsedimentsorbymeansofcrustalcontamination.

CrustalcontributionsarealsosupportedbytheoverallradiogenicPbisotopiccompositionsoffeldsparsfromtheorthogneisses,whichformarestrictedpositivecorrelationthatisbracketedbetweenanevolvedupper-crustal-likecomponentsimilartotheisotopiccompositionoftheana-lyzedparagneiss,andanunradiogeniclower-crustal-likecomponentwithhigher207Pb/204Pband208Pb/204Pbratiosthatistypicallyobservedinmagmasderivedfromthepartialfusion of the upper mantle (Figures 6g and 6h). In summary, thechemicalcompositionsoftheXolaparocksuiteslikelyreflect the differentiation stages of a magmatic arc that ei-thergrewincloseproximitytoacontinent,orwasdirectlyconstructedoveramaturecontinentalcrust.

GEOCHRONOLOGY

Twosamplesofmigmatiticorthogneisswerecho-senforSHRIMP-RGU-Pbanalysis.SampleXo0301isamigmatiteleucosomemadeupofquartz,plagioclase(Ab30–50%), poikilitic garnet, brown biotite, and rare horn-blendeporphyroclasts.Largeallanitecrystals,abundantzirconandapatitearecommonaccessoryminerals.SampleXo0303isabandedmigmatiticgneiss,inwhichleucocraticportionsaremadeupofquartz,plagioclaseandsubordi-nateK-feldsparandzircon,whereasmesocraticbandsarealmostentirelycomposedofbiotite,magnetite,tinyrelictgarnet,apatiteandsubordinatezirconsasinclusionswithinbiotite.SampleslocationsareinFigure2,whereassamplescoordinatescanbefoundinTable1.

Sample Xo0301: migmatitic leucosome

ZirconsfromsampleXo0301arepaleyellowtohoney-colored, range from 60 µm to >250 µm, and show

oscillatoryzoningincathodoluminescence(CL)images(Figures7ato7l),whichisgenerallyinterpretedasigne-ouszoning(Connelly,2001;Corfuet al.,2003).Someofthezirconsshowthepresenceofxenocrysticcores,whosestructuresarediscordantwithigneousoscillatoryzoning,indicatingthatigneouszircongrewaroundpreexisting,un-dissolved,olderzircons.SHRIMPanalyseswerefocusedontheigneouszoningandlate-stagerecrystallizationratherthantheinheritedcores.Analysesyieldedtwoagegroups(Figure8a):(i)sevenanalyses(discontinuousellipsesinFigure8b)areconcordanttonearlyconcordant,andhave206Pb/238U ages between 135.5 ± 1.0 and 131.3 ±0.7 Ma (1 sigma); and (ii) five analyses (thick line ellipses in Figure 8b)areconcordantwithintheanalyticalerror,andhave206Pb/238U ages between 129.8 ± 1.0 and 126.2 ± 1.3 Ma (1sigma).ComparingtheanalyzedspotswiththeCLim-ages(e.g.,Figures7ato7l),itisevidentthatthetwoagegroupsarerelatedtodifferentevents.Whereas,someoftheanalyzedzirconsshowcontinuousoscillatoryzonationwithsimilaragesinbothcoreandrim(e.g.,Figures7b,7c,and7e),othersshowacleardiscontinuitybetweencoreandrim. In one case (Figure 7d), a 129.5 Ma zircon rim grew overanoscillatory-zonedcorewitha206Pb/238U age of 135.5 Ma. The Early Cretaceous age group, clustering at 133.6 ± 0.9Ma(Figure8b)isinterpretedastheageofmigmatiza-tion.Thesecondagegroupclusteringat129.2±0.4Ma,isinterpretedaseitheranepisodeofPblossand/orpartialrecrystallization.

Anothergroupofanalyzedspotsyieldedmoredis-cordantisotoperatios,generallywithlargererrors(Figure8a).However,theapparent206Pb/238Uagesofsuchzirconsdefine a mean of 61.4 ± 1.5 Ma (Figure 8c), which is in-terpretedasEarlyPaleocenePblossorzircongrowth.CLimagingofsuchdomains(e.g.,Figures7a,7h,7i,7l)revealthat they cannot be texturally distinguished from the first episode of Pb loss or recrystallization at ~129 Ma.

Sample Xo0303: banded migmatitic orthogneiss

ZirconsseparatedfromsampleXo0303areyellowtoreddish colored, <280 µm in size, and range from prismatic tostubbywithorwithoutbypyramidalterminations.ImagedunderCL,mostofthemshowwell-developedoscillatoryzoning.Inheritedcoresarevisibleinsomecrystals,buttheydo not show any significant age difference (e.g.,Figure6m) when compared to the oscillatory overgrowths (e.g.,Figures7nto7r).Theisotopicanalysesareconcordantwithinanalyticalerror(Figure9aandTable2).Together,they define a cluster yielding an average concordia age of 178.7±1.1Mainterpretedasthecrystallizationageoftheorthogneiss(Figure9b).Somezirconcrystalshavebrighterrimsaroundoscillatoryzones(e.g.,Figures7sto7z),andanalysesoftheserimsyieldeddiscordantages(Figure9a)with206Pb/238U ages ranging between 168.7 ± 1.2 Ma and 116.2 ± 1.0 Ma, suggesting variable degrees of Pb loss. Two

Page 14: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.214

1C

1R

129.8 ±1.0

60 ±3.5

4C

4R

129.5 ± 0.9

135.5± 1.0

2M133.3± 0.6

5M

5C133.7± 0.8

133.8± 1.13M

134.6± 0.6

Xo0301

100 m

a) b) c) d) e)

5R139.9 ± 2.8

6R1

6R2

178 ±1.4

179.1 ± 0.9

9R161.3 ±1.3

10R

10M

174.9 ±1.2

116.2 ±1.0

11M179.8 ± 0.9

12M176.3 ±1.2

178.9 ±1.1

13M

172.1 ±1.2

15M

4R

168.7 ± 1.2

1R178.8 ± 0.8

100 m

Xo0303

f) g) h) i) l)

m) n) o) p) q)

2R

133 ±.2.6

r)

9M

13R61.2 ± 5.0

11R

15R

58.0 ± 4.9

60.1 ± 1.3

7R

128.4 ± 0.8

129.6 ± 1.3

s) t) u) v) z)

oftheanalyzedcrystals,althoughdiscordant(Figures7vand7z,andTable2),have206Pb/238Uagesthataresimilarto the migmatization age of 133.6 ± 0.9 Ma determined on sampleXo0301.Theyoungest,discordantanalysis(Figure9a)isprobablytheresultofayoungerPblossastheyoung-estzirconsanalyzedinsampleXo0301.

