meles Nonisothermal Reaction Engineering

Embed Size (px)

Citation preview

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    1/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%

    'eie() *hermochemistry for

    +onisothermal 'eactor Design- .-/ 0$1

    Mole "alance)

    'ate la()

    Stoichiometry)

    -rrhenius E2uation

    Need relationships: X T V

    Consider an e3othermic,li2uid#phasereaction operated adia"atically in a

    P' 4adia"atic operation# temperature increases do(n length of P'5)

    -0

    The energy balance provides this

    relationship

    6- B

    - -

    -0

    d. r

    d7 =

    - -r 6C =

    - - 0

    0

    - -0 -

    C

    C C 4% . 5

    =

    =

    =

    =

    -0 --

    -0 0

    C 4% . 5d.

    d7 C

    6

    E'*6 -e

    =

    =- -E % %

    ' * *%

    0

    %d. 4% . 5

    d76 e3p

    =

    E % %

    ' * *%%6 6 e3p

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    2/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#

    'ate of accum

    of energy in

    system

    'ate of

    (or6 done

    "y syst

    energy added

    to syst "y

    massflo( in

    energy leaing syst

    "y massflo( out8eat

    in/ # 9#

    'eie() *erms in Energy Balance

    :S) shaft (or6P ) pressure

    lo( (or6

    !nternal energy is ma;or contri"utor to energy term

    Steady state)

    -ccum of energy

    in system

    shaft

    (or6

    Energy &

    (or6 added

    "y flo( in

    Energy & (or6

    remoed "y flo( out

    8eat

    in

    /0/ # 9 #

    n n

    i i i i sin outi % i %

    : P7 P7 :

    = =

    = + + & &

    = =

    = + n nssyyss

    i iin outi % i %

    i i

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    3/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#>

    'eie() 'elate * to Conersion

    !f .-0/0, then)

    Steady state)

    Total energy

    balance (TEB)

    0 at steady state

    Multiplyout)

    -ccum of energy

    in system

    shaft

    (or6

    Energy &

    (or6 added

    "y flo( in

    Energy & (or6

    remoed "y

    flo( out

    8eat

    in/ # 9 #

    ( )= + +=i i0 i -0 - i -0 i i - . . i0

    i-0

    (here

    =

    = =

    = + n n

    s i0 i0 i

    i

    i

    % i %

    0 = : 8 8& &

    ( )= =

    = + + n nssyyss

    s i0 i -0 ii % i %

    -0 i i -

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    4/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#?

    'eie() = in a CS*'

    CS*' (ith a heat e3changer, perfectly mi3ed inside and outside of reactor

    *, .

    -0

    *, .

    *a*a

    *he heat flo(

    tothe reactor is in terms of)

    @Aerall heat#transfer coefficient,

    U

    @8eat#e3change area,A

    @Difference "et(een the am"ient temperature in the heat ;ac6et, Ta, and

    r3n temperature, T

    a= 4U-* *5= &

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    5/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#

    !ntegrate the heat flu3 e2uation along the length of the

    reactor to o"tain the total heat added to the reactor )

    8eat transfer to a perfectly mi3ed P' in a ;ac6et

    a) heat#e3change area per unit olume of reactor

    or a tu"ular reactor of diameter D, a / ? D

    or a ;ac6eted PB' 4perfectly mi3ed in ;ac6et5)

    8eat transfer to a PB'

    'eie() *u"ular 'eactors 4P'PB'5)

    - 7a a= U4* *5d- Ua4* *5d7= = &

    ad=

    Ua4* # *5d7

    =&

    a

    " "

    % d= d= Ua4* *5

    d7 d: = =

    & &

    -a 7=

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    6/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#

    L%) +onisothermal 'eactor Design

    Steadystate total energy balance (TEB):

    -t a particular temperature)

    or a SS nonisotherm

    flo( reactor)

    Goal) Use *EB to design nonisothermal steady#state reactors

    +eeds to "e simplifiedF "efore (e can apply it to reactor design

    Constant 4aerage5

    heat capacities )

    Su"stitute

    48iG 8i05 / # 48iG 8i05

    ( ) ( )= =

    = = + i0n nssyys

    is

    s -0 i '. -0 -i % i %

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    7/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#1

