10
1 MeerKAT’s first paper explained: basics of the life of stars, supernovae, and magnetars; radio and X-ray observations The first scientific article based on MeerKAT data, entitled Revival of the magnetar PSR J1622−4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR, has just been published in The Astrophysical Journal (5 April 2018). What’s a magnetar? What’s Parkes, or Chandra? What does it all mean? Here’s a brief look into some of these matters, and more, for the general interested reader. 1. The life of stars like the Sun Typical stars like the Sun shine by converting their hydrogen fuel into heavier elements such as helium, through a chain of nuclear reactions. When lighter elements are fused into heavier elements in this way, a bit of energy is released that we see as light. The Sun is mid-way through its 10 billion-year life span (the Earth is slightly younger, about 4.5 billion years old). When it runs out of fuel, its core will contract into a ball the size of the Earth, with approximately half of the current Sun’s mass and made up mostly of helium, carbon and oxygen. It will no longer generate energy through nuclear reactions, but it will be very hot. Gradually it will lose its stored energy, cooling over billions of years. These end points of stellar evolution are called white dwarf stars. 2. The dramatic life of very massive stars – the most violent cosmic explosions Stars that start their lives with between 8 and 30 times as much mass as the Sun follow a different path and have a different ending. These are very rare: the more massive the star, the fewer like them exist in our Milky Way galaxy. Massive stars start, like the Sun, by converting hydrogen into helium. This happens in their dense and hot cores (the Sun’s surface that we see has a temperature of 5000 degrees, but the core is in excess of 10 million degrees). The high temperature forces protons (the positively charged nuclei of hydrogen atoms that would otherwise repel) to fuse into heavier elements. Due to their increased gravity, the cores of very massive stars are denser and hotter than the Sun’s. This causes them to consume their nuclear fuel more rapidly, in only a few million years. When they run out of hydrogen, their cores first contract due to gravity, which causes them to become even denser and hotter, now fusing helium nuclei into gradually more massive elements. This process continues, ever more rapidly, until the star burns silicon at temperatures of billions of degrees in only a few days. This results in a ball of iron with the mass of the Sun and the size of the Earth surrounded, onion-like, by layers of gradually lighter elements. At this point, very rapidly, something dramatic happens. Iron cannot be fused into heavier elements while releasing energy. However, gravity continues its work, pulling atoms ever closer to the center, ever denser. Suddenly, each proton plus electron in the core transforms into a neutron, and within a fraction of a second the core shrinks to a ball made up mostly of neutrons, 20 kilometres in diameter – the size of a city but

MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

1

MeerKAT’sfirstpaperexplained:basicsofthelifeofstars,supernovae,andmagnetars;radioandX-rayobservationsThefirstscientificarticlebasedonMeerKATdata,entitledRevivalofthemagnetarPSRJ1622−4950:observationswithMeerKAT,Parkes,XMM-Newton,Swift,Chandra,andNuSTAR,hasjustbeenpublishedinTheAstrophysicalJournal(5April2018).What’samagnetar?What’sParkes,orChandra?Whatdoesitallmean?Here’sabrieflookintosomeofthesematters,andmore,forthegeneralinterestedreader.1.ThelifeofstarsliketheSunTypicalstarsliketheSunshinebyconvertingtheirhydrogenfuelintoheavierelementssuchashelium,throughachainofnuclearreactions.Whenlighterelementsarefusedintoheavierelementsinthisway,abitofenergyisreleasedthatweseeaslight.TheSunismid-waythroughits10billion-yearlifespan(theEarthisslightlyyounger,about4.5billionyearsold).Whenitrunsoutoffuel,itscorewillcontractintoaballthesizeoftheEarth,withapproximatelyhalfofthecurrentSun’smassandmadeupmostlyofhelium,carbonandoxygen.Itwillnolongergenerateenergythroughnuclearreactions,butitwillbeveryhot.Graduallyitwillloseitsstoredenergy,coolingoverbillionsofyears.Theseendpointsofstellarevolutionarecalledwhitedwarfstars.2.Thedramaticlifeofverymassivestars–themostviolentcosmicexplosionsStarsthatstarttheirliveswithbetween8and30timesasmuchmassastheSunfollowadifferentpathandhaveadifferentending.Theseareveryrare:themoremassivethestar,thefewerlikethemexistinourMilkyWaygalaxy.Massivestarsstart,liketheSun,byconvertinghydrogenintohelium.Thishappensintheirdenseandhotcores(theSun’ssurfacethatweseehasatemperatureof5000degrees,butthecoreisinexcessof10milliondegrees).Thehightemperatureforcesprotons(thepositivelychargednucleiofhydrogenatomsthatwouldotherwiserepel)tofuseintoheavierelements.Duetotheirincreasedgravity,thecoresofverymassivestarsaredenserandhotterthantheSun’s.Thiscausesthemtoconsumetheirnuclearfuelmorerapidly,inonlyafewmillionyears.Whentheyrunoutofhydrogen,theircoresfirstcontractduetogravity,whichcausesthemtobecomeevendenserandhotter,nowfusingheliumnucleiintograduallymoremassiveelements.Thisprocesscontinues,evermorerapidly,untilthestarburnssiliconattemperaturesofbillionsofdegreesinonlyafewdays.ThisresultsinaballofironwiththemassoftheSunandthesizeoftheEarthsurrounded,onion-like,bylayersofgraduallylighterelements.Atthispoint,veryrapidly,somethingdramatichappens.Ironcannotbefusedintoheavierelementswhilereleasingenergy.However,gravitycontinuesitswork,pullingatomseverclosertothecenter,everdenser.Suddenly,eachprotonpluselectroninthecoretransformsintoaneutron,andwithinafractionofasecondthecoreshrinkstoaballmadeupmostlyofneutrons,20kilometresindiameter–thesizeofacitybut

Page 2: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

2

slightlymoremassivethantheSun.AteaspoonofthismaterialhasmoremassthanTableMountain!Theouterlayersofthestar,fallingduetogravity,crashintothishardyneutronstar,whichreboundslikearubberball,launchingelementsintospaceattensofthousandsofkilometrespersecond!Astheatomscollidewitheachother,newelementsarecreated.Thesearesupernovaexplosions–themostviolenteventsknownintheuniverse(seeFigure1).3.Theoxygenthatyoubreatheandthesaltthatyoueat:productsofexplodedstars!Onaverage,asupernovahappensinagalaxyliketheMilkyWayoncepercentury.Theelementscreatedanddispersedbyasupernovainthiswaymakeuptherawmaterialsthatformsubsequentgenerationsofstarsandplanetsinthegalaxy.Theatomsintheoxygenthatwebreathe,theatomsinthesaltthatweeat,wereoncemadeinsidemassivestarsandlaunchedintospacebysupernovas.4.Fromthediscoveryofthesub-atomicneutrontothediscoveryofneutronstarsandpulsarsNeutronstarswerepredictedtoexistinthe1930s,soonafterthediscoveryoftheneutronparticleitselfinlaboratoryexperiments.However,theywereexpectedtobesosmallthatitwashardtoimaginethattheycouldeverbeseen–thestarsthatweseeinthenightskyarevisibleeventhoughtheyareveryfarawaybecausetheyarehotandbecausetheyarehuge(theSunisabout1millionkilometresindiameter).Nevertheless,neutronstarswerediscoveredin1967,completelyunexpectedly,usingradiotelescopes.Wenowknowthattheneutronstarremnantleftoverfromasupernovaexplosiontypicallyspinsveryrapidly,tensoftimespersecond(Figure1).Italsohasanextremelystrongmagneticfield,onetrilliontimesstrongerthantheEarth’s.Thecombinationofthesefactorsleadstobeamsofradiowavesbeingproducedthatarefocusedalongthemagneticfields.Asthestarspins,givenafortuitousalignment,telescopesonEarthcandetectburstsofradiowaveswitheveryturnofthestar,inlighthouse-likefashion.Theseneutronstarsarethereforesometimesalsoknownaspulsars,sincetheyappeartopulsate,althoughinfacttheyarerotating.Fiftyyearsafterthediscoveryofthefirstone,about3000pulsarsareknownintheMilkyWay,afewpercentofthetotalpopulationthoughttoexist.Bycomparison,ourgalaxycontainsmorethan100billionordinarystars.5.Magnetars:themostmagneticobjectsintheuniverseMagnetarsareaveryraresubsetofneutronstars/pulsars.Onlytwodozenareknowninthegalaxy.Theirmagneticfieldsareupto1000timesstrongerthanthoseofordinarypulsars.Theenergyassociatedwithsuchfieldsissolargethatitalmostbreaksthestarapartinmassivestarquakes.Magnetarsthereforetendtobeunstable,displayinggreatvariabilityintheirphysicalpropertiesandelectromagneticemission.Sometimestheydisplayenormousoutburstsofenergy–andsometimesthey“turnoff”:wecannolongerseethem(atleastforawhile),evenwiththebesttelescopeintheworld.

