8
HAL Id: jpa-00227776 https://hal.archives-ouvertes.fr/jpa-00227776 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. MECHANISM OF EXPLOSIVE WELDING OF METALS W. Sek To cite this version: W. Sek. MECHANISM OF EXPLOSIVE WELDING OF METALS. Journal de Physique Colloques, 1988, 49 (C3), pp.C3-371-C3-377. 10.1051/jphyscol:1988353. jpa-00227776

MECHANISM OF EXPLOSIVE WELDING OF METALS

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MECHANISM OF EXPLOSIVE WELDING OF METALS

HAL Id: jpa-00227776https://hal.archives-ouvertes.fr/jpa-00227776

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

MECHANISM OF EXPLOSIVE WELDING OFMETALS

W. Sek

To cite this version:W. Sek. MECHANISM OF EXPLOSIVE WELDING OF METALS. Journal de Physique Colloques,1988, 49 (C3), pp.C3-371-C3-377. �10.1051/jphyscol:1988353�. �jpa-00227776�

Page 2: MECHANISM OF EXPLOSIVE WELDING OF METALS

JOURNAL DE PHYSIQUE Colloque C3 , Suppl6ment au nag, Tome 49, septembre 1988

MECHANISM OF EXPLOSIVE WELDING OF METALS

W. SEK

I n s t y t u t Techniki C iep lne j , ~ b d i , u l . Dabrowskiego 113, Poland

~ 6 s u m 6 - On d i s c u t e l e m6canisrne de soudage exp los i f . Des r6su;; ?Z?Z-Zxp&rimentaux montrent que l a su r f ace de l i a i s o n e s t formee apr& l e passage du p o i n t de c o l l i s i o n $t,que ce processus ,es t a f f e c t e considerablement ,par des ,p rop r i e t e s physiques de metaux. On met en doute l ' u t i l i t e du modele hydrodynamique pour l a des- c r i p t i o n du processus de soudage explos i f .

Abs t r ac t - Mechanism of explos ive welding is discussed. The ex- ------- perlmenTal d a t a i n d i c a t e t h a t t h e explos ive bonding i n t e r f a c e forms behind t h e c o l l i s i o n po in t and the phys i ca l p r o p e r t i e s of me ta l s a f f e c t cons ide rab ly t h i s process. The usefu lness of hydrodynamic model f o r d e s c r i b i n g t h e explosive welding process i s ca.lled i n ques t ion .

with t he i nc rease of t he i nyac t a n g l e p . This phenomenon i s r e a l l y observed i n explos ive welding of metals, when t h e p re set-up ang led ) /O . There e x i s t , however, some experimental dats. which d isaccord t h e r e s u l t s ca l cu l a t ed on t h e base of t he hydrodynamic theory. I t has been proved t h a t the wave lenght llI~lf i nc reases i n s n i t e of t he decreLd!fis2Iipact angle f i , when s tudying t h e explos ive welding arocess with t h e negat ive o re

1 - INTRQIUC!IGE During t h e l a s t year , t h e process of explos ive welding has been ex tens ive ly s tud i ed . A s f o r t h e experimentaly confirmed l i m i t i n g values of welding parameters , t h e r e i s , i n p r i n c i p l e , uniformity of view i n t h e mids t o f i n v e s t i g a t o r s . However, some r a d i c a l d i v e r - gences e x i s t i n t h e way of t h e explana t ion of explosive welding phenomena and p a r t i c u l a r l y of t h e wave formation. Some au tho r s ,7,3) aonsides, t h a t t h e j e t ex i s t ence i s no t a precondi t ion f o r acceptable weld. They a t t r i b u t e t h e g r e a t p a r t played by p l a s t i c deformation o r i g i n a t i n g i n t h e impact of elements i n t h e reg ion of c o l l i s i o n poin t . This l e a d s t o t h e ex i s t ence of p l a s t i c zone connect& with t h e pa ren t p l a t e . However, t h e most of t he i n v e s t i g a t o r s consider t h a t t h e formation of j e t from both sur faces (from (3+6 ,9 ) the pa ren t and f l a y e r p l a t e ) is the precondi t ion of an acceptable weld. The curves A and B i n t he F igure 1 a r e t he l i m i t s o f t he j e t formation area . This i s based on t h e hydrodynamic theory and each

process which l eads t o t h e forma- t i o n of a bond i s considered a s

Bid' a impact of such j e t s , disregard-

0.8 . 0.7. 0.6. 0.5. 0.4. 0.3 . 0,2 . 0.1.