DISCUSSION AND CONCLUSIONS

Early Jurassic magmatism

The178±1.1MaigneousagecalculatedfromthemigmatiticorthogneissXo0303is thefirstreportofa

LowerJurassicmagmaticeventintheXolapaComplex(timescaleofGradsteinet al.,2004).Becauseofitscalc-alkalinegeochemicalsignature,wearguethattheigneousactivityisrelatedtoamagmaticarc.Thisissimilarto:(a)a Middle Jurassic age of 165 Ma reported by Guerrero-Garcíaet al. (1978) from the Acapulco – Tierra Colorada transect of the Xolapa Complex; (b) a ~158 Ma age reported byDuceaet al.(2004)fromnorthofPuertoEscondido;and(c)anEarlyJurassicmagmaticagereportedbyElías-Herreraet al. (2000) in the Tizapa metagranite (186.5 ± 7.4Ma,lowerinterceptofdiscordantdata)intheeasternGuerreroTerrane,Teloloapansubterrane,200kmnorthofthestudiedarea(Figure2).TheLowerJurassicagehasseveralpaleogeographicimplications.First,itindicatesthe

Figure7.Cathodoluminescenceimagesofselectedzirconsofthedatedsamples.atol:zirconsfromsampleXo0301.mtoz:zirconsfromsampleXo0303.Whitebarsrepresent100micrometersscale.Seetextforfurtherexplanations.

Page 15: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 215

200 160 120 80

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

30 50 70 90 110 130238 206

U/ Pb

data-point error ellipses are 2s

Xo0301all analyses

140 136 132 128 124

0.040

0.044

0.048

0.052

0.056

45 47 49 51 53

207

206

Pb/

Pb

60

Migmatization133.6 ± 0.9 Ma

Pb loss at129.2 ± 0.4 Ma

50

54

58

62

66

70

206 238Mean of Pb/ U ages

61.4 ±1.5 (95% conf.)

MSWD = 0.25, probability = 0.86

207

206

Pb/

Pb

238 206U/ Pb

Age

,M

a

206 238Mean of Pb/ U ages61.4 ±1.5 (95% conf.)

MSWD = 0.25, probability = 0.86(error bars are 2s )

a)

b) c)

presenceofapre-Toarciansedimentarysequence,whichwasintrudedbytheEarlyJurassicigneousprotolithandthenmetamorphosedtoformtheXolapaparagneiss.Ortega-GutiérrezandElías-Herrera(2003)arguedthatammonite-bearingsedimentsofthemid-JurassicTecocoyuncaGroup(Burckhardt,1927;Corona-Esquivel,1981),whichareextensivelyexposednorthoftheTierraColorada-Chacalapashearzone,gradeintothemetasedimentaryprotolithoftheXolapaComplex.However,thissuggestionisnotsupported

bythedatapresentedinthispaperbecausetheTecocoyuncaGroupisyoungerthanpre-178MaparagneissesoftheXolapaComplex.Anotherpossibilityis that therocksinthestudyareaarecorrelativesoftheeasternmostpartoftheGuerreroTerrane,i.e.,theTeloloapansubterrane(Elías-Herreraet al.,2000;Centeno-Garcíaet al.,2008).TheTeloloapanterranewasaccretedtothebackboneofMexico(MixtecaandZapotecoterranes)eitherduringtheMiddle-LateJurassic(Elías-Herreraet al.,2000),duringthe

Figure8.U-PbconcordiaplotsforsampleXo0301.a:U-PbTera-WasserburgconcordiaofalltheanalysesperformedonzirconsfromsampleXo0301;b:Detailoftheconcordiaplot(a)withtheinterpretedaveragerepresentingthemigmatizationandPb-lossevents;c:Meanof206Pb/238UagesfortheEarlyPaleoceneovergrowthsrecognizedinsomeoftheanalyzedzircons.Seetextforfurtherexplanations.

Page 16: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.216

182 178 174

0.044

0.046

0.048

0.050

0.052

0.054

0.056

34.4 34.8 35.2 35.6 36.0 36.4 36.8

data-point error ellipses are 2s

238 206U/ Pb

207

206

Pb/

Pb

Concordia Age = 178.71 ±1.1 Ma(95% confidence, decay-const. errs included)

MSWD (of concordance) = 4.2

Xo0303

200 180 160 140 120

0.040

0.044

0.048

0.052

0.056

0.060

0.064

0.068

3034 38 42 46 50 54 58

Xo0303All analyses

data-point error ellipses are 2s

238 206U/ Pb

207

206

Pb/

Pb

a)

b)

EarlyCretaceous(DickinsonandLawton,2001),orduringtheLateCretaceous(Talavera-Mendozaet al.,2007).Thus,the178Mamagmatisminthehigh-gradeXolapaComplexcouldhavebeenpartofanEarlyJurassicmagmaticarcfringingtheMixtecaTerraneofsouthernMexico,whichwassubsequentlyaccretedanddeformed.

Early Cretaceous Migmatization

Ourzirconagesindicatethathigh-grademetamor-phismandmigmatizationoftheXolapaComplexinthe

study area occurred ~133 Ma ago. This interpretation is consistent with field observations reported by Solari et al.(2007),whoconcludedthatmigmatizationoccurredpriortothe ~129 Ma crystallization age of undeformed granites intrudingmigmatites.OurstructuraldataandpetrographicstudiesofXolapahigh-graderocksarealsoconsistentwiththoseofCorona-Chávezet al. (2006) in the Puerto Escondidoarea(Figure1),whereonlyonehigh-grademeta-morphiceventinthelowergranulitefaciesisdiscernibleinmigmatitesandgneisses.Similarlithologies,metamorphicgradeandintrusiverelationships(cf.Robinsonet al.,1989;Herrmannet al.,1994;Corona-Chávezet al., 2006) through-

Figure9.U-PbconcordiaplotsforsampleXo0303.a:U-PbTera-WasserburgconcordiaofalltheanalysesperformedonzirconsfromsampleXo0303;b:Detailoftheconcordiaplot(a)withtheinterpretedaveragerepresentingthemagmaticageofsampleXo0303.Seetextforfurtherexplanations.