    'elating 8'.4*5 to 8H'.4*'5 andAerall Change in 8eat Capacity

    Anly considering constant 4aerage5 heat capacities)

    T reaction temp Ti! initial ("eed) temp T# re"erence temp

    ( ) + = o *'. ' *' P'. 8 4* C d*58 *

    = =nP i pi

    i %

    oerall heat capaci Ct Cy)

    ( )=

    = + + o& & *n

    s -0 i p,i -0 -

    i %

    '*

    P

    *i0

    . *'' C8 40 = : C d* * d* .5

    ( ) ( )=

    =o on

    '. ' i i 'i %

    oerall heat of reaction at reference t 8 * 8emp) *

    ( )= =

    = +

    o n

    *i pi

    n

    i i ' *'ii % %

    '. 8 4* 5 C d8 **

    [ ] ( )=

    = + o& &'

    n

    s -0 i p .,i i0 -0 -i %

    ' P '

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    8/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#I

    Soling *EB for Conersion

    'earrange to isolate terms (ith .-on one side of e2)

    Sole for .-)

    Plug in = for the specific type of reactor, and

    sole this e2 simultaneously (ith design e2uation

    -l(ays start (ith this *EB)

    [ ] ( )=

    = + o& &

    n

    s -0 i p,i i0 '. ' P ' -0 -i %

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    9/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#J

    Soling *EB for .-for an -dia"atic '3n

    'earrange)

    :hich term in this e2uation is ero "ecause (ere soling for an adia"atic

    reactiona5 dEsysdt

    "5

    c5 d5

    -0e5 +one of the a"oe

    :hen the reaction is adia"atic 4=/05)

    [ ] ( )n

    s -0 i p,i i0 '. ' P ' -0 -

    i %

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    10/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%0

    Soling *EB for .-for an -dia"atic '3n

    :hen shaft (or6 can "e neglected 4/05 and the reaction is adia"atic 4=/05)

    'earrange)

    Sole for .-)

    * / reaction temp *i0/ initial 4feed5 temperature *'/ reference temp

    Sole this e2 simultaneously

    (ith design e2uation

    Design e2s do not change,

    e3cept 6 (ill "e a function of *

    [ ] ( )n

    s -0 i p,i i0 '. ' P ' -0 -

    i %

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    11/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%%

    +onisothermal -dia"atic Aperation

    Constant or mean heat capacities

    or a system (ith no shaft (or6 4 5 & adia"atic operation 4 5)

    Usually,

    .energy "alance

    *emperature

    CS*', P', PB', Batch

    Adiabatic exothermic reactions

    n

    s A i pi i A RX R p Ri

    Q W F C ( T T ) F X H ( T ) C ( T T )=

    + = 0 0 0%0o& %&

    0=sW

    0=Q

    n

    i pi i0i %

    '. ' p '

    C 4* * 5

    .

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    12/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%

    +onisothermal CS*'Design e2uation 4rom mass "alance5 )

    Energy "alance) Coupled

    :ith the e3ception of processes inoling highly iscous materials,

    the (or6 done "y the stirrer can "e neglected 4i$e$ 5:ith heat e3changer)

    =-0

    -

    .7

    r

    = + =

    o& & %n

    -0 i pi i0 -0 '. ' p 'i %

    s

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    13/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%>

    -pplication to CS*'

    a5 Sole *EB for * at the e3it 4*e3it/ *insidereactor5

    "5 Calculate 6 / -e#E'*(here * (as calculated in step a

    c5 Plug the 6 calculated in step " into the design e2uation to calculate 7CS*'

    Case %) Nien -0, C-0, -, E, Cpi, 8O!, and .-, calculate * & 7

    a5 Sole *EB for * as a function of .-"5 Sole CS*' design e2uation for .-as a function of * 4plug in 6 / -e

    #E'*5

    c5 Plot .-,EBs * & .-,MB s * on the same graph$ *he intersection of these

    lines is the conditions 4* and .-5 that satisfies the energy & mass "alance

    Case ) Nien -0, C-0, -, E, Cpi, 8O!, and 7, calculate * & .-

    .-,EB / conersion determined from the *EB e2uation

    .-,MB/ conersion determined using the design e2uation

    .-

    *

    .-,EB

    .-,MB

    .-,e3it

    *e3it

    !ntersection is * and .-that

    satisfies "oth e2uations

    L% %?