Page 3: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

3

6.ObservingmagnetarswithradioandX-raytelescopesWhiletypicalpulsarsaremosteasilyobservedthroughtheirradioemission,until2006nomagnetarhadbeenobservedtoemitradiowaves–somuchsothattheorieshadbeenadvancedtoexplainwhytheycouldn’temitradiowaves.Thosetheoriesareincorrect,sincewenowknowoffourmagnetarsthatemitradiowaves.Nevertheless,wedon’tunderstandverywellwhatcausesthisemission,whichhassomeunusualproperties.Radioemissionfrommagnetarsisrareandpoorlyunderstood,butallmagnetarsareknowntoemitX-rays.Thesearesimilartothoseusedatthedoctor’sofficeorinairportX-rayscanners,butareproducedatthesurfaceofamagnetarheatedtomillionsofdegreesbythedecayofitsultra-strongmagneticfields.BythetimetheyarriveattheEarth,aftertravelingthousandsoflight-years(alight-yearisthedistancecoveredbylightoranyelectromagneticradiationinoneyear,movingataspeedof300thousandkilometrespersecond),theseX-raysarefaint,requiringverysensitiveinstrumentsinordertobedetected.Also,X-raysfromastronomicalsourcessuchasstarsandgalaxiesmustbedetectedabovetheEarth’satmosphere(whichabsorbsX-rays,protectinglifeonEarthfromdangerousradiation).X-raytelescopesarethereforeplacedinorbitingsatellites.7.Whystudymagnetars?Astronomers,withoutleavingtheEarth,usetelescopestoexploretheuniverse.Thestudyofmagnetarsallowsustolearnaboutthebehaviorofmatterinthemostextremeconditionspresentintheuniverse,quiteunlikeanythatcanbeexperiencedonEarth.ThestudyofthefourmagnetarsknowntoemitbothX-raysandradiowavesopensanewwindowforunderstandingtheserareandexoticobjects.8.RadiomagnetarsturningonandoffRadiowaveswerefirstdiscoveredfromamagnetarafteranX-rayoutburstcausedbyasuddenrearrangementofitsmagneticfield.Afteralltheenergywasreleasedandthemagneticfieldrelaxedtoamorestablestate,radioemissionceasedin2008,andthestarhasbeenquietsince.Itshouldturnonagainoneday–whethertomorrowor100yearsfromnow,nobodyknows.9.ThesubjectofthefirstMeerKATpaper:discovery,radioturnoff,andrevivalThemagnetarPSRJ1622-4950isthesubjectofthefirstscientificpublicationbasedonMeerKATdata(thenameisderivedfromitsposition,intheNormaconstellationalongtheMilkyWay,closetothetailofScorpius).Itwasdiscoveredasapulsarwitharotationperiodof4secondsin2009,usingtheParkesradiotelescopeinAustralia(seeFigure2).AlthoughthemagnetarwasalsodetectedinX-rayimages,itwasalreadybecomingfaintandnoX-raypulsationscouldbedetected.Byearly2015,itsradioemissionturnedoff,butregularmonitoringobservationscontinued.