Page 17: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 217

Gra

in

Spot

206 P

b* pp

mU

pp

mT

h pp

mT

h/U

Obs

erve

d ra

tios

App

aren

t age

s20

4 Pb/

206 P

b20

6 Pb c

(%

)20

7 Pb* /20

6 Pb*

± 1σ

%20

8 Pb* /20

6 Pb*

± 1σ

%20

6 Pb* /23

8 U±

1σ %

206 P

b/23

8 U(M

a)

± 1σ

208 P

b/23

2 Th

(Ma)

±

(1)

(2)

(3)

(3)

(3)

(4)

(4)

Xo0

301

0301

-16R

0.5

541

0.02

0.03

820

9.81

0.12

490

8.4

0.19

386

11.0

0.00

558

2.7

19.2

12.5

---

---

0301

-1R

0.1

130

0.01

(-)

-0.9

50.

0396

824

.80.

0851

331

.30.

0167

58.

460

.03.

5--

---

-03

01-1

5R2.

226

52

0.01

0.00

197

1.16

0.05

640

5.3

0.03

809

9.3

0.01

680

4.4

60.1

1.3

---

---

0301

-11R

0.1

130

0.02

0.00

509

2.04

0.06

344

20.2

0.10

006

21.9

0.01

706

5.0

58.0

4.9

---

---

0301

-13R

0.4

461

0.01

0.00

801

1.95

0.06

288

12.0

0.07

112

16.2

0.00

986

4.4

61.2

5.0

---

---

0301

-14R

1.4

140

10.

010.

0049

21.

020.

0556

08.

90.

0496

913

.90.

0079

13.

268

.54.

1--

---

-03

01-6

R1.

612

111

0.10

0.00

193

1.55

0.06

020

6.1

0.07

986

7.2

0.00

965

1.8

93.2

2.3

---

---

0301

-19M

14.0

969

569

0.61

0.00

004

-0.3

80.

0451

81.

90.

2038

63.

00.

0388

914

.810

7.2

0.6

113

403

01-1

2M8.

348

614

10.

300.

0001

10.

130.

0496

03.

60.

0942

52.

60.

0349

43.

812

6.2

1.3

120

503

01-7

R9.

856

116

40.

300.

0002

90.

080.

0492

72.

50.

1010

12.

30.

0374

84.

712

8.4

0.8

122

803

01-9

M3.

118

058

0.33

(-)

0.01

0.04

869

4.1

0.10

758

3.9

0.03

551

3.8

129.

61.

313

25

0301

-4R

8.4

479

630.

140.

0000

8-0

.17

0.04

729

4.8

0.04

741

3.7

0.03

307

4.7

129.

50.

913

48

0301

-1C

8.3

474

240

0.52

0.00

017

-0.0

10.

0485

92.

70.

1672

62.

10.

0314

50.

612

9.8

1.0

126

403

01-8

M14

.179

426

90.

350.

0000

4-0

.06

0.04

819

2.0

0.11

538

1.8

0.03

643

3.6

131.

30.

713

53

0301

-10M

11.2

628

265

0.44

(-)

-0.1

50.

0474

73.

00.

1389

91.

90.

0355

83.

413

2.4

0.7

133

303

01-2

M16

.591

639

90.

450.

0000

70.

040.

0490

31.

90.

1453

11.

60.

0363

24.

213

3.3

0.6

133

203

01-5

C15

.385

149

50.

600.

0000

4-0

.06

0.04

824

2.0

0.19

158

1.5

0.03

584

4.3

133.

70.

813

42

0301

-5M

7.1

391

106

0.28

0.00

039

0.41

0.05

200

2.9

0.09

159

3.1

0.03

159

1.9

133.

81.

111

711

0301

-3M

20.6

1135

818

0.74

0.00

004

-0.0

10.

0486

51.

70.

2349

61.

10.

0362

13.

913

4.6

0.6

133

203

01-4

C11

.060

134

50.

59(-

)-0

.12

0.04

778

2.6

0.18

632

1.8

0.03

649

2.4

135.

51.

013

43

Xo0

303

0303

-10R

6.8

429

150.

040.

0004

6 0.

740.

0542

23.

00.

0261

85.

90.

0266

90.

911

6.2

1.0

9176

0303

-2R

1.0

5622

0.42

0.00

056

0.27

0.05

087

7.9

0.19

519

5.2

0.04

347

1.7

133.

02.

617

717

0303

-5R

2.2

111

20.

020.

0018

81.

120.

0578

05.

20.

0186

917

.30.

0200

15.

813

9.9

2.8

---

---

0303

-9R

6.5

298

330.

110.

0001

6 0.

290.

0515

93.

00.

0415

64.

40.

0444

03.

216

1.3

1.3

161

2003

03-4

R7.

934

751

0.15

0.00

012

-0.0

60.

0489

92.

70.

0507

13.

70.

0463

42.

416

8.7

1.2

162

1003

03-1

5M7.

833

514

00.

43(-

)0.

280.

0517

22.

60.

1392

52.

20.

0473

43.

417

2.1

1.2

176

403

03-1

4M5.

824

893

0.39

0.00

010

0.04

0.04

988

3.1

0.12

658

2.8

0.04

652

3.5

174.

31.

417

66

0303

-10M

8.4

357

141

0.41

(-)

0.16

0.05

087

2.5

0.13

355

3.6

0.04

814

3.6

174.

91.

218

17

0303

-7M

10.0

423

870.

21(-

)0.

130.

0506

42.

30.

0667

22.

80.

0471

02.

717

5.9

1.1

175

503

03-1

2M8.

133

810

80.

330.

0000

70.

210.

0513

12.

60.

1074

82.

50.

0464

43.

017

6.4

1.2

178

603

03-6

R2

6.9

285

470.

170.

0000

90.

330.

0522

42.

90.

0568

13.

80.

0471

42.

717

8.3

1.4

176

1003

03-1

R29

.812

3224

0.02

0.00

009

0.08

0.05

027

1.3

0.00

707

4.9

0.04

940

3.7

178.

50.

710

542

0303

-13M

11.0

455

232

0.53

0.00

011

-0.1

10.

0487

92.

20.

1661

81.

70.

0509

72.

917

8.3

1.1

174

503

03-6

R1

14.6

602

130.