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    14/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%?

    -pplication to a Steady#State P'

    P'P'-0 -

    distance

    *.-

    +egligi"le shaft (or6 4S/05 and adia"atic 4=/05

    a5 Use *EB to construct a ta"le of * as a function of .-"5 Use 6 / -e#E'*to o"tain 6 as a function of .-c5 Use stoichiometry to o"tain Gr-as a function of .-d5 Calculate)

    ( )

    .--

    -0

    - -.-0

    d.7

    r . ,*=

    L% %- fi t d ti -4l5 B4l5 i t " i d t di " ti ll i CS*'

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    15/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%- first order reaction -4l5 B4l5 is to "e carried out adia"aticallyin a CS*'$

    Nien -, E, *0, 0, C-0, and -0, find the reactor olume that produces aconersion .-$ *he heat capacities of - & B are appro3imately e2ual, & S/0$a5 Sole *EB for *)

    Multiply out

    actor out *

    Plug in alues4QCp,

    Q8O'.4*'5, Cp,i5 gien

    in pro"lem statement

    4loo6 them up if

    necessary5 & sole

    *emp (hen

    specified

    .-is

    reached

    0 0

    !solate *

    [ ] ( )n

    -0 i p,i i0 '. ' P ' -0 -i %

    C * * 8 4* 5 C * * .=

    = + o

    [ ] ( )n

    s -0 i p,i i0 '. ' P ' -0 -i %0 = : C * * 8 4* 5 C * * .

    =

    = +

    o& &

    [ ] ( )'. ' P 'n

    i p,i i0i

    -%

    8C * * 4* 5 C * * .=

    + = o

    n

    i p,i i0i

    '. ' P%

    i p,i P- '- -8 4* 5 C C *. .C C * .* *=

    = + o

    n

    i p,i i

    n

    i p,i P - 0'. ' - P ' -i % i %

    C C . 8 4* 5. C * . C* **==

    + = + + o

    n

    i p,i P - '. ' - P ' - p,- -0i %

    C C . 8 4* 5. C * . C **

    =

    + = + +

    o

    - -

    n

    '. ' P ' i p,i i0i %

    n

    i p,i P

    %

    -

    i

    .8 4* 5 C * C *

    C

    *

    C

    .

    .

    =

    =

    + + =

    +

    o

    L% %- fi t d ti -4l5 B4l5 i t " i d t di " ti ll i CS*'

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    16/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%- first order reaction -4l5 B4l5 is to "e carried out adia"aticallyin a CS*'$

    Nien -, E, *0, 0, C-0, and -0, find the reactor olume that produces aconersion .-$ *he heat capacities of - & B are appro3imately e2ual, & S/0$a5 Sole *EB for * of reaction (hen the specified .-is reached)

    "5 Calculate 6 / -e#E'*

    (here * (as calculated in step 4a5 Loo6 up E in a thermo "oo6

    c5 Plug the 6 calculated for the reactions temperature (hen the specified .-

    is reached 4in step "5 into the design e2uation to calculate 7CS*'

    n'. ' - P ' - i p,i i0

    i %n

    i p,i P -i %

    8 4* 5. C * . C *

    *

    C C .

    =

    =

    + + =

    +

    o

    ( ) ( )-0 - -0 - -0 - -0 0 -

    - - -0 - -0 - . . . C .7 7 7 7

    r 6C 6C % . 6C % .

    = = = =

    ( )0 -

    -

    .7

    6 % .

    =

    L% %1

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    17/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%1

    +o(, the first order reaction -4l5 B4l5 is carried out adia"atically(ith and

    inlet temp of >00 K, CP-/0 calmolRK, and the heat of reaction / #0,000

    calmol$ -ssume S/0$ *he energy "alance is)

    rom thermodynamics.EB

    *

    rom energy "alance

    0 0

    ( )

    ( )

    n

    i pi 0i %

    EB '.