Page 4: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

4

On26April2017,anAustraliancolleagueusingtheParkestelescopenoticedthatPSRJ1622-4950wasonceagainemittingbrightradiopulsesevery4seconds!AfewdayslaterParkesunderwentaplannedmonth-longmaintenanceshutdown.AlthoughMeerKATwasstillunderconstruction,withonly16ofitseventual64dishesavailable,theSARAOcommissioningandoperationsteamstartedregularmonitoringofthisunusualstar30,000lightyearsfromEarth(Figure4).10.ParkesandMeerKAT:twodifferenttypesofradiotelescopes,bothgreatforpulsarsParkesisasingle-dishradiotelescope64metresindiameter,oneofthemostsuccessfulintheworldforpulsarstudies.MeerKATisaninterferometer,whichcanmakesharpradioimagesofawideareaofskybycombiningsignalsfromitsmanysmallerantennasseparatedbyupto8kilometres.Inthiscase,thedistinctiondoesn’tmatter,becausepulsarsaresosmallandsofarawaythattheyalwayslooklikepointsof(radio)light.MeerKATwasthereforeusedina(beamforming)modewherebythesignalsfromthedifferentantennasarecombinedtolookatjustonepointonthesky,aswithasingle-dishtelescope.Withonly16dishesoperatingatL-band(overafrequencyrangeof900to1670MHz),MeerKATalreadyhadcomparablesensitivitytothemuchlargersingleParkesdish.11.UsingX-raytelescopestostudythemagnetar–andneedingMeerKATdataAssoonaswerealizedthatthemagnetarhadrevivedatradiowavelengths(itwasnowatleast100timesbrighterthananytimesince2015),ourteamwantedtodeterminewhetheritwasalsobrighterinX-rays–andtotrytodetectX-raypulsations(thiswastheonlymagnetarknowninthegalaxyforwhichX-raypulsationshadneverbeendetected).TogetherwithcolleaguesinCanadaweweresuccessfulinmakingthecaseforusingNASAX-raytelescopesforthispurpose.IntheendweusedtheChandra(seeFigure3),NuSTAR,andSwifttelescopes,inadditiontoearlierarchivalX-raydatafromtheXMM-Newtontelescope.TheabilitytoobservethestarseveraltimesaweekwithMeerKATprovedcritical.That’sbecauseweexpectedveryfewX-rayphotonsfromthestar(manyfewerthanoneeverysecond),andthestar’srotationbehaveserraticallyduetothechangingmagneticfieldstillrecoveringfromitsrecentviolenteruption.ThiswouldmakeitimpossibletosearchforfaintX-raypulsations–unlessweknewwhatthepreciserotationalbehaviorofthestarwasatthesametimethatwewerecollectingX-raydata.Whichwedid–bymeasuringitwithMeerKAT!InthiswaywediscoveredX-raypulsesfromthestar,every4seconds(Figure5).Fromourinvestigationwealsolearnedthatthemagnetarawokefromits2-yearslumberinMarchorApril2017.InearlyMayitwasatleast800timesbrighterinX-raysthanwhenitwasdormant.Butitwasalreadyfadingfast:hadwewaitedafewmonths,wewouldn’thavedetectedanyX-raypulsations.UsingdatafromParkesafteritreturnedtoactionfromitsshutdown,wealsodeterminedthatradioemissionfromthemagnetarnowarisesfromadifferentlocationonitsso-calledmagnetosphere.Wedon’tknowwhythisshouldbeso–nothinglikeithasbeenobservedbefore.Moremysteriestobetackledbyfuturestudies…