020.

0001

70.

400.

0528

71.

90.

0126

95.

30.

0507

73.

717

9.3

1.0

150

8303

03-8

M11

.045

427

40.

620.

0000

7-0

.04

0.04

932

2.3

0.19

124

1.7

0.04

432

5.8

179.

41.

217

24

0303

-11M

17.7

728

145

0.21

0.00

010

-0.0

70.

0491

11.

80.

0671

62.

20.

0487

53.

217

9.4

0.9

176

6

Tabl

e1.

U-P

bda

tata

ble,

Xol

apa

Com

plex

,Aca

pulc

oTi

erra

Col

orad

ase

ctor

,sou

ther

nM

exic

o.

(1):

Con

tribu

tion

ofc

omm

on20

6 Pb

toto

tal20

6 Pb

in %

; (2)

: Con

cent

ratio

n of

radi

ogen

ic (*

) 206 P

b; (3

): M

easu

red

isot

ope

ratio

s. Er

rors

are

pro

vide

d as

1-s

igm

a in

%; (

4): A

ppea

rent

age

s, an

d 20

4 Pb

corr

ec-

tions

are

cal

cula

ted

usin

gSQ

UID

softw

are

(Lud

wig

,200

1).F

orP

hane

rozo

icz

ircon

sin

gene

ral,

206 P

b/23

8 Ua

ges,

are

cons

ider

eda

sthe

mos

trel

iabl

e.-20

4 Pb

notd

etec

ted;

---20

8 Pb/

232 T

hag

ean

der

rors

wer

eno

tcal

cula

ted,

bec

ause

Th

isv

irtua

llya

bsen

tin

such

zirc

ons,

and

unce

rtain

tyis

thus

too

big.

Page 18: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.218

outtheXolapaComplexsuggestthattheEarlyCretaceousageofmigmatizationcanbeextrapolatedacrossthewholecomplex.Supportforthisisprovidedbythe131.8±2.2MaagecalculatedbyHerrmannet al.(1994)onamigmatitecroppingoutnorthofPuertoEscondido.

Late Mesozoic to Early Cenozoic evolution

High-gradegneissesandmigmatitesinthestudyareaunderwentlimitedre-heatingduringtheLateCretaceous-PaleoceneasindicatedbyPblossinzirconsofsampleXo0301.Fourtectonothermaleventswerepreviouslyre-portedfortheearlyCenozoicintheXolapaComplex:(1)magmatism at ~55 Ma (Acapulco, El Salitre and Las Piñas granites,Morán-Zenteno,1992;Duceaet al.,2004;Solariet al.,2007);(2)NNW-vergent,normalandleft-lateralductileshearing at ~45 Ma (Riller et al.,1992;Solariet al.,2007);(3) SW-vergent brittle thrusting between ~45 and ~34 Ma, and (4) magmatism at ~30–34 Ma (Tierra Colorada and Xaltianguisundeformedgranites,Herrmannet al.,1994;Schaafet al., 1995; Ducea et al.,2004;Hernández-Pineda,2006). Such events are probably responsible for the reo-rientationofpreviousstructures(e.g.,D4,seeabove),Pblossinzircons,recrystallizationorresettingofisotopicchronometersinmicasduetointrusionorhydrothermalfluid circulation, specially along the boundaries of major intrusions(e.g.,Solé,2004).

Tectonic implications

PreviousstudiesofthegeologicalrecordoftheXolapaComplexhavebeeninterpretedintermsofextensionandexhumation during the Late Cretaceous – Early Tertiary causingupliftoftheisothermsandpartialmelting(e.g.,Robinsonet al.,1989;Herrmannet al.,1994;Meschedeet al., 1997). Such models were partly based on a 66–46 Ma ageforthemigmatization(Herrmannet al.,1994).TheseauthorssuggestedthatexhumationoftheXolapaComplexwasrelatedtothesoutheastwarddisplacementoftheChortísblockfromalocationoffPuertoVallartaalongthesouthernMexican coast at ~100 Ma, towards a location off Huatulco at ~29 Ma.

OurpresentdatasuggesttwoalternativemodelsfortheLowerCretaceousmigmatization,bothinvolvingaccretionofoutboardterranes:(1)accretionoftheGuerreroterranetothebackboneofsouthernMexicocouldpossiblyhaveoccurredduringtheEarlyCretaceous(butseediscussionabove);or(2)accretionoftheChortísblocktosouthernMexico.Theabsenceofanexposedsutureeastof theGuerreroterranearguesagainsthypothesis#1,whichsug-geststhattheGuerreroterranemayhavebeenacontinentalmarginarc(cf.Elías-HerreraandOrtega-Gutiérrez,1998).Moreover,theaccretionoftheGuerreroterranecannotexplain the synchronous migmatization as far as 500 km

SEofthestudyarea.SeverallinesofevidenceindicateapossiblecorrelationbetweentheXolapaComplexandthenorthernChortísblock:(i)asimilarmetamorphicgradeoccursintheexposedbasementofLasOvejasComplexinsouthernGuatemalaandnorthwesternHonduras(Horneet al., 1976; Schwartz, 1977; Ortega-Gutiérrez et al.,2007;Martenset al., 2007), (ii) a ~170 Ma magmatic arc is presentintheChortísblock(Martenset al.,2007),and(iii)thepresenceofeclogitesintheMotaguamélange(centralGuatemala),whichhaveSm-Ndmineralisochronagesspanning ~125 to ~136 Ma (Brueckner et al., 2005; Martens et al.,2007).TheselatteragesareinterpretedintermsofcollisionbetweentheChortísblockandsouthernMexico(cf.Harlowet al.,2004;Martenset al.,2007).Thesimilar~133 Ma migmatization age in the Xolapa Complex could representcollisionbetweentheXolapaComplexandthe(current)northernmarginoftheChortísblockmarkedbytheHPmetamorphismintheMotaguamelange.Exhumationofsucheclogitesinblueschistmetamorphicconditionsat ~70–75 Ma (e.g.,Harlowet al.,2004;Martenset al.,2007)couldmarktheseparationoftheChortísblockfromsouthernMexico.ThisisconsistentwiththeconclusionsofCorona-Chávezet al. (2006), who suggested that the clock-wiseP-TpathfollowedbytheXolapaComplexrepresentacompressionalregimeintherootsofacontinentalmagmaticarc.Otherprocesses,suchasshorteningduetoaccretionofnappesand/orterranes(e.g.,Whitneyet al.,1999),ormagma-loadingprocesses(e.g., Brown, 1996; Warren and Ellis, 1996) are normally invoked in such a tectonic sce-nario.RemovaloftheChortísblockduringthemid-LateCretaceouswouldhaveallowedreorganizationofplates,andonsetofsubductionalongtheMiddleAmericatrenchto generate the ~55 and ~30 Ma arc plutons that intrude the XolapaComplex(Duceaet al.,2004;Solariet al.,2007)andtheGuerreroterrane(e.g.,Levresseet al.,2004).