    C * *

    .8 *

    =

    =

    %-

    n

    i pi pi %

    C % C

    =

    = ( )

    ( )

    -P 0

    EB '.

    C * *.

    8 *

    =

    ( )EB

    0 * >00.

    0000

    =

    ( ) ( ) + = o'. '. ' P '

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    18/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%I*he irreersi"le, elementary li2uid#phase reaction - B is carried out adia"atically in

    a flo( reactor (ith S/0 and (ithout a pressure drop$ *he feed contains e2ual molaramounts of - and an inert li2uid 4!5$ *he feed enters the reactor at J? K (ith 0/ dm>s and C-0/ % moldm

    >$ :hat (ould "e the temperature inside of a steady#state

    CS*' that achieed .-/ 0$I E3tra info)

    E / %0,000 calmol Cp-/ % calmol@K CpB/ >0 calmol@K Cp!/ % calmol@K

    Q8-O4*'5 / #0 6calmol Q 8BO4*'5 / #0 6calmol Q8!O4*'5 / #% 6calmol

    6 / 0$0 dm>mol@s at >0 KStart (ith SS EB & sole for *)

    Multiply out "rac6ets & "ring

    terms containing * to % side

    [ ]n

    s -0 i p,i i0 '. -0 -i %

    0 = : C * * 8 4*5 .=

    = & &

    [ ]n

    -0 i p,i i0 -0 -i %

    '.0 0 0 C * * 8 4*5 .

    =

    =

    [ ] ( ) ( ) ( )n

    -0 i p,i i0 ' -P' 0'i

    . -%

    8 C * * * *C* .=

    = +o

    [ ] ( )n

    i p,i i0 '. ' P ' -i %

    C * * 8 4* 5 C * * .=

    = + o

    n ni p,i P - '. ' - P ' - i p,i i0

    i % i %

    C * C *. 8 4* 5. C * . C *= =

    + = + + o

    n

    '. ' - P ' - i p,i i0i %

    n

    i p,i P -i %

    8 4* 5. C * . C *

    *

    C C .

    =

    =

    + + =

    +

    o

    L% %J*h i i"l l t li id h ti - B i i d t di " ti ll i

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    19/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%J*he irreersi"le, elementary li2uid#phase reaction - B is carried out adia"atically in

    a flo( reactor (ith S/0 and (ithout a pressure drop$ *he feed contains e2ual molaramounts of - and an inert li2uid 4!5$ *he feed enters the reactor at J? K (ith 0/ dm>s and C-0/ % moldm

    >$ :hat (ould "e the temperature inside of a steady#state

    CS*' that achieed .-/ 0$IE3tra info)

    E / %0,000 calmol Cp-/ % calmol@K CpB/ >0 calmol@K Cp!/ % calmol@K

    Q8-O4*'5 / #0 6calmol Q 8BO4*'5 / #0 6calmol Q8!O4*'5 / #% 6calmol

    6 / 0$0 dm>mol@s at >0 K

    Start (ith SS EB & sole for *)

    n

    i p,ii %

    n

    i p,i

    - '

    i %

    - i0

    -

    ' P'

    P

    . . * . *C

    C

    *

    .

    C

    C

    8 4* 5=

    =

    + + =

    +

    o

    B -

    "CCp Cp pa

    = C 0p =% cal cal

    >0 % mol K mol K

    Cp = g g

    ( ) ( )n

    i p,i

    i

    B !

    %

    -cal cal

    % 0 % / % % 9 % %

    mo

    calC >0

    ml K mo l Kl K o=

    = = = =

    g g g( ) ( ) ( ) ( ) ( )

    d c "8 * 8 * 8 * 8 *D ' C '8 *'. ' B ' - 'a a a

    = + o o o oo

    ( )% cal cal

    0,000 0,000 mol m

    8 ' l*

    o. ' =

    o ( )cal

    8 * 000'. ' mol =o

    L% 0*h i i"l l t li id h ti - B i i d t di " ti ll i

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    20/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#0*he irreersi"le, elementary li2uid#phase reaction - B is carried out adia"atically in

    a flo( reactor (ith S/0 and (ithout a pressure drop$ *he feed contains e2ual molaramounts of - and an inert li2uid 4!5$ *he feed enters the reactor at J? K (ith 0/ dm>s and C-0/ % moldm