i ng , i n p r i n c i p l e , t h e phys ica l p r o p e r t i e s of bonding ma te r i a l s . I n consequence i t is s a i d t h a t , t h e bond i s forming i n t h e neigh- bourhood of c o l l i s i o n po in t and t h e problem of wave bond forming i s reduced t o desc r ib ing flow non- A T s t a b i l i t y . PL hydrodynamic model descr ibed i n o e r n i t s t o

fOW 2000 3000 4000 f i n d s o m e (3,596)experimental- '' a n a l y t i c r e l -%t ionsh ips of process Fig.1. The j e t formation area parameters. It i s shown, t h a t t he

l e n ~ h t of wave I1Lu should i nc rease

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988353

Page 3: MECHANISM OF EXPLOSIVE WELDING OF METALS

JOURNAL DE PHYSIQUE

set-up ang leoc o f s u r f a c e s t o b e bonded Furthermore, measure - ments o f t h e c o l l i s i o n p o i n t v e l o c i t y &($?&ormed u s i n g a method of s h o r t e n i n g r e s i s t a n c e , have shown t h a t t h e j e t d i d n o t e x i s t , a l t h o u ~ h , t h e a c c e p t a b l e weld h a s been ob ta ined . S imul taneous ly , t h e o b t a i n e d r e s u l t s a l lowed t o suppose, t h e p l a s t i c a l l y deformed m e t a l i s s h i f t e d by t h e f l a y e r p l a t e i n f r o n t o f t h e c o l l i s i o n p o i n t . Th is m e t a l is i n t h e l i q u i d s t a t e . I t h a s been p r ~ v e d i n t h a t t h e welding s u r f a c e s a r e connected th rough t h e t h i n l aye413bi mol ten and r e c r y s t a l i z e d m e t a l . The m i c r o d i f f r a c t i o n p a t t e r n s o f t h i s l a y e r have shown t h a t i t had 2 c r y s t a l s t r u c t u r e w i t h o u t any t e x t u r e . The a n a l y s i s of t h e s e r e s u l t s l e a d s t o a c o n c l u s i o n , t h a t t h e f i n a l s t a t e o f welding bond i s n o t formed i n t h e r e g i o n o f c o l l i s i o n p o i n t b u t i n a long d i s t a n c e behind t h i s p o i n t . Provided t h e v e l o c i t y i s 4=2000 m / s , t h e c o l l i s i o n p o i n t c o v e r s a d i s t a n c e o f 2 mm d u r i n g ips . Tf a bond were formed n e a r t h e c o l l i s i o n p o i n t , t h e t empera ture of molten zone would have t o lower a b o u t 100-1000 R d u r i n g 1 ~ . Th is w o ~ l d 5 e c u i r e t h e v e l o c i t y of t h e t empera ture d e c r e a s e e q u a l t o a b o u t 10 -10 k/s and should l e a d t o t h e amorphous s t r u c t u r e s . On t h e o t h e r hand, t h e a ~ t u a l ~ c r y s t a l s t r u c t u r e i n d i c a t e s , t h a t t h i s v e l o c i t y d i d n ' t exceed 10 K/s . Thus, f i n a l forming of t h e bond t a k e s a t ime of t e n s microseconds and i n t h i s o e r i o d t h e c o l l i s i o n p o i n t i s s e v e r a l hundred m i l i m e t e r s d i s t a n t from a p o i n t o f m a t e r i a l bonding.

