23
LIFE CYCLE ASSESSMENT OF A LIFE CYCLE ASSESSMENT OF A BIOREACTOR AND AN ENGINEERED BIOREACTOR AND AN ENGINEERED LANDFILL FOR MUNICIPAL SOLID WASTE LANDFILL FOR MUNICIPAL SOLID WASTE TREATMENT TREATMENT  Jean-François Ménard, Renée Michaud, Julie-Anne Chayer, Pascal Lesage, Louise Deschênes, Réjean Samson September 2003  InL CA-LCM 2003 - Seat tle © Waste Management 2003

Menard-presentation

Embed Size (px)

Citation preview

Page 1: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 1/23

LIFE CYCLE ASSESSMENT OF ALIFE CYCLE ASSESSMENT OF A

BIOREACTOR AND AN ENGINEEREDBIOREACTOR AND AN ENGINEERED

LANDFILL FOR MUNICIPAL SOLID WASTELANDFILL FOR MUNICIPAL SOLID WASTE

TREATMENTTREATMENT

 Jean-François Ménard, Renée Michaud, Julie-Anne Chayer,Pascal Lesage, Louise Deschênes, Réjean Samson

September 2003 InLCA-LCM 2003 - Seattle

©Waste Management 2003

Page 2: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 2/23

Context

Landfilling is the most common means of disposal f or Municipal Solid

Waste (MSW) in Canada.

Today, landfilling is done in engineer ed landfills equipped with

leachate and landfill gas collection and tr eatment systems.

However , this technique pr esents some shor tcomings since it:

Requir es a lar ge ar ea;

Gener ates emissions over sever al year s (possibly mor e

than a centur y).

 A new landfill technology, the bior eactor , addr esses these problems by

acceler ating the degr adation of the or ganic f r action. This r educes the

time necessar y to stabilize the landfilled waste and incr ease the site¶s

capacity.

Page 3: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 3/23

Pr esentation outline

1. Goal & scope

2. Life Cycle Inventory (LCI)

3. Life Cycle Impact Assessment (LCIA)

4. Conclusions

Page 4: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 4/23

Goal:

To evaluate, using an LC A, the potential

environmental impacts associated with two types of 

landfills used f or 

MSW: The engineer ed landfill (EL);

The bior eactor .

1- Goal & scope

Page 5: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 5/23

1- Goal & scope

Function:

To stabilize an amount of MSW

BUT

Landfill gas can be collected and used to produce

ener gy (electr icity or heat) in the case of the

bior eactor . This production must be added to the

pr imar y function so as to maintain the functional

equivalence of the compar ed systems.

Page 6: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 6/23

1- Goal & scope

Functional unit:

The stabilization of 600 000 tonnes of MSW and the

production of 2.56 x 108 MJ of electr icity and

7.81 x 108

MJof heat.

These amounts corr espond to:

The landfilling of 300 000 tonnes of MSW per year  

over 2 year s;

The maximum amount of ener gy that can be

r ecuper ated f rom the landfill gas gener ated by the

bior eactor .

Page 7: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 7/23

1- Goal & scopeSystem boundaries and life cycle stages

Page 8: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 8/23

2- LCI

System description

EL Bioreactor  

Bottom liner 

Geosynthetic clay liner  (GCL)

Geomembr ane

Geonet

Geotextile

Leachate collection

Gr avel dr ainage bed

HDPE pipes

Leachate treatment Aer ation pond

Release in r eceiving body of 

water 

Recir culation in hor izontal

tr enches

Landfill gas collection Ver tical wells Hor izontal tr enches

Landfill gas treatment Flar e

Inter nal combustion engine (ICE)

Modified boiler 

Final cover layer Sand

Geomembr ane

Or ganic soil

Supplementary

energy productionNatur al gas electr ical power  station

Natur al gas industr ial boiler 

Page 9: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 9/23

2- LCI

M ain assumptions

Waste density in cell: 800 kg/m3 f or  the EL;1000 kg/m3 f or  the Bior eactor .

Post-closur e monitor ing per iod = 30 years.

Landfill gas production = f r action of Biochemical Methane Potential (BMP)

which var ies f rom: 40 to 70% of the BMP f or  the EL;

60 to 90% of the BMP f or  the Bior eactor .

CO2 f rom the waste = iogenic not counted as gr eenhouse gas.

Residual f r action of BMP conver ted into an environmental credit

(CO2 sequester ed in the landfilled waste).

Bior eactor : waste brought to field capacity at closur e.

Tempor al boundar y corr esponds to waste stabilization

time t

opro

duce 95% of calculated landfill gas volume.