    >$ :hat (ould "e the temperature inside of a steady#state

    CS*' that achieed .-/ 0$I E3tra info)

    E / %0,000 calmol Cp-/ % calmol@K CpB/ >0 calmol@K Cp!/ % calmol@K

    Q8-O4*'5 / #0 6calmol Q 8BO4*'5 / #0 6calmol Q8!O4*'5 / #% 6calmol

    6 / 0$0 dm>mol@s at >0 K

    Start (ith SS EB & sole for *)

    n

    i p,ii %

    n

    i p,i

    - '

    i %

    - i0

    -

    ' P'

    P

    . . * . *C

    C

    *

    .

    C

    C

    8 4* 5=

    =

    + + =

    +

    o

    C 0p =n

    i p,ii %

    calC >0

    mol K==

    g ( )

    cal8 * 000'. ' mol

    =o

    -cal

    >0

    mol

    cal000

    Kca

    moll

    >0mol K

    . J?

    *

    0

    0

    K + + =

    +g

    g

    -cal cal

    000 . II0

    mol mol*cal

    >0mol K

    + =

    g

    ( ). 0$I-

    * %$1K 0$I J?K=

    = +-. 0$I

    * ?1$>K= =

    L%#%*he irreersi"le elementary li2uid phase reaction - B is carried out adia"atically in

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    21/24Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L%#%*he irreersi"le, elementary li2uid#phase reaction - B is carried out adia"atically in

    a flo( reactor (ith S/0 and (ithout a pressure drop$ *he feed contains e2ual molaramounts of - and an inert li2uid 4!5$ *he feed enters the reactor at J? K (ith 0/ dm>s and C-0/ % moldm

    >$ :hat (ould "e olume of the steady#state CS*' that

    achiees .-/ 0$I E3tra info)

    E / %0,000 calmol Cp-/ % calmol@K CpB/ >0 calmol@K Cp!/ % calmol@K

    Q8-O4*'5 / #0 6calmol Q 8BO4*'5 / #0 6calmol Q8!O4*'5 / #% 6calmol

    6 / 0$0 dm>mol@s at >0 K

    Sole the CS*' design e2 for 7 at .-/ 0$I & * / ?1$>K)

    >dm %0,000cal mol % % 0$0 e3p

    mol s %$JI1cal mol K >0K+eed at ?1$>K)

    ?1$>6 6

    =

    ( )>dm6 0$0 e3p $0%?mol s

    =

    >dm6 0$J

    mol s =

    -0 -

    CS*'

    -

    .7

    #r=

    -

    -r 6C = ( )- -0 -Stoichiometry ) C C % .= ( )

    -0 0 -C

    -0 -

    S*'Com"ine )

    C %C .7

    6 .=

    ( )

    ( )

    >

    CS*' >&

    >

    dmB 0$I

    s7dm mol

    0$&DJD % % 0$I

    mol s dm

    =

    >

    CS*'7 >10$Jdm =

    L%#*he irreersi"le elementary li2uid phase reaction - B is carried out adia"atically in

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    22/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L% *he irreersi"le, elementary li2uid#phase reaction - B is carried out adia"atically in

    a flo( reactor (ith S/0 and (ithout a pressure drop$ *he feed contains e2ual molaramounts of - and an inert li2uid 4!5$ *he feed enters the reactor at J? K (ith 0/ dm>s and C-0/ % moldm

    >$ Use the $%point r&leto numerically calculate the P'

    olume re2uired to achiee .-/0$I E3tra info)

    E / %0,000 calmol Cp-/ % calmol@K CpB/ >0 calmol@K Cp!/ % calmol@K

    Q8-O4*'5 / #0 6calmol Q 8BO4*'5 / #0 6calmol Q8!O4*'5 / #% 6calmol

    6 / 0$0 dm>mol@s at >0 K@ Use the energy "alance to construct ta"le of * as a function of .-@ or each .- , calculate 6, #r-and -0#r-

    @ Use numeric ealuation to calculate 7P'X' T() (dm*+mol,s) %r'(mol+dm*,s) -'!+%r'(dm*)! J?