I t h a s been s a i d a l r e a d y t h a t t h e weld bond forming is connected w i t h t h e e x i s t a n c e o f l i q u i d phase , and t h e f o r m a t i o n t ime l a s t s a t l e a s t t e n s of microseconds. TRus t h e p h y s i c a l p r o p e r t i e s o f bond- i n g m a t e r i a l such as t h e m e l t i n g p o i n t , the rmal c o n d u c t i v i t y and e l a s t i c i t y , must p l a y a g r e a t p a r t i n t h i s p rocess . I n o r d e r t o i n v e s t i g a t e t h i s s u ~ p o s i t i o n and t o i n v e s t i g a t e whe ther t h e l a y e r o f m e t a l s h i f t e d i n f r o n t o f t h e c o l l i s i o n p o i n t o r i g i n a t e d from t h e p a r e n t o r f l a y e r late t h e f o l l o w i n g exper iment was c a r r i e d o u t . Two i d e n t i c a l , unsymmetrical s l e e v e s , t h e f i r s t o f t h m made from 8 t h e s t a i n l e s s s t e e l 18.8 (Young's modulus E=l 96 x 10 M?a) and t h e second from t h e aluminium bronze (E=1 , C 3 x 1 0 3 ~ 2 a ) were p repared t o f a s t e n i n s i d e s t a i n l e s s s t e e l 18.8 t u b e s (16 mm d i a , 1 ,2 mm w a l l t h i c k n e s s ) u s i n g t h e i d e n t i c a l e x u l o s i v e charges . The shock a d i a - b a t e s o f t h e s t a i n l e s s s t e e l 18.8 and t h e aluminium bronze a r e n e a r l y t h e s m e , t h u s t h e p r e s s u r e i n t h e impact r e g i o n should be slmllar. F i g u r e 2 shows t h e d e t a i l e d model and t h e p l a n e s where t h e meta lograph ic specimens were c u t from. The unsymmetr ical f l a n g e

Pig.2. The model f o r exper iments and t h e p l a n e s c u t o f them

Page 4: MECHANISM OF EXPLOSIVE WELDING OF METALS

01, the stainless steel 18-8 sleeve - 460

. J

>['. ..;->>;. .;- .,. . :,,>. , . . \ . .

D- wave bond UDIUIl! - flat bond

b) the brass sleeve - x 160

Page 5: MECHANISM OF EXPLOSIVE WELDING OF METALS

C3-374 JOURNAL DE PHYSIQUE

(16 mm d i a . ) was made t o s t o p a l l t h e elements be ing s h i f t e d before t h e c o l l i s i o n po in t i n t h e bonding zone. The de tonat ion v e l o c i t y wa.s equal t o D=6300 m / s and consequently, t h e a x i a l component o f impact v e l o c i t y Vk exceeds t h e va lue of son ic v e l o c i t y i n meta ls t o be bonded. Con t ra r i l y , t h e c i r cumfe ren t i a l component o f Vk was subsonic on t h e n e a r l y whole length . The r e s u l t s a r e shown i n Pig.3. I n o rde r t o q u a l i f y .the chemical compos.ition o f l a y e r which i s s h i f t e d i n f r o n t of t h e c o l l i s i o n p o i n t i n t h e p lane , t h e microanalys is ( l i n e and s u r f a c e ) was done ( ~ i g . 4 ) . The obtained r e s u l t s showed, t h a t t he s h i f t e d l a v e r c o s i s t a of comoonents of t h e bronze s l e e v e wi th

distribution of Cr

Pig.4. The microanalys is of t he l a y e r s h i f t e d i n f r o n t of t he c o l - l i s i o n p o i n t

a incons iderable amount of oxygen o r i g i n a t i n g probably from the l a y e r of oxides. A l i t t l e i n c r e a s e of chromium and n i c k e l concentra- t i o n was observed only i n a very t h i n zone ad jacen t t o t he tube ma te r i a l . Thus t h e l a y e r s h i f t e d i n f r o n t of t he c o l l i s i o n po in t , i a a p a r t of s l e e v e m a t e r i a l and it does no t show the na tu re o f a j e t i because then t h e concent ra t ion of chromium and n i c k e l should be g r e a t e r and ranged deeply i n t h i s layer . This was a l s o confirmed i n another experiment. The tube was fas tened i n the s l eeve a t t h e pre s e t a n g l e d = 3 (k)O). The explos ive cha.rge was ended a t t he range of cone as i t is shown i n Fig.5a. Two zones may be d i s t i ngu i shed

-- -

lhe re~ioo on the Fiq 5b

Pig.5: The scheme of experiment and s t r o n g l y deformed l a y e r o f s leeve

i n t h e obtained bond: - wave zone bond - f l a t bond zone. Its end corresponds with t h e end of t he explos ive charge - Fig.5b