ACKNOWLEDGEMENTS

Severalpeoplearethankedfortheirsupportdur-ingfieldwork(e.g.,RafaelTorresdeLeón,GuillermoHernándezPineda,TeodoroHernándezTreviño,BernardoVillacura),andforfruitfuldiscussionsonthegeologyoftheXolapaComplexinvariousstagesofthiswork,suchasPedroCorona-Chávez,FernandoOrtega-Gutiérrez,MarianoElías-Herrera,J.DuncanKeppie.Theauthorsacknowledgea CONACyT scholarship to RPG, CONACyT grant 54559 toLAS,andPAPIIT-DGAPAgrantIN101407toLAS,which funded field and analytical work. Diego Aparicio madealotofthinsectionswestudiedduringdifferentstagesofthiswork,andConsueloMacíashelpedwithmineralseparations.WealsothankJoeWooden,USGSatStanfordUniversity,forassistanceduringSHRIMPanalyses.ThoroughreviewsbyBodoWeber,PedroCorona-ChávezandDanteMorán-Zentenoimprovedthereadabilityoftheconceptsexpressedinthiswork.

Page 19: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 219

REFERENCES

Alaniz-Álvarez,S.A.,Ortega-Gutiérrez,F.,1997,GeologíayPetrologíadelComplejoXolapaenlaBarrancadeXolapa,EstadodeGuerrero:BoletíndeMineralogía,13(1),3-32.

Black,L.P.,Kamo,S.L.,Allen,C.M.,Davis,D.W.,Aleinikoff,J.N.,Valley,J.W.,Mundil,R.,Campbell,I.H.,Korsch,R.J.,Williams,I.S.,Foudoulis,C.,2004,Improved206Pb/238Umicroprobegeo-chronologybythemonitoringofatrace-element-relatedmatrixeffect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentationforaseriesofzirconstandards:ChemicalGeology,205, 115-140.

Brown, E.H., 1996, High-pressure metamorphism caused by magma loadinginFiordland,NewZealand:JournalofMetamorphicGeology, 14, 441-452.

Brown,M.,2004,Meltextractionfromlowercontinentalcrust:Transactionsof the Royal Society of Edinburgh, Earth Sciences, 95, 35–48.

Brown, M., 2005, Melt extraction from the lower continental crust of orogens: the field evidence, inBrown,M.,Rushmer,T.(eds.),EvolutionandDifferentiationoftheContinentalCrust:UnitedKingdom,CambridgeUniversityPress,331-383.

Brueckner, H.K., Hamming, S., Sorensen, S.S., Harlow, G.E., 2005, SynchronousSm-NdmineralagesfromHPterranesonbothsidesoftheMotaguafaultofGuatemala:convergentsutureandstrike-slipfault?,inAmericanGeophysicalUnion,FallMeeting,San Francisco, California: Eos Transactions AGU, 86(52), Fall MeetingSupplement,abstractT23D-04.

Burckhardt,C.,1927,CefalópodosdelJurásicoMediodeOaxacayGuerrero:UniversidadNacionalAutónomadeMéxico,InstitutodeGeología,Boletín,47,108p.

Campa,M.F.,Coney,P.J.,1983,Tectono-stratigraphicterranesandmin-eralresourcedistributionsinMexico:CanadianJournalofEarthSciences, 20, 1040-1051.

Centeno-García,E.,Ruíz,J.,Coney,P.J.,Patchett,P.J.,Ortega-Gutiérrez,F.,1993,GuerreroterraneofMexico:itsroleintheSouthernCordillerafromnewgeochemicaldata:Geology,21,419-422.

Centeno-García,E.,Guerrero-Suastegui,M.,Talavera-Mendoza,O.,2008,TheGuerreroCompositeTerraneofwesternMexico:collisionandsubsequentriftinginasupra-subductionzone,inDraut,A.E.,Clift,P.D.,Scholl,D.W.,FormationandApplicationsoftheSedimentaryRecordinArcCollisionZones:Boulder,Colorado,Geological Society of America, Special Paper, 436, 279-308.

Cerca,M.,Ferrari,L.,López-Martínez,M.,Martiny,B.,Iriondo,A.,2007,LateCretaceousshorteningandearlyTertiaryshearingintheCentralSierraMadredelSur,southernMexico:insightsintotheevolutionoftheCaribbean-NorthAmericaplateinteraction:Tectonics, 26, TC3007, doi: 10.1029/2006TC001981.

Connelly,J.N.,2001,DegreeofpreservationofigneouszonationinzirconasasignpostforconcordancyinU/Pbgeochronology:ChemicalGeology, 172, 25-39.

Corfu,F.,Hanchar,J.M.,Hoskin,P.W.O.,Kinny,P.,2003,Atlasofzir-contextures,inHanchar,J.M.,Hoskin,P.W.O.(eds.),Zircon:WashingtonD.C.,MineralogicalSocietyofAmerica,Reviewsin Mineralogy and Geochemistry, 23, 469-500.

Corona-Chávez, P., Poli, S., Bigioggero, B., 2006, Syn-deformational migmatitesandmagmatic-arcmetamorphismintheXolapaComplex,southernMexico:JournalofMetamorphicGeology,24(3), 169-191, doi:10.1111/j.1525-1314.2006.00632.x.

Corona-Esquivel,R.,1981,Estratigrafíade la regióndeOlinalá-Tecocoyunca,norestedelEstadodeGuerrero:UniversidadAutónoma de México, Revista del Instituto de Geología, 5(1), 17-24.

De Cserna, Z., 1965, Reconocimiento geológico de la Sierra Madre delSurdeMéxico,entreChilpancingoyAcapulco,EstadodeGuerrero:UniversidadNacionalAutónomadeMéxico,Institutode Geología, Boletín, 62, 77 p.

