MEM1833 Topic 3 State Space Realizations HANDOUT

Embed Size (px)

Citation preview

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    1/27

    Chapter 3hapter 3hapter 3hapter 3StateState--Space RealizationsSpace Realizations

    Assoc. Prof. Dr. Mohamad Noh Ahmad.

    Faculty of Electrical Engineering

    Universiti Teknologi Malaysia

    u a

    [email protected] / [email protected] 012-7379299

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    2/27

    .

    :

    )()()( ttt BuAxx +=& )()()( tutt BxAx +=&

    uy =)()( tt Pxx =

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    3/27

    &v - :

    )()()(

    ttt DuCxy += . .

    xPxPxx-1

    ==&

    PBuPAxxPx +== & PBuxPAP +=

    DuxCPDuCxy +=+= 1

    DDCPCPBBPAPA ==== ,,, --

    (**))()()(;)()()( uDxCyuBxAx tttttt +=+=&

    Let

    (*) and (**) are said to be equivalent to each other

    and the procedure from (*) to (**) is called an

    equivalent transformation.

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    4/27

    The feedforward matrix D between the input and output has nothing

    to do with the state space and is not affected by the equivalenttransformation.

    The characteristic equation for (*) is:

    For (**), we have

    AI = )( = APPPP =

    APPPIP11

    )(

    = PAIP )(1

    =

    AIPP = 1 AI =

    and hence the same set of eigenvalues.

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    5/27

    Recall: othereachsimilar toareand- APAPA =

    They have same eigenvalues, same stability perf.

    Similar transfer functions!!

    1 DBAICG += ss DBAICG += 1ssand

    )()( ss GG =To verify,

    DBAICG += 1)()( ss

    DPBPAPPPCP += 111-1

    )(s1111

    )( = XYZXYZDPBPAIPCP += -1-1-1 ))-(( s

    DPBPAIPCP += 111 )(s

    )()1

    s(s GDBAIC =+=

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    6/27

    .

    x. . :

    From the circuit (via observation):

    11 xx =

    =

    2

    1

    2

    1

    11

    01

    x

    x

    x

    x

    1)( 212 = xxx)()( tt xPx =Or

    =

    1

    1

    1 01 xx = 101 x

    22

    11 xx

    2

    11 x

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    7/27

    -

    Two state equations are said to be zero-state equivalent

    if they have the same transfer matrix or

    BAICDBAICD 11 )()( +=+ ss

    Note that:

    L+++= 23211

    )( AAIAI ssss,

    LL ++++=++++ 3221321 ssssss BACBACBCDBCACABCBD 2

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    8/27

    -

    Theorem 3.1

    are zero-state equivalent or have the same transfermatrix iff and

    , ,, ,,,

    DD =

    ,...2,1,0; == mmm BACBCA

    - In order for two state equations to be equivalent, they

    .- This is, however, not the case for zero-state equivalence.

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    9/27

    .

    Consider:

    )(5.0)( = tuty )()( = txtx&

    0=== B

    5.0;5.0;0;1

    0.5u(t))(5.0)(

    ====

    +=

    DCBA

    txty

    5.0== DD

    Note that:

    0== BACBCA mm

    The two s stems are zero-state e uivalent.~ Theorem 3.1

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    10/27

    0123

    Consider: )()()(

    1

    0)(

    134

    012)( tuttutt bAxxx +=

    +

    =&

    It can be shown that:

    2

    YES!,,

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    11/27

    en:

    1700

    Thus the representation of A w.r.t. the basis is:}{2bAAb,B,

    =

    510

    1501A

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    12/27

    12)3(

    1700 ny spec a

    )1(34

    0)1(2)(

    23 ==

    ==

    I

    =

    510

    1501A

    000 43214 Companion-form matrices:

    (-1)

    0100

    0010;

    100

    010

    1

    2

    3

    (-1) -

    Transpose

    100

    010;

    1000

    0100

    3

    2

    1

    All have similar

    characteristic

    00041234

    43

    2

    2

    3

    1

    4

    )( ++++=

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    13/27

    Q. What is "realization"?

    For a iven , find a corres ondin state-)()( ss NG =space equation

    &

    s

    )()()( ttt DuCxy +=

    Implicitly implies LTI systems

    Shall start with multi-variable systems and willsometimes specialize to single-variable systems

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    14/27

    .

    Q. If (s) is realizable, how many possible

    realizations? Infinite ~ in view of equivalent transformations and the

    possibility of adding un-controllable or un-observable

    componentsQ. Which one is the "good" realization?

    - A good realization is the one with the minimal order

    ~ Irreducible realization Will be discussed in Topic 6

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    15/27

    .

    Q. Under what condition is (s) realizable by an

    LTI system?-Recall that the transfer function of the dynamic equation is

    DBAICDBAICG +=+= 11 sss

    Theorem 3.2(s) is realizable by a dynamic equation iff it is a

    proper rational function (order of numerator order ofdenominator)

    In fact, the part contributed by C(sI - A)-1B iss r c y proper

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    16/27

    .

    To determine the realization of , decompose it

    as:

    )( sG

    )()()( ss spGGG +=

    [ ]BAICAIBAICG ).()(:)(1

    ==

    sAdjssssp

    rr

    rr ssssd ++++=

    1

    1

    1)( LLet

    ssp.e. eas common enom na or o a en r es o .

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    17/27

    .