Page 10: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 10/23

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

      0      1      0

      2      0

      3      0

     4      0

     5      0

      6      0

     7      0

      8      0

      9      0

      1      0      0

Ti [ r ]

   i   l   l

  r  o

   i  o

   [      3   ]

2- CI

M ain assumptions ± Temporal boundary 

Closure End of post-closure monitoring period

Temporal boundary - Bioreactor 

Temporal boundary - EL

Page 11: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 11/23

2- LCI

M ain assumptions

EL Bioreactor  

LeachatePr ecipitations (m/m2/year ) 1

Evapotr anspir ation losses (%) 60

Run-off losses (%) From 0 to 1 year 

From 1 to 2 year s After 2 year s

5

1020

Final cover efficiency (%) From 0 to 1 year 

From 1 to 2 year s

From 2 to 32 year s

 After 32 year s

0

50

99

- 0.01 per year 

Bottom layer efficiency (%) From 0 to 32 year s

 After 32 year s

99,99

- 0.01 per year 

Landfill gasCollection system efficiency (%) From 0 to 1 year 

From 1 to 2 year s

From 2 to 32 year s

 After 32 year s

0

50

80

0

0

75

90

Page 12: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 12/23

2- LCI

Ex cluded processes

Pumps f or  leachate collection; Collection and disposal of leachate tr eatment sludge (EL);

Compr essor s f or  landfill gas collection;

Dehydr ator s and pipeline f or  tr eatment and tr anspor t of landfill gas

(Bior eactor ).

Page 13: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 13/23

2- LCI

Data sources

Unit process Data source

Non-road equipmentNONROAD model (U.S. EPA/Office of 

Transportation and Air Quality)

Truck transport JointE

MEP

 /CORINAIR AtmosphericE

missionInventory Guidebook ± 3rd edition (EEA, 2001)

Material productionCommercial generic LCI databases in

Simapro 5 software (IDEMAT and Franklin)

Leachate and landfill gas

associated emissions

Life Cycle Inventory of a Modern Municipal

Solid Waste Landfill (ECOBALANCE, 2002)

The Nor th-Amer ican Fr anklin database was pr ivileged. The unit

processes f rom the European database wer e modified so as to better  

r epr esent the ener gy production and tr anspor t processes.

Page 14: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 14/23

2- LCI

I nventory results

Inputs EL Bioreactor  

Mass (kg) Geosysnthetic clay liner  

Geomembr ane

Geonet

Geotextile

HDPE pipes

PVC pipes

Vitr ified steel tank Aluminum dome

Reinf or ced concr ete base

Gr avel

Bentonite

Sand

Or ganic soil

Diesel

TOTALAdded water 

2.57E+5

2.23E+5

3.52E+5

2.89E+4

2.65E+5

4.86E+2

6.32E+7

1.58E+4

6.44E+7

1.34E+7

3.13E+5

1.42E+8

2.03E+5

1.82E+5

3.00E+5

2.57E+4

6.04E+4

3.40E+41.91E+3

3.00E+5

6.03E+7

5.38E+7

1.12E+7

2.68E+5

1.26E+82.73E+8

Energy (MJ) Equipments

Electr icity

Heat

TOTALTr uck tr anspor t (tonne.km)

2.60E+6

2.56E+8

7.81E+8

1.04E+97.26E+6

2.15E+6

1.50E+8

4.55E+8

6.07E+86.43E+6

Page 15: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 15/23

2- LCI

I nventory results ± E lementary flows

Inputs/Outputs (kg) EL Bioreactor  

Raw materials (w/o added water) 2.20E+8 1.75E+8

Emissions to air Total emissions

Total emissions w/o biogenic CO2

Sequester ed CO2

1.59E+8

1.06E+8

- 5.96E+7

1.50E+8

6.15E+7

- 3.31E+7

Emissions to water  2.51E+6 1.41E+6

Solid waste 4.42E+6 2.44E+6

Page 16: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 16/23

3- LCI A

Environmental impact Indicator ScaleGlobal warming (GWP) g CO2 eq. Global

Stratospheric ozone

depletion (ODP)g CFC11 eq. Global

Acidification (AP) g SO2 eq. Regional

Nutrient enrichment (NP) g NO3 eq. RegionalPhotochemical ozone

creation (POCP)g C2H4 eq. Regional

Ecotoxicity

Water , acute (ETWA)

Water , chronic (ETWC)

Soil, ch

ronic (ETS

C)

m3 water  /g

m3 water  /g

m3

soil /g

Local

Human toxicity

 Air  (HTA)

Water (HTW)

Soil (HTS)

m3 air  /g

m3 water /g

m3 soil /g

Local

EDIP (EnvironmentalDesign of Industr ial

Products) method

developed in 1996 by

the Danish EP A;

Reco

gnized aso

neo

f the best LCI A

methods and lar gely

used (Sor ensen,

2002);

Follows SETAC and

ISO 14042

guidelines.