Dickinson,W.R.,Lawton,T.F.,2001,CarboniferoustoCretaceousas-semblyandfragmentationofMexico:GeologicalSocietyofAmerica Bulletin, 113(9), 1142-1160.

Ducea,M.,Gehrels,G.E.,Shoemaker,S.,Ruíz,J.,Valencia,V.A.,2004,

GeologicevolutionoftheXolapaComplex,southernMexico:EvidencefromU-Pbzircongeochronology:GeologicalSocietyof America Bulletin, 116(7/8), 1016-1025.

Ducea,M.,Valencia,V.A.,Shoemaker,S.,Reiners,P.W.,DeCelles,P.G.,Campa-Uranga, M.F., Morán Zenteno, D.J., Ruíz, J., 2005, Rates ofsedimentrecyclingbeneaththeAcapulcotrench:Constraintsfrom(U-Th)//Hethermochronology:JournalofGeophysicalResearch,109,doi:10.1029/2004JB003112.

Elías-Herrera,M.,Ortega-Gutiérrez,F.,1998,TheEarlyCretaceousArperosoceanicbasin(WesterMexico).Geochemicalevidenceforanaseismicridgeformednearaspreadingcenter-Comment:Tectonophysics, 292, 321-326.

Elías-Herrera,M.,Ortega-Gutiérrez,F.,2002,TheCaltepecFaultZone:anEarlyPermiandextraltranspressionalboundarybetweentheProterozoicOaxacanandPalaeozoicAcatláncomplexes,southernMéxico,andregionaltectonicimplications:Tectonics,21(3),1013,10.1029/2000TC001278.

Elías-Herrera,M.,Sánchez-Zavala,J.L.,Macías-Romo,C.,2000,GeologicandgeochronologicdatafromtheGuerreroterraneintheTejupilcoarea,southernMéxico:newconstraintsonitstectonicinterpreta-tion: Journal of South American Earth Sciences, 13, 355-375.

Elliott,T.,Plank,T.,Zindler,A.,White,W.,Bourdon,B.,1997,ElementtransportfromslabtovolcanicfrontattheMarianaarc:Journalof Geophysical Research, 102, 14991-15019.

Gradstein,F.M.,Ogg,J.G.,Smith,A.G.,Bleeker,W.,Lourens,L.J.,2004,Anewgeologicaltimescale,withspecialreferencetoPrecambrianandNeogene:Episodes,27(2),83-100.

Grajales-Nishimura,J.M.,1988,Geology,geochronology,geochemistryandtectonicimplicationsoftheJuchatengogreenrocksequence,StateofOaxaca,southernMéxico:UniversityofArizona,M.Sc. thesis, 145 p.

Grajales-Nishimura,J.M.,Centeno-García,E.,Keppie,J.D.,Dostal,J.,1999,GeochemistryofPaleozoicbasaltsfromtheJuchatengocomplexofsouthernMexico:tectonicimplications:JournalofSouth American Earth Sciences, 12, 537-544.

Guerrero-García,J.,Silver,L.T.,Anderson,T.H.,1978,Estudiosgeocrono-lógicosenelComplejoXolapa:BoletíndelaSociedadGeológicaMexicana,39,22-23.

Harlow,G.E.,Hemming,S.R.,AvéLallemant,H.G.,Sisson,V.B.,Sorensen,S.S., 2004, Two high-pressure–low-temperature serpentinite-ma-trixmélangebelts,Motaguafaultzone,Guatemala:ArecordofAptianandMaastrichtiancollisions:Geology,32(1),17-20.

Hernández-Pineda, G.A., 2006, Geocronología y geoquímica de granitoides eneláreadeTierraColorada,Guerrero:Mexico,UniversidadNacional Autónoma de México, tesis de Licenciatura, 85 p.

Herrmann,U.R.,1994,Theoriginofa“terrane”:U/Pbzirconsystematics,geochemistryandtectonicsoftheXolapaComplex(SouthernMexico):Tübingen,Germany,UniversitätTübingen,InstitutundMuseumfürGeologieundPalaäontologie,Ph.D.thesis,92p.

Herrmann,U.,Nelson,B.K.,Ratschbacher,L.,1994,Theoriginofater-rane:U/PbzircongeochronologyandtectonicevolutionoftheXolapa complex (southern Mexico): Tectonics, 13(2), 455-474.

Horne, G.S., Clark, G.S.,Pushkar, P., 1976, Pre-Cretaceous rocks of north-westernHonduras:BasementterraneinSierradeOmoa:AmericanAssociation of Petroleum Geologists Bulletin, 60, 566-583.

Keppie,J.D.,2004,TerranesofMexicorevisited:A1.3billionyearodys-sey: International Geology Review, 46, 765-794.

Keppie,J.D.,Dostal,J.,2001,EvaluationoftheBajacontroversyusingpaleomagneticandfaunaldata,plumemagmatism,andpiercingpoints:Tectonophysics,339(3-4),427-442.

Keppie,J.D.,Dostal,J.,Ortega-Gutiérrez,F.,Lopez,R.,2001,AGrenvillianarconthemarginofAmazonia:evidencefromthesouthernOaxacanComplex,southernMexico:PrecambrianResearch,112, 165-181.

Keppie,J.D.,Dostal,J.,Cameron,K.L.,Solari,L.A.,Ortega-Gutiérrez,F.,Lopez,R.,2003,GeochronologyandgeochemistryofGrenvillianigneoussuites in thenorthernOaxacanComplex,southernMexico: tectonicimplications:PrecambrianResearch,120,365-389.

Keppie,J.D.,Nance,R.D.,Powell,J.T.,Mumma,S.A.,Dostal,J.,Fox,

Page 20: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Pérez-Gutiérrez et al.220

D.,Muise,J.,Ortega-Rivera,A.,Miller,B.V.,Lee,J.W.K.,2004,Mid-JurassictectonothermaleventsuperposedonaPaleozoicgeologicalrecordintheAcatlánComplexofsouthernMexico:hotspotactivityduring thebreakupofPangea:GondwanaResearch, 7, 239-260.

Keppie,JD,Dostal,J.,Murphy,JB,Nance,RD,2008,SynthesisandtectonicinterpretationofthewesternmostPaleozoicVariscanorogeninsouthernMexico:FromriftedRheicmargintoactivePacific margin: Tectonophysics, 461, 277 – 290.