I n Fig.5b t h e s t rong ly p l a . s t i c a l l y deformed l a y e r of s l eeve ma te r i a l

Page 6: MECHANISM OF EXPLOSIVE WELDING OF METALS

can be seen. Th is l a y e r would have been removed from t h e bond by

flajrer t u b e w a l l , i f t h e e x p l o s i v e charge had been longer . So s t r o n g - l y p l a s t i c a l l y deformed r e g i o n s were n o t found w i t h i n t h e bonding zone. L e t u s n o t i c e , t h a t t h i s s t r o n g deformat ion i s conf ined t o a t h i n t o p l a y e r of s l e e v e m a t e r i a l . The t h i c k n e s s o f t h i s l a y e r i s 15 ; 20 m. P The f o l l o w i n g s n e c i f i c d e t a i l s can b e n o t i c e d i n t h e ob ta ined r e s u l t s - The s t e e l 18.5 s l e e v e does n o t show any c r a c k s on i t s t o p s u r f a c e

a f t e r t h e e x 3 l o s i v e f a s t e n i n g of a tube. The same bond s t r u c t u r e i s observed on t h e s l e e v e c i rcumference i n t h e ? l a n e d , and on b'oth s i d e s o f t h e n l a n e d . R e s u l t s a r e d i f f e r e n t f o r t h e bronze s l e e v e . A few c r a c k s were observed i n t h e p lane 8 e s well a s on

the l e f t s i d e o f t h e s l e e v e . The wave bond e x i s t s on ly on t h e r i g h t , undemaged s i d e . On t h e l e f t s i d e t h e e x i s t i n g bond h a s a f l a t c h a r a c t e r a l o n g t h e whole c i r c ~ m ~ f e r e n c e . - The e x n l o s i v e bond t o t h e bronze s l e e v e shows i n t h e p l a n e d , t h e cons iderab ly g r e < + t e r v a l u e s o f t h e wave l e n g t h , t h e ampli tude and t h e i r r a t i o when comnaring with t h e s l e e v e made from s t e i n l e s s s t e e l 18.0 ( i n s n i t e o f t h e same paramete rs of t h e e x p l o s i v e p rocess ) . D i f f e r e n c e s o f 2hysical . ? r o n e r t i e s o f t h e s l e e v e ma . te r ia1 cnn b e c h a r a c t e r i z e d by: 77

-'in 0 1 0 . : m t i o o f , oung's moduli -;----- =

"bronze

r a t i o of m e l t i n g ~ o i n t s ------- -

r a t i o o f termal c o n ? u c t i v i t i e s :/-bronze/:~19.q > 11 - In b o t h c'tses t h e f l a t bond :vna obta ined a t /$,,;,'k. 3'. For t h e

s t a i n l e s s s t e e l 18.4 s l e e v e , t h e minimum i n i t i a l gap a t which the f l a t bond h a s been o b t - i n e g , was e ~ u a l t o %,,*0,54 mm, t h e wave bond s t a r t e d a t ;,) 1 , C 5 mm and /3a6,3O a n 3 f i n i s h e d a t So% 1.65 mm and /3%4O . For t h e bronze s l e e v e : &,,,,;, ';YN C,15 mm, the wave bonding s t a r t e d a t So= C , 2 m m , nN 3,5' and f i n i s h e d a t 3,* 1 , l rnm, f l*6,5*. - The i n t e r f a c e between t h e s u b s t r a t e mr l te r ia l and t h e m a t e r i a l

l a y e r which 1 s s h i f t e d i n f r o n t o f t h e c o l l i s i o n m i n t (F ig . 6 ) as w e l l a s a sphe - r i c a l shape o f c r d t e r s (dark s p o t s ) i n s i d e t h i s l a y e r , t e s t i f y t h a t t h e s h i f t e d m a t e r i a l i n t h e r r e a t p a r t i s i n l i o u i d s t a t e . Thus t h e t e m ~ e r n t u r e of t h i s l a y e r had t o b e h i g h e r than 13CO 1:. The above d a t a p o i n t , t h a t t h e f o l l o w i n g m a t e r i a l ~ r o ~ e r t i e s a f f e c t t h e wave l e n g t h and i t s ampli tude: a t h e m e l t i n g p o i n t b t h e thermal c o n d u c t i v i t y c I t h e d i f f e r e n c e s of e l a s t i c recovery o f t h e

m a t e r i a l s t o b e bonded. Thev a r e r e p r e s e n t e d x 63 by "oung9s moduli , b u t t h e y V d e ~ e n d a l s o on