Page 5: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

5

12.MeerKAT:apowerfulnewtelescopebuiltbyaremarkableteamThediscoveriesreportedinthearticlepublishedtodaycouldnothavebeenmadewithouttheMeerKATtelescope.Whilenotyetcomplete,MeerKATisnowclearlyanexcitingnewscientificinstrument.Itwillbecomemoresowithtimeasitscapabilitiescontinuetobedeveloped.It’stakenmorethanadecadeofhardworkbyteamsofhundreds,SouthAfricansforthemostpart,workingatthecuttingedgeoftechnology,tobuildthisbeautifulinstrument.Manyofthosewho’vebuiltit–membersoftheso-calledMeerKATBuildersList–areamongthe208co-authorsofthisarticle,thefirstofmanytofollowintheyearstocome. F.Camilo,L.Magnus,M.Venter,M.Geyer

Page 6: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

6

FIGURESFigure1:TheCrabNebula,viewedwiththeHubbleSpaceTelescope.(CreditandCopyright:NASA,ESA.)

Everythinginthisimage(otherthanthepointsoflightwhichareunrelatedstarsinourgalaxy)ispoweredbyahighlymagnetizedneutronstarthesizeofacityspinning30timespersecond–theCrabpulsar.Thisistheremnantofasupernovaexplosionobservedon4July1054AD.Locatedapproximately6000light-yearsfromEarth,theCrabNebulaspans10light-years.

Page 7: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

7

Figure2:TheParkes64-metreradiotelescopeinAustralia.(CreditandCopyright:JohnSarkissian,CSIROParkesObservatory.)

Inthisphototakenon21July2011,theSpaceShuttleAtlantis(streakbehindthefocuscabinofthetelescope)hasjustundockedfromtheInternationalSpaceStation(streaktothelowerright)forthefinaltime.ThemagnetarPSRJ1622-4950wasdiscoveredwiththeParkestelescopein2009,whereithasbeenstudiedatradiowavelengthssince–untilMeerKATjoinedin2017.

Page 8: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

8

Figure3:TheChandraX-rayObservatory,withtheNamibiandesertinthebackground,justbeforedeploymentfromtheSpaceShuttleColumbia’spayloadbayon23July1999.(CreditandCopyright:NASA.)

TheX-raytelescopehasaverylongfocallength(10metres)becauseX-rayscannotbefocusedwithmirrorsinthesamewayasvisiblelight:inordernottobeabsorbed,theyare‘skipped’atgrazingincidencereflection,analogouslytoastonebeingskippedalongapondsurface,withanglesof2-3degreestothesurfaceoftheparaboloidandhyperboloidChandramirrors,beforebeingfocusedtothescienceinstrumentsthatdetecttheX-rays.Chandra,withitsAdvancedCCDImagingSpectrometer(ACIS),wasusedtoobservethemagnetarPSRJ1622-4950inMayandSeptember2017incoordinationwithMeerKAT.

Page 9: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

9

Figure4:ThefirstdetectionofthemagnetarPSRJ1622-4950usingMeerKAT,on27April2017.Thepulseprofile(phaseof0–1correspondstotherotationperiodof4.3seconds)isshowntwice,asafunctionoftimeduringthe12-minuteobservationwiththeL-bandreceiver,andsummedatthetop.(AdaptedfromCamiloetal.2018,ApJ,856,180.)

Page 10: MeerKAT’s first paper explained ... - intranet.sarao.ac.za · construction, with only 16 of its eventual 64 dishes available, the SARAO commissioning and operations team started

10

Figure5:X-raypulsesfromthemagnetarPSRJ1622-4950,detectedforthefirsttimein2017.ThesparseX-rayphotonscollectedwithNASA’sChandraandNuSTARtelescopeswerefoldedinrotationalphase(longitude)usingthepreciserotationalperiodpredictedfortheneutronstar,obtainedfromcontemporaneousMeerKATradioobservations.Thefullrotationalphaseof4.3secondsisshowntwiceforclarity,forthreecombinationsofX-rayinstruments.(FigurefromCamiloetal.2018.)