Langmuir,C.,Hanson,G.,1980,Anevaluationofmajorelementheteroge-neityinthemantlesourcesofbasalts:PhilosophicalTransactionsoftheRoyalSocietyofLondon,SeriesA,297,383-407.

Lawlor,P.,Ortega-Gutiérrez,F.,Cameron,K.,Ochoa-Camarillo,H.,López,R.,Sampson,D.,1999,U/PbGeochronology,geochemistryandprovenanceoftheGrenvillianHuiznopalaGneissofeasternMexico:PrecambrianResearch,94,73-99.

Lehnert,K.,Su,Y.,Langmuir,C.,Sarbas,B.,Nohl,U.,2000,Aglobalgeo-chemicaldatabasestructureforrocks:Geochemistry,Geophysics,Geosystems, 1(5), 1012, doi:10.1029/1999GC000026.

Levresse,G.,González-Partida,E.,Carrillo-Chávez,A.,Tritlla,J.,Camprubí,A.,Cheilletz,A.,Gasquet,D.,Deloule,E.,2004,Petrology,U/Pbdatingand(C-O)stableisotopeconstraintsonthesourceandevolutionoftheadakite-relatedMezcalaFe-Auskarndistrict,Guerrero,Mexico:MineraliumDeposita,39,301-312.

Ludwig, K.R., 2001, SQUID 1.03 –a user’s manual: Berkeley, CA, BerkeleyGeochronologyCenter,SpecialPublication2,19pp.

Ludwig,K.R.,2004,Isoplot/Ex,ver.3,AgeochronologicaltoolkitforMicrosoftExcel:BerkeleyGeochronologyCenter,SpecialPublication4,70pp.

Martens,U.,Solari,L.A.,Sisson,V.B.,Harlow,G.E.,TorresdeLeón,R.,Ligorria,J.P.,Tsujimori,T.,Ortega-Gutiérrez,F.,Brueckner,H.K.,Giunta,G.,AvéLallemant,H.G.,2007,High-pressurebeltsofcentralGuatemala:TheMotaguasutureandtheChuacúsComplex, Field Trip Guide, 2007 Field Workshop of IGCP 546 “SubductionZonesoftheCaribbean”:GuatemalaCity,32p.

McDonough, W., Sun, S., 1995, The composition of the earth: Chemical Geology, 120, 223-253.

Mehnert, K.R., 1968, Migmatites and the origin of granitic rocks: Amsterdam,Elsevier,393p.

Meschede,M.,Frisch,W.,Herrmann,U.,Ratschbacher,L.,1997,Stresstransmissionacrossanactiveplateboundary:anexamplefromsouthern Mexico: Tectonophysics, 266, 81-100.

Milord,I.,Sawyer,E.W.,2003,Schlierenformationindiatexitemigmatite:examplesfromtheStMalomigmatiteterrane,France:JournalofMetmorphic Geology, 21, 347-362.

Morán-Zenteno,D.J.,1992,InvestigacionesisotópicasdeRb-SrySm-NdenrocascristalinasdelaregiónTierraColorada-Acapulco-CruzGrande,EstadodeGuerrero:México,UniversidadAutónomadeMéxico, Ph. D. thesis 186 p.

Morán-Zenteno, D.J., Corona-Chávez, P., Tolson, G., 1996, Uplift and subductionerosioninsouthwesternMexicosincetheOligocene:plutongeobarometryconstraints:EarthandPlanetaryScienceLetters, 141, 51-65.

Morán-Zenteno,D.J.,Tolson,G.,Martínez-Serrano,R.G.,Martiny,B.,Schaaf,P.,Silva-Romo,G.,Macías-Romo,C.,Alba-Aldave,L.,Hernández-Bernal,M.S.,Solís-Pichardo,G.,1999,Tertiaryarc-magmatismoftheSierraMadredelSur,Mexico,anditstransi-tiontothevolcanicactivityoftheTrans-MexicanVolcanicBelt:Journal of South American Earth Sciences, 12, 513-535.

Morán-Zenteno, D.J., Cerca-Martínez, M., Keppie, J.D., 2005, La evolu-cióntectónicaymagmáticacenozoicadelsuroestedeMéxico:avancesyproblemasdeinterpretación:BoletíndelaSociedadGeológica Mexicana, 57(3), 319-341.

Nourse, J.A., Premo, W.R., Iriondo, A., Stahl, E.R., 2005, Contrasting ProterozoicbasementcomplexesnearthetruncatedmarginofLaurentia,northwesternSonora-Arizonainternationalborderre-gion,inAnderson,T.H.,Nourse,J.A.,McKee,J.W.,Steiner,M.B.(eds.),TheMojave-SonoraMegashearHypothesis:Development,Assessment,andAlternatives:Boulder,Colorado,GeologicalSocietyofAmericaSpecialPaper,393,123-182.

Ortega-Gutiérrez,F.,Elías-Herrera,M.,2003,WholesalemeltingofthesouthernMixtecoterraneandoriginoftheXolapaComplex(ab-stract)inGeologicalSocietyofAmerica,CordilleranSection,99thannualmeeting,PuertoVallarta,Jal.,Mexico:GeologicalSocietyof America, Abstracts whit programs, paper 27-6.

Ortega-Gutiérrez,F.,Elías-Herrera,M.,Reyes-Salas,M.,Macías-Romo,C.,Lopez,R.,1999,LateOrdovician-EarlySiluriancontinentalcol-lisionorogenyinsouthernMexicoanditsbearingonGondwana-Laurentiaconnections:Geology,27,719-722.

Ortega-Gutiérrez,F.,Solari,L.A.,Ortega-Obregón,C.,Elías-Herrera,M.,Martens,U.,Morán-Icál,S.,Chiquín,M.,Keppie,J.D.,TorresdeLeón,R.,Schaaf,P.,2007,TheMaya-Chortísboundary:atectonostratigraphicapproach:InternationalGeologyReview,49, 996-1024.

Pearce,J.A.,Harris,N.B.W.,andTindle,A.G.,1984,Traceelementdis-criminationdiagramsforthetectonicinterpretationofgraniticrocks: Journal of Petrology, 25, 956–983.

Pérez-Gutiérrez, R., 2005, Geología y evolución estructural del Complejo Xolapa,entrelosRíosPapagayoyLaSábana,norestedeAcapulco:Guerrero,Mexico,UniversidadNacionalAutonomadeMéxico,PosgradoenCienciasdelaTierra,M.Sc.thesis,80p.