    Then the realization of is given by

    IIIII L pprprpp 121

    )(sG

    u0

    0

    x00I0

    000I

    x

    +

    = L

    L

    & p

    p

    ~Block companion form

    00I00 L p

    r r [ ] uGxNNNNy )(121 += rrL

    (q rp)where Ip is thep p unit matrix and every 0 is ap p zero matrix.

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    18/27

    .

    Proof:

    Define, Z

    Z

    12

    1

    Z

    r

    M i .

    Then,Simplifying, BZAI = )(s (*)BAZZ += s

    0

    I

    Z

    Z

    000I

    IIII

    Z

    Z

    L

    Lp

    p

    prprpp

    s

    s

    2

    1121

    2

    1

    +

    =

    0I00

    MM

    L

    MMMM

    L

    M

    ps 33

    rpr

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    19/27

    .

    Using the shifting property of the companion form of A, we obtain

    12312 ,,, === rrsss ZZZZZZ Lwhich implies

    1,,

    1,

    1ZZZZZZ === L

    Substituting these into the 1st block of equation (*) yields

    s IZZZZ += L

    sss

    pr

    r

    ss

    IZ +

    +++=

    112

    1

    L

    or

    r sds IZ ==

    ++++ 1

    21

    )( L

    sss

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    20/27

    .

    Thus we have,

    rr

    ss IZIZIZ 121

    ===

    L

    Then,

    prppsdsdsd )()()(

    )()(1

    +

    GBAIC s

    [ ] )()(

    2

    2

    1

    1 ++++=

    GNNN rrr

    sssd L

    )()( += GG ssp

    sG=

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    21/27

    .3104 s

    ,

    )2(

    1

    )2)(12(

    1212

    )(

    2

    +

    +

    ++

    ++=

    s

    s

    ss

    sssGConsider a proper rational matrix

    Determine a realization of this transfer matrix.Solution:

    312

    3104sDecompose into a strictly proper rational matrix)(sG

    +

    +

    ++

    +

    =

    2)2(

    1

    )2)(12(

    100

    s

    s

    ss

    ss)()( sspGG +=

    +

    +

    ++

    =

    2)2(

    1

    )2)(12(

    1)(

    s

    s

    ss

    sssG

    265.4)2)(5.0()(232 +++=++= ssssssd

    The monic least common denominator of is)(sspG

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    22/27

    .

    +++

    +++

    +++=

    )5.0)(1()2(5.0

    )5.0)(2(3)2(6

    265.4

    12

    23

    sss

    sss

    sss

    spGThus

    +++

    ++++=

    )5.05.1()2(5.0

    .

    )(

    12 sss

    ssss

    sd

    22

    +++=

    5.05.115.0

    .

    )( 2 ssssd

    3245.72436

    +

    +

    =5.015.15.010)(

    sssd

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    23/27

    .

    Given,

    ,11

    212)(

    +

    ++

    =s

    ss

    s

    sG )(

    sG)2()2)(12(

    2 +++ sss

    Realizationthe realization is,

    10

    01

    20605.40

    020605.4

    +

    =

    2

    1

    00

    00

    000100

    000010 uxx&

    DC

    =S

    023245.72436 u

    00001000 { }DC,B,A,=

    +

    =2005.015.15.010 u

    xy

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    24/27

    .

    Consider again the proper rational matrix in Ex. 3.3.

    3104s

    +

    +

    ++

    ++=

    2)2(

    1

    )2)(12(

    1212

    )(

    s

    s

    ss

    sssG

    The 1st column is

    +

    =1

    12)( 1

    sscG

    ++

    =1

    )2)(12( ss

    ++

    =

    1

    2522 ss

    ss

    ++ )2)(12( ss ++ )2)(12( ss ++ 2522 ss

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    25/27

    . . .

    yields the following realization for the 1st

    column of :

    s ng : n1= 4 2 20;0 0 1 ;d1= 2 5 2 ; a,b,c,d =tf2ss n1,d1

    )(sG

    11111110

    1

    01

    15.2uu

    +

    =+= xbxAx&

    111111105.00 uuc +

    =+= xdxCy

    Similarly, the function tf2ss can generate the following realization for the2nd column of :)( sG

    2222222

    063

    001uu

    +

    =+= xbxAx&

    2222222

    011

    uuc

    +

    =+= xdxCy

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    26/27

    . . .

    ese two rea zat ons can e com ne as

    0bx0Ax11111

    +

    = u

    &

    &

    [ ] [ ]uddxCCyyy

    xx

    212121

    22222

    +=+= cc

    u

    or

    00

    01

    0001

    0015.2

    10

    01

    20605.40

    020605.4

    uxx

    +

    =

    00

    10

    0100

    4400&

    +

    =2

    1

    00

    00

    000010

    000001

    u

    uxx&

    (4x4) (4x2) (6x6) (4x2)uxy

    +

    =

    00

    02

    115.00

    63126

    00001000

    1023245.72436 uC D 2005.015.15.010 ux x

    (2x6) (2x2)

  • 8/6/2019 MEM1833 Topic 3 State Space Realizations HANDOUT

    27/27

    .

    Special Case: p = 1 (For simplicity, let r= 4 and q =2.)

    Consider a 21 proper rational matrix:

    +++

    +++

    +++++

    =

    2423

    2

    22

    3

    21

    1413

    2

    12

    3

    11

    43

    2

    2

    3

    1

    4

    2

    1 1)(

    sss

    sss

    ssssd

    dsG

    Then, the realization is 14321 Note: The

    u

    +

    =

    0

    0

    0010

    0001xx&

    controllable-canonical-form

    ud

    +

    = 114131211 xy

    rea za on can eread out from the

    224232221

    .