Page 17: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 17/23

0%

20%

40%

60%

80%

100%

     P

      O     D

     P

   A

     P

     N

     P

     P      O      C

     P

   E   T

   A

   E   T

      C

   E   T   S

      C

     H   T

   A

     H   T      H   T

   S

  e   l  a   i  e  c     o  n     r   i   b  u   i     o  n   (   %

4 2

4 1

3 2

3 1

2 2

2 1

1 2

1 1

0%

20%

40%

60%

80%

100%

     P

      O     D     P

   A     P

     N     P

     P      O      C     P

   E   T

   A

   E   T

      C

   E   T   S      C

     H   T   A

     H   T

     H   T   S

  e   l  a   i  e  c     o  n     r   i   b  u   i     o  n   (   %

4 2

4 1

3 2

3 1

2 3

2 2

1 3

1 2

1 1

3- LCI AR elative contributions of the life cycle stages

EL

Bioreactor 

Volatilization of chlor inated

or ganic compounds (CCl4)

in aer ation pond

Release of tr eated

leachate (NH3, NO3) inr eceiving body of water 

Page 18: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 18/23

3- LCI AC ompared emissions with associated impacts

Emissions (kg) EL Bior.

Landfill gas

Tr eated (Collected)

EmittedTotal

w/o biogenic CO2

Tr eatedEmitted

TotalEnergy Production

Leachate

3.40E+7

2.46E+75.86E+7

2.97E+55.98E+66.27E+69.51E+72.53E+4

8.30E+7

7.64E+69.07E+7

4.53E+51.85E+62.31E+65.53E+77.65E-2

Landfill gas emissions Emitted (Gener ated): CH4 CO2 H2S BTEX Chlor inated compounds Tr eated: CO2 CO NO2 PM SO2 HCl

Ener gy Production emissions:  Air : CO2 CCl4 SOX NOX CO For maldehyde Cd Pb Hg Water : Cd Cyanide

Leachate emissions: NH3 NO3

0%

20%

40%

60%

80%

100%

120%

140%

   G   W     P

   E   L

   B   i     o     r .

   O

 

     P

   E   L

   B   i     o     r .

   A     P

   E   L

   B   i     o     r .

   N     P

   E   L

   B   i     o     r .

     P   O      C

     P

   E   L

   B   i     o     r .

   E   T   W   A

   E   L

   B   i     o     r .

   E   T   W      C 

   E   L

   B   i     o     r .

   E   T   S      C 

   E   L

   B   i     o     r .

   H   T   A

   E   L

   B   i     o     r .

   H   T   W

   E   L

   B   i     o     r .

   H   T   S

   E   L

   B   i     o     r .

Page 19: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 19/23

4- Conclusions

EL uses 26% more raw materials than the Bior eactor (not consider ing added water ).

EL gener ates 82% more solid wastes than the Bior eactor .

EL gener ates, on aver age, 91% more potential environmental

impacts than the Bior eactor .

Impacts ar e associated with supplementary energy production

(56% f or EL and 58% f or Bior eactor ) and with landfill gas

treatment and emissions (40% f or EL and 39% f or Bior eactor ).

Energetic valorization of landfill gas (r educes ener gy added to 

the system) and faster stabilization of waste (r educes emitted

landfill gas) ar e r easons of the Bior eactor ¶s better environmentalper f or mance.

HOWEVER

Sensitivity analysis on post-closure monitoring period length

shows that it is an impor tant par ameter  in the study and can gr eatly

affect the study¶s conclusions.

Page 20: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 20/23

Quantify:

Ener gy needs of excluded equipment since landfill gas and leachate

volumes ar e gr eater  f or  the Bior eactor .

Include in study:

Leachate tr eatment sludge management (EL);  Added water  (Bior eactor ).

Evaluate:

Influence of other par ameter s (bottom layer , final cover and leachate

and landfill gas collection system efficiencies).

Expand: System boundar ies to include other MSW management activities

(sour ce r eduction, r ecycling, composting and inciner ation).

4- ConclusionsR ecommendations

Page 21: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 21/23

Environment Canada Intersan Inc.

 Acknowledgements

Page 22: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 22/23

QUESTIONS ?

Page 23: Menard-presentation

8/7/2019 Menard-presentation

http://slidepdf.com/reader/full/menard-presentation 23/23

Functionally equivalent systems