Riller,U.,Ratschbacher,L.,Frisch,W.,1992,Left-lateraltranstensionalongtheTierraColoradadeformationzone,northernmarginoftheXolapamagmaticarcofsouthernMexico:JournalofSouthAmerican Earth Sciences, 5(3-4), 237-249.

Robinson,K.L.,Gastil,G.R.,Campa,M.F.,1989,EarlyTertiaryexten-sioninsouthwesternMexicoandtheexhumationoftheXolapametamorphiccorecomplexinGeologicalSocietyofAmerica,AnnualMeeting:GeologicalSocietyofAmerica,AbstractswithPrograms,p.A92.

Sabanero-Sosa,H.,1990,LarupturadelextremoaustraldelaplataformaGuerrero-Morelosdeterminadaporlaaccrecióncontructiva-transformantedelTerrenoXolapa:México,InstitutoPolitécnicoNacional, Tesis de Licenciatura, 126 p.

Schaaf,P.,Morán-Zenteno,D.J.,Hernández-Bernal,M.S.,Solís-Pichardo,G., Tolson, G., Kohler, H., 1995, Paleogene continental margin truncationinSouthwesternMéxico:Geochronologicalevidence:Tectonics, 14(5), 1339-1350.

Schaaf, P., Stimac, J., Siebe, C., Macías, J., 2005, Geochemical evidence formantleoriginandcrustalprocessesinvolcanicrocksfromPopocatépetlandsurroundingmonogeneticvolcanoes,CentralMexico: Journal of Petrology, 46, 1243-1282.

Schwartz,D.P.,1977,GeologyoftheZacapaQuadrangleandvicinity,Guatemala,CentralAmerica:USA,StateUniversityofNewYorkatBinghamton,Ph.D.thesis,191p.

Sedlock,R.L.,Ortega-Gutiérrez,F.,Speed,R.C.,1993,TectonostratigraphicterranesandtectonicevolutionofMexico:GeologicalSocietyofAmerica Special Paper 278, 153 pp.

Solari,L.A.,Keppie,J.D.,Ortega-Gutiérrez,F.,Cameron,K.L.,Lopez,R.,Hames,W.E.,2003,GrenvilliantectonothernmaleventsinthenorthernOaxacanComplex,southernMexico:rootsofanorogen: Tectonophysics, 365, 257-282.

Solari,L.A.,Keppie,J.D.,Ortega-Gutiérrez,F.,Cameron,K.L.,Lopez,R.,2004, ~ 990 Ma peak granulitic metamorphism and amalgamation ofOaxaquia,Mexico:U-Pbzircongeochronologicalandcom-monPbisotopicdata:RevistaMexicanadeCienciasGeológicas,21(2), 212-225.

Solari,L.A.,TorresdeLeón,R.,Hernández-Pineda,G.A.,Solé,J.,Hernández-Treviño, T., Solís-Pichardo, G., 2007, Tectonic signifi-cance of Cretaceous–Tertiary magmatic and structural evolution ofthenorthernmarginoftheXolapaComplex,TierraColoradaarea,southernMexico:GeologicalSocietyofAmericaBulletin,119(9/10), 1265-1279.

Solé,J.,2004,DescifrandoloseventostectonotérmicoscenozoicosenelnortedelComplejoXolapaentreTierraColoradayAcapulco(México)mediantegeocronologíadeK-Ar(abstract), inIVReuniónNacionaldeCienciasdelaTierra,Juriquilla,Querétaro,Libroderesúmenes,SE03-7.

Sun,S.,McDonough,W.,1989,Chemicalandisotopicsystematicsofoce-anicbasalts:Implicationsformantlecompositionsandprocesses,

Page 21: Mesozoic geologic evolution of the Xolapa migmatitic ... · Mesozoic evolution of the Xolapa Complex 201 ABSTRACT The Xolapa Complex in the Acapulco-Tierra Colorada area, southern

Mesozoic evolution of the Xolapa Complex 221

inSaunders,A.,Norry,M.(eds.),MagmatismintheOceanBasins:Geological Society Special Publication 42, 313-345.

Talavera-Mendoza,O.,Ruíz,J.,Gehrels,G.E.,Valencia,V.A.,Centeno-García,E.,2007,DetritalzirconU/PbgeochronologyofsouthernGuerreroandwesternMixtecaarcsuccessions(southernMexico):NewinsightsforthetectonicevolutionofsouthwesternNorthAmericaduringthelateMesozoic:GeologicalSocietyofAmericaBulletin, 119(9/10), 1052-1065.

Tolson, G., 2005, La falla Chacalapa en el sur de Oaxaca: Boletín de la Sociedad Geológica Mexicana, 57(1), 111-122.

Torres-de León, R., 2005, Análisis Estructural y Caracterización Petrográfica de Unidades Miloníticas en el Área de La Venta, EstadodeGuerrero:ImplicacionesTectónicas:UniversidadNacionalAutónomadeMéxico,PosgradoenCienciasdelaTierra, Master tesis, 65 p.

Warren, R.G., Ellis, D. J., 1996, Mantle underplating, granite tectonics, and metamorphic P-T-t paths: Geology, 24(7), 663-666.

Weber,B.,Schaaf,P.,Valencia,V.A.,Iriondo,A.,Ortega-Gutiérrez,F.,2006, Provenance ages of late Paleozoic sandstones (Santa Rosa Formation)fromtheMayablock,SEMexico.ImplicationsonthetectonicevolutionofwesternPangea:RevistaMexicanadeCiencias Geológicas, 23(2), 262-276.

Whitney,D.L.,Miller,R.B.,Paterson,R.,1999,P-T-tevidenceformechanismsofverticalmotioninacontractionalorogen:north-westernUSandCanadianCordillera:JournalofMetamorphicGeology, 17, 75-90.

Yañez,P.,Ruíz,J.,Patchett,P.J.,Ortega-Gutiérrez,F.,Gehrels,G.E.,1991,IsotopicstudiesoftheAcatlanComplex,southernMexico:ImplicationsforpaleozoicNorthAmericantectonics:GeologicalSocietyofAmericaBulletin,103,817-828.

Manuscriptreceived:January22,2008Correctedmanuscriptaccepted:August13,2008Manuscriptaccepted:September9,2008