Fig.6. The m z t e r i a l t h e s t a t e o f load ing . -

s h i f t e d i n f r o n t o f t h e c o l l i s i o n p o i n t

A s t r o n g p l a s t i c de format ion occurs i n t h e r e g i o n of c o l l i s i o n p o i n t during t h e impact of m a t e r i a l s . A s u i t a b l e r a t e o f t h i s deformat ion,

Page 7: MECHANISM OF EXPLOSIVE WELDING OF METALS

JOURNAL DE PHYSIQUE

d e f i n e d by t h e imgact v e l o c i t y V and t h e v e l o c i t y o f c o l l i s i o n p o i n t , e n s u r e s tha.t t h e p r o c e s s i s a d i a b a t i c and t h e h e a t emiss ion t o t h e t h i n t o p l a y e r o f s u b s t r a t e i.s l i m i t e d . I t c a u s e s m e l t i n g o f t h i s l a y e r . I n consequence, a t t h e same c o n d i t i o n s , t h e t h i c k n e s s o f t h e l a y e r b e i n g molten and ~ 1 a . s t i c a l l y deformed w i l l b e g r e a t e r i f t h e m e l t i n g p o i n t o f t h i s m a t e r i a l is lower and t h e the rmal c o n d u c t i v i t y i s h igher . The imuact v e l o c i t y s u f ~ l c i ~ n t f o r a n a c c e p t a b l e weld w i l l b e a l s o lower a t t h e lower m e l t i n g p o i n t o f s u b s t r a t e m a t e r i a l . EIence, t h e a c c e ~ t a b l e weld w a s o b t a i n e d f o r b ronze s l e e v e (T ~ 1 3 0 0 K ) a t t h e gap So,, x C,15 m m , whereas f o r s t e e l 18.8 s l e e v e (T W 1700K) on ly when t h e gap was q a 0 , 5 4 mm. The the rmal c o n d u c t i v i t y and t h e e l a . s t i c r e c o v e r y ( c h a r a . c t e r i z e d by Young's modulus) a r e a l s o g r e a t e r f o r hronze t h a n f o r s t 2 i n l e s s s t e e l 18.3 . That i s why t h e l e n g t h and t h e ampl i tude o f waves were g r e a t e r f o r b ronze s l e e v e t h a n f o r 13.8 s t e e l s l e e v e . Furthermore, t h e i n f l u e n c e o f t h e a n g l e f i i n t h e welding n r o c e s s i s worth n o t i c e . The a c c e g t a b l e welds were o b t a i n e d i n b o t h c a s e s a t p,,,,be 3' ( b u t a t d i f f e r e n t i n p a c t v e l o c i t i e s ) i n s p i t e o f f i i f f e r e n c e s i n g h y s i c q l p r o p e r t i e s o f s t a i n l e s s s t e e l and aluminium bronze. I t g i v e s a c o n c l u s i o n t h a t t h e a n g l e f i d o e s n o t a f f e c t bond forming. Cn t h e o t h e r hand t h i s a n g l e i s o f g r e a t irnnortance i n t h e c r a c e s s o f p l a s t i c d e f o r m a t i o n o f t h e t o p l a y e r c r e a t i n g ccnditl ' .ons f o r t h e I.oc:?.lizr?tion o f t h i s de format ion and f o r t h e i n t e n s j - v e h e a t emission. I t s minimum v a l u e determined a s k m * 3 0 is i n t h e good ggreenen t wi th d-itn c o i n t a i n e d i n ( 4 ) . I t was s u g - g e s t e d i n ( 5 ) th7.t t h e l ~ c k of weld f o r VK> Co is connected w i t h t h e shock waves cre:? t ion i n t h e r e g i o n of c o l l i s i o n p o i n t . The r e s u l t s d o n ' t confi rm t h e s e s u p g e s t i o n s . *en i f t h e shock waves e x i s t , t h e y have no i n f l u e n c e on t h e welding bond. Th is conf i rms t h e h y s o t h e s i s t h a t t h e welding bonds a r e fo rming i n a l o n g d i s t a n c e behind t h e c o l l i s i o n 7oj.nt. ,'a u n a c c e ~ t s b l e weld f o r V K > C O i s due t o t h e i m n o s s i b i l . i t y o f i n t e n 2 i v e p l a s t i c de format ions o f m a t e r i a l s .