    !./ ?1$> 0$J

    Calculated in CS*' portion of this pro"lem

    0$00%J 0$00%J

    0$0%01I?

    >dm % %6 0$0& e3p B0>&$1%&DKmol s >B0K &J?

    =

    >dm6 0$00%&J mol s =

    ( )

    - -0 -r 6 C % . = ( )

    . 0 . 0- -

    &&

    - -D >

    >dm mol molr 0$00%&J % % 0 r 0$00%&J

    mol s dm dm s= =

    = = g

    ( ). 0$I . 0$I- -

    - - >

    >dm mol molr 0$J % % 0$I r 0$0%01I?

    mol s dm dm s= =

    = =

    g

    L%#>*he irreersi"le elementary li2uid phase reaction - B is carried out adia"atically in

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    23/24

    Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, Uniersity of !llinois, Ur"ana#Champaign$

    L% >*he irreersi"le, elementary li2uid#phase reaction - B is carried out adia"atically in

    a flo( reactor (ith S/0 and (ithout a pressure drop$ *he feed contains e2ual molaramounts of - and an inert li2uid 4!5$ *he feed enters the reactor at J? K (ith 0/ dm>s and C-0/ % moldm

    >$ Use the $%point r&leto numerically calculate the P'

    olume re2uired to achiee .-/0$I E3tra info)

    E / %0,000 calmol Cp-/ % calmol@K CpB/ >0 calmol@K Cp!/ % calmol@K

    Q8-O4*'5 / #0 6calmol Q 8BO4*'5 / #0 6calmol Q8!O4*'5 / #% 6calmol

    6 / 0$0 dm>mol@s at >0 K@ Use the energy "alance to construct ta"le of * as a function of .-@ or each .- , calculate 6, #r-and -0#r-

    @ Use numeric ealuation to calculate 7P'X' T() (dm*+mol,s) %r'(mol+dm*,s) -'!+%r'(dm*)! J? 0$00%J 0$00%J

    !./ ?1$> 0$J 0$0%01I?

    >I1

    ?>$

    -0 -0 0

    C=

    -

    >-0

    - . 0>

    mol

    s >I1 dmmolr

    0$00%Jdm s

    =

    = =

    g

    >

    -0 >

    mol dm mol %

    dm s s

    = =

    -

    >-0

    - . 0$I>

    mol

    s ?>$ dmmolr

    0$0%01I?dm s

    =

    = =

    g

    L%#?*he irreersi"le elementary li2uid phase reaction - B is carried out adia"atically in

  • 7/26/2019 meles Nonisothermal Reaction Engineering

    24/24

    Slid t f P f M L K ft Ch i l & Bi l l E D t U i it f !lli i U " Ch i

    L% ?*he irreersi"le, elementary li2uid#phase reaction - B is carried out adia"atically in

    a flo( reactor (ith S/0 and (ithout a pressure drop$ *he feed contains e2ual molaramounts of - and an inert li2uid 4!5$ *he feed enters the reactor at J? K (ith 0/ dm>s and C-0/ % moldm

    >$ Use the $%point r&leto numerically calculate the P'

    olume re2uired to achiee .-/0$I E3tra info)

    E / %0,000 calmol Cp-/ % calmol@K CpB/ >0 calmol@K Cp!/ % calmol@K

    Q8-O4*'5 / #0 6calmol Q 8BO4*'5 / #0 6calmol Q8!O4*'5 / #% 6calmol

    6 / 0$0 dm>mol@s at >0 K@ Use the energy "alance to construct ta"le of * as a function of .-@ or each .- , calculate 6, #r-and -0#r-

    @ Use numeric ealuation to calculate 7P'X' T() (dm*+mol,s) %r'(mol+dm*,s) -'!+%r'(dm*)! J? 0$00%J 0$00%J >I1

    !./ ?1$> 0$J 0$0%01I? ?>$

    ( ) ( ) ( )

    %0 I 0 0 I

    0 % % 00

    = + = = =

    Xh

    2-point rule: ! "! X X #here h X X h $ h $X

    > >0 I >I1 ?>

    = + FR$

    "' $ "'

    >%1> =FR "'