4 - Co'P:C~'JCIo~?S ----------- 1. The p r o c e s s o f exp1o:;ive weJ.ding of m a t e r i a l s i s c o n d i t i o n e d by

t h e i n t e n n i v e a1as t i . c deform:.ition o f m a t e r i a l s i n t h e r e g i o n of colli:jj.on p o i n t a.nd t h e n resence o f a j e t i s i s n o t n e c e s s a r y .

2. The paramete rs o f t h e e x p l o 7 i v e welding p r o c e s s a r e i n t e n s i v e n o t enough t o d i s r e g a r ? t h e p a r t of s h e a r s t r e s s e s and t o a p p l y t h e hydrodynamic t h e o r y .

3. The im?act ua.rameters (v, Vk,P ) a f f e c t only t h e ins tan ta .neous s t a t e o f m ? . t e r i a l s i n t h e c o l l i s i o n a o i n t r e g i o n . The c h a r a c t e r o f t h e bond deaends on n h y y i c a l p r o p e r t i e s o f bonded m a t e r i a l s . The bond i s forming d u r i n g a ~ e r i o d of a b o u t t e n s t o s e v e r a l hundred microseconds behind t h e c o l l i s i o n p o i n t . A f l a t o r wavy shape cf t h e bond i s a f u n c t i o n of t h e c o n d i t i o n s i n which t h e minimum e n e r p j o f b0f id j .n~ s u r f a c e i s ach ieved .

Bib l iography:

1 . W.Babul - I1Odksz t a x c a n i e metal i . wybuchemfl, Warszawa, WNT 1980. 2. M.A.Meyers, L.E.I!urr - ttShock S!aves and I- ! ighStrain-Rate

Phenomena i n I;eta.lsrr , 7lenum ' ress , New York, 1980. 3 . W.F.Yudinow, !..Ja.!!orotie jew - "Swa.rka wzrywom w m i e t a l u r g i i " ,

Koskwa, l1: . .3etallurgi ja 1378". 4. K.T.Chistensen, ?T.S.Sngly, L.Alt ing - "Xet. Constr . and B r i t i s h

Weld. J o u r . " , 11, 412, 1Q73 r: 5. >..L.Deribas - " F i z i k a u ~ r o c z n l e n i , j a , i swark i wzrywom" Nowosybirsk,

Yauka, 1980 . 6. T.Z.Rlazyiski - l t3xp los ive welding, forming and compaction",

Applied S c i e n c e ? u b l i s h e r s , London-Yew l o r k , 1953.

Page 8: MECHANISM OF EXPLOSIVE WELDING OF METALS

7.A.N.Krivencovr,ïl.S.Sie:Iych-"C) r o l i p las t iczies1:oj d i e f o m a c j i

m i e t a l a VI z o n i e s o j e d i n i e n i j a p r i swark ie wzrywonH,Fiz.iChin.

Obr. 1-Tatier. ,Ur1,1969.

8.Yl.T.I .Korniejew,I.'~I.Jakol,vle~.r-"Pizi!ra Gor ien i ja i Swarki ... , ~ z r y v ~ o m ~ ~ , ? J r 2,19C4,p.67.

9. C ~ ~ ~ a n , G . H o l t z m a n - ~ ~ F l o v ~ c o n f i g u r a t i o n i n c o l l i d i n g p l a t e s " ,

J.:lppl.Fhys. ,v 34,i?r 4,1963.

10.Pat .TRI: n r 140E60.

11 .-7.Sqk-ttReport ITCn,!Tr51 I5,1986,?,6dL

12.\Il.Sqk-"Explosive weld ine of n e t z l s v ~ i t h n e g a t i v e p r e s e t up

a n g l e of s u r f a c e s v , V I I Int.Conf.,Pardubice,1988.

13 j! . ! - I ~ e r s c l - o ? ~ i d t ,H.Rrelreye-Cila3ter 54 